
Set and Map ADT
Hash tables

Lecture 13

by Marina Barsky

Modeling dictionaries

• Dictionary is a collection
of pairs

• Each pair has a key and
the value associated with
this key

• The most important
functionality of a
dictionary is the search
of a value by a given key

Let’s assume for the simplicity of the
discussion that each key is unique: no
duplicate keys are allowed

Abstract Data Type: Map
(Dictionary, Associative Array)
Specification

Dictionary is an Abstract Data Type which stores a
collection of (key, value) pairs and supports the
following operations:

➔ Add (k, e) - adds element e to the collection
and associates it with key k

➔ Remove (k) - removes element with key k from
the collection

➔ Get (k) - returns the element associated with
key k

➔ Contains (k) - returns True if there is an
element associated with the key k. Returns
False otherwise

The main functionality
is to quickly locate a
value given the key

Which data structure to use to
implement Dictionary ADT?

Main goal: locate the element by the key
➢ Linked List, Array - N elements are unsorted – search

requires O(N) time

➢ Sorted array - N elements are sorted – O(log N) binary
search

It doesn’t seem like we can do much better

Searching in time O(1)

➢ How about O(1), that is, constant-time search?

➢ We can do it if we store data in an array organized in a
particular way

Hashing

“Hash is a food, especially meat and
potatoes, chopped and mixed together; a
confused mess “ (en.wiktionary.org/wiki/hash)

The idea of

http://www.google.ca/url?&ei=l_1HSpPWEYjcNsLtzK0G&sig2=SaEw8o_3VinYN6bnrkexeg&q=http://en.wiktionary.org/wiki/hash&ei=l_1HSpPWEYjcNsLtzK0G&sa=X&oi=define&ct=&cd=1&usg=AFQjCNF4gcSHUN-aeQxMCEDGYLMgEHykDg

➢ The obvious O(N2) solution:

for each character in order:

check whether that character is repeated

Example 1: First repeating character

Input: String S of length N
Output: first repeating character (if any) in S

The number of all possible characters is 256 (ASCII characters)

➢ We create an array H of size 256 and initialize it with all
zeros

➢ For each input character c go to the corresponding slot
H[c] and set count at this position to 1

➢ Since we are using arrays, it takes constant time for
reaching any location

➢ Once we find a character for which counter is already 1 –
we know that this is the one which is repeating for the
first time

a 97

b 98

c 99

d 100

e 101

f 102

g 103

h 104

i 105

j 106

k 107

l 108

m 109

n 110

o 111

Example 1: First repeating character

Input: String S of length N
Output: first repeating character (if any) in S

➢ Because the total number of all possible keys is
small (256), we were able to map each key
(character) to a single memory location

➢ The key tells us precisely where to look in the
array!

This method of storing keys in the array is called
direct addressing: store key k in position k of the
array

a 97 1

b 98 1

c 99 1

d 100

e 101

f 102

g 103

h 104

i 105

j 106

k 107

l 108

m 109

n 110

o 111

cabare Run-time O(N)

Example 1: First repeating character

Input: String S of length N
Output: first repeating character (if any) in S

➢ This very similarly looking problem is more difficult to
solve with direct addressing

➢ The total number of all possible integers is 2,147,483,647.
This is the universe of all possible keys - thus the size of
the array

➢ What if we have only 25 integers to store? Impractical

➢ What if the keys are floats/strings/objects? Impossible

➢ For these cases we use a technique of hashing: we
convert each key into a number using a hash function

Example 2: First repeating number

Input: Array A containing N integers
Output: first repeating number (if any) in A

Intuition: hashing inputs

➢ Suppose we were to come up with a “magic function”
that, given a key to search for, would tell us the exact
location in the array such that
○ If key is in that location, it’s in the array
○ If key is not in that location, it’s not in the array

➢ This function would have no other purpose

➢ If we look at the function’s inputs and outputs, the
connection between them won’t “make any sense”

➢ This function is called a hash function because it “makes
hash” of its inputs

Case study: hashing students

➢ Suppose we want to store
student objects in the array

➢ For each student we apply
the following hash function:

hashCode(Student) =

length (Student.lastName)

This gives us the following
values:

• hashCode(‘Chan’)=4

• hashCode(‘Yam’)=3

• hashCode(‘Li’)=2

• hashCode(‘Jones’)=5

• hashCode(‘Taylor’)=6

Array of students: hash table

0

1

2 Li

3 Yam

4 Chan

5 Jones

6 Taylor

7

➢ We place the students into
array slots which correspond
to the computed hash
values:

○ hashCode(‘Chan’)=4

○ hashCode(‘Yam’)=3

○ hashCode(‘Li’)=2

○ hashCode(‘Jones’)=5

○ hashCode(‘Taylor’)=6

Good hash function:
length of the last name

0

1

2 Li

3 Yam

4 Chan

5 Jones

6 Taylor

7

➢Our hash function is easy to compute

➢An array needs to be of size 18 only, since
the longest English surname,
Featherstonehaugh (Guinness, 1996), is only
17 characters long

➢We waste a little bit of space with entries
0,1 of the array, which do not seem to be
ever occupied. But the waste is not that bad
either

Bad hash function:
length of the last name

0

1

2 Li

3 Yam

4 Chan

5 Jones

6 Taylor

7

➢ Suppose we have a new student: Smith

○hashValue(‘Smith’)=5

➢When several values are hashed to the
same slot in the array, this is called a
collision

➢Now what?

Looking for a good hash function:
day of birth?
➢What about the day of birth?

○ We know that this would be 365 (366) possible values, so
we can have an array of size 366

○ The birth day of each student is randomly distributed
across this range, and this hash function is easy to
compute

Experiment:
https://forms.gle/BCNWDHvUfRuCpr5p6

https://forms.gle/BCNWDHvUfRuCpr5p6

Birthday paradox

➢For a college with only n=24 students, the probability that
any 2 of them were born on the same day is > 0.5

➢Let’s approximate this probability:

○ The probability of any two people not having the same birthday is:

p =364/365

○ The number of possible student pairs is () = n(n-1)/2 = 276

○ The probability for n students of not having birthday on the same
date is pn(n-1)/2. For 24 students this gives: (364/365)276≈0.47.

○ Then the probability of finding a pair of students colliding on their
birthday is 1.00 - 0.47 = 0.53 !

➢This is called a birthday paradox

n
2

https://en.wikipedia.org/wiki/Birthday_problem

http://commons.wikimedia.org/wiki/File:Birthday_Paradox.svg

http://commons.wikimedia.org/wiki/File:Birthday_Paradox.svg

In search for a
perfect hash function

A perfect hash function is a function that:
1. When applied to an Object, returns a number

2. When applied to equal Objects, returns the same number for
each

3. When applied to unequal Objects returns different numbers
for each, preventing collisions.

4. The numbers returned by hash function are evenly distributed
between the range of the positions in the array

5. We also require for our hash function to be efficiently
computable

non-random inputs → random numbers?

➢How to come up with this perfect hashing function?

➢In general – there is no such magic function 😞
○ In a few specific cases, where all the possible values are known in

advance, it is possible to define a perfect hash function. For example
hashing objects by their SSN numbers. But this will require an array to be
of size 109

➢It seems that collisions are essentially unavoidable. That means
that we cannot guarantee that the hash of a key will bring us into
the exact position where this key is located

➢What is the next best thing?
○ A perfect hash function would have told us exactly where to look
○ However, the best we can do is a function that tells us in what

area of an array to start looking!

In search for a
perfect hash function

Back to students:

Hashing names by summing up
their character values

➢It seems like a good idea to map each student
surname into a number by adding up the ranks (or
ASCII codes) of letters in this surname.

hashCode (S) =

What a great hash function!

a 1

b 2

c 3

d 4

e 5

f 6

g 7

h 8

i 9

j 10

k 11

l 12

m 13

n 14

o 15

p 16

r 17

s 18

t 19

u 20

v 21

w 22

x 23

y 24

z 25

◆ hashCode(‘Chan’)=3+8+1+14=26

◆ hashCode(‘Yam’)=24+1+13=38

◆ hashCode(‘Li’)=12+9=21

◆ hashCode(‘Jones’)=10+15+14+5+18=62

◆ hashCode(‘Taylor’)=19+1+24+12+15+17=88

◆ hashCode(‘Smith’)=18+13+9+19+8=67

hashCode (S) =

Still a lot of collisions!

a 1

b 2

c 3

d 4

e 5

f 6

g 7

h 8

i 9

j 10

k 11

l 12

m 13

n 14

o 15

p 16

r 17

s 18

t 19

u 20

v 21

w 22

x 23

y 24

z 25

➔ Not only hashCode(‘Yam’)=hashCode(‘May’)

➔ But hashCode(‘Chan’)= hashCode(‘Lam’) !

The function takes into account the value of
each character in the string, but not the order
of characters

hashCode (S) =

➢The summation is not a good choice for sequences of
elements where the order has meaning

➢Alternative: choose A≠1, and use a hash function for string S
of length N:

➢This is a polynomial of degree N for A, and the elements
(characters) of the String are the coefficients of this
polynomial

Polynomial hashing scheme

Example: polynomial hashing

S1 = ‘Yam’

S2 = ‘May’

A = 31

hashCode(S1) = 24*312 + 1*311 + 13*310 = 23108

hashCode(S2) = 13*312 + 1*311 + 24*310 = 12548

a 1

b 2

c 3

d 4

e 5

f 6

g 7

h 8

i 9

j 10

k 11

l 12

m 13

n 14

o 15

p 16

r 17

s 18

t 19

u 20

v 21

w 22

x 23

y 24

z 25

➢Instead of using the summation of all character values, the
polynomial hash function introduces interactions between
different bits of successive characters that will provoke or
spread randomness of the result

How to compute polynomial of
degree N in time O(N)
Horner’s method:

public int hashCode(){

 int hash=0;

 for (int i=0; i< length(); i++)

 hash=hash*31+S[i];

 return hash;

}

Let x=31, and a0 … an represent n+1 characters of string S:

https://en.wikipedia.org/wiki/Horner%27s_method

Java String hashCode()

➢Polynomial hashing is quite good: for different strings it
returns mostly different values which are well spread over
the range of all possible integers

➢This hash function is also very efficient, since we need only
n = length() steps to compute it

public int hashCode(){

 int hash=0;

 for (int i=0; i< length(); i++)

 hash=hash*31+S[i];

 return hash;

}

hash*31 = hash<<5 - hash

Implemented inside the String class

That is ~how
hashCode() is
implemented inside
Java String class

Reducing the range of hashCode
to the capacity of the array

➢The output of a good hash function is a number ~randomly
distributed over the range of all integers.

○ But we need to store our objects in the array of size M

➢Step 2: compression mapping

○ Converting integers in range ~ [0,400000000] to integers in
range [0, M]

○ The simplest way to do it: |hashCode| MOD M

○ In practice, the MAD (Multiply Add and Divide) method:

|(A*hashCode+B) MOD M|

The best results when A, B and M are primes

Full hashing

M-1

Hashing Students to 7 slots

0

1 Roy

2 Yam

3 Lam

4 Li

5 Lee

6 Taylor

➔ Applying polynomial
hashing:

hashCode(‘Taylor’)=-880692189

hashCode(‘Yam’)=119397

hashCode(‘Li’)=345

hashCode(‘Lee’)=107020

hashCode(‘Lam’)=106904

hashCode(‘Roy’)=113116

➔ Applying compression
mapping:

|(11*hashCode+13) MOD 7|

arrayIndex(‘Taylor’)=6

arrayIndex(‘Yam’)=2

arrayIndex(‘Li’)=4

arrayIndex(‘Lee’)=5

arrayIndex(‘Lam’)=3

arrayIndex(‘Roy’)=1

No more collisions?

• Does Java hashCode always
produce different hash code
for different strings?

The answer is NO.

If you run the code in the
box, you will find out that

• The words Aa and BB have
the same hashCode

• Words variants and gelato
hash to the same value

• …

public static void main(String [] args) {
 String [] words=new String[6];
 words[0]="Aa";
 words[1]="BB";
 words[2]="variants";
 words[3]="gelato";
 words[4]="misused";
 words[5]="horsemints";

 for(int i=0;i<6;i++) {
 System.out.print("Hash code of "+words[i]+": ");
 System.out.println(words[i].hashCode());
 }
}

• We have to be prepared to deal
with collisions, since they are
unavoidable

	Slide 1: Set and Map ADT Hash tables
	Slide 2: Modeling dictionaries
	Slide 3: Abstract Data Type: Map (Dictionary, Associative Array)
	Slide 4: Which data structure to use to implement Dictionary ADT?
	Slide 5: Searching in time O(1)
	Slide 6: Hashing
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Intuition: hashing inputs
	Slide 13: Case study: hashing students
	Slide 14: Array of students: hash table
	Slide 15: Good hash function: length of the last name
	Slide 16: Bad hash function: length of the last name
	Slide 17: Looking for a good hash function: day of birth?
	Slide 18: Birthday paradox
	Slide 19
	Slide 20: In search for a perfect hash function
	Slide 21: In search for a perfect hash function
	Slide 22
	Slide 23: Back to students: Hashing names by summing up their character values
	Slide 24: What a great hash function!
	Slide 25: Still a lot of collisions!
	Slide 26: Polynomial hashing scheme
	Slide 27: Example: polynomial hashing
	Slide 28: How to compute polynomial of degree N in time O(N)
	Slide 29: Java String hashCode()
	Slide 30: Reducing the range of hashCode to the capacity of the array
	Slide 31: Full hashing
	Slide 32: Hashing Students to 7 slots
	Slide 33: No more collisions?

