
ADT List

Lecture 11

Modeling Achievements

Ath.# Perf.# Time (s) Athlete Nation Date Place

1 1 1:16:36 Yusuke Suzuki Japan 15 MAR 2015 Nomi

2 2 1:16:43 Sergey Morozov Russia 08 JUN 2008 Saransk

3 3 1:16:54 Kaihua Wang China 20 MAR 2021 Huangshan

4 4 1:17:02 Yohann Diniz France 08 MAR 2015 Arles

5 5 1:17:15 Toshikazu Yamanishi Japan 17 MAR 2019 Nomi

6 6 1:17:16 Vladimir Kanaykin Russia 29 SEP 2007 Saransk

The men's 20 km race walk. All-time top 6. Correct as of August 2023.

•We want to keep track of the world records in different
sports

•The collection should be dynamic: we should be able to
add/edit/remove records

•At any time we want to be able to answer the questions:

•Who is the fifth fastest marathon runner?

•What is the world ranking of Hikaru Nakamura?

https://en.wikipedia.org/wiki/Yusuke_Suzuki_(racewalker)
https://en.wikipedia.org/wiki/Japan
https://en.wikipedia.org/wiki/Nomi,_Ishikawa
https://en.wikipedia.org/wiki/Sergey_Morozov_(racewalker)
https://en.wikipedia.org/wiki/Russia
https://en.wikipedia.org/wiki/Saransk
https://en.wikipedia.org/wiki/Wang_Kaihua
https://en.wikipedia.org/wiki/China
https://en.wikipedia.org/wiki/Huangshan
https://en.wikipedia.org/wiki/Yohann_Diniz
https://en.wikipedia.org/wiki/France
https://en.wikipedia.org/wiki/Arles
https://en.wikipedia.org/wiki/Toshikazu_Yamanishi
https://en.wikipedia.org/wiki/Japan
https://en.wikipedia.org/wiki/Nomi,_Ishikawa
https://en.wikipedia.org/wiki/Vladimir_Kanaykin
https://en.wikipedia.org/wiki/Russia
https://en.wikipedia.org/wiki/Saransk
https://en.wikipedia.org/wiki/Hikaru_Nakamura

ADT: Sequence of values, List

Specification for List:
❑ We need to store:

▪ sequence of values, the order matters

❑ We need to support the following operations:
▪ Get element by position: get(int index)
▪ Search for a position of a given element: indexOf(E

element)
▪ Add new element at position i: add(int i, E

element)
▪ Remove element by position: remove(i)

List ADT: possible implementations

● Using a Dynamic Array

data data data data

A

A[0] A[1] A[2] A[3]

link to next node

data

List node

head
link to next node

data

List node

NULL

data

List node

Reference to the
first node

● Using a Linked List

resizable

Implementing List ADT using a
Dynamic Array: tradeoffs

+
• Get(i) in O(1)

• Removing/Adding to the
end in O(1)

-
• Add/remove from position 0

O(n)

• Adding to the end can slow
down due to doubling

• Wasted space: doubling and
then removing – dynamic
arrays never shrink

Implementing List ADT using Linked List

Linked List contains:

● Reference to the head of the list: Node head

● [Optional] The number of elements in the list: int size

head

Linked List element
Node

Linked List Data Structure

[size=3]

Traversal: get node by position

private Node getNth(int n) {

if (n >= size)

Error

Node finger = head;

while (n > 0) {

 finger = finger.next;

 n--;

}

return finger;

}

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

getNth(2)
n=2

We want the node with index 2:

//Finds and returns the n-th node of the Linked List

Traversal: get node by position

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

n=1

We want the node with index 2

private Node getNth(int n) {

if (n >= size)

Error

Node finger = head;

while (n > 0) {

 finger = finger.next;

 n--;

}

return finger;

}

Traversal: get node by position

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

n=0

Stop and return

private Node getNth(int n) {

if (n >= size)

Error

Node finger = head;

while (n > 0) {

 finger = finger.next;

 n--;

}

return finger;

}

We want the node with index 2

General add (int index, E element)

Node mnode = new Node(‘M’);
Node parent = getNth(1);
mnode.next = parent.next;
parent.next = mnode;

Which of the following correctly adds a new node ‘M’ at
position 1 of the Linked List below?

A.

Node mnode = new Node(‘M’);
Node child = getNth(1);
mnode.next = child;

C.

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

Node mnode = new Node(‘M’);
Node parent = getNth(0);
mnode.next = parent.next;
parent.next = mnode;

D.

Node mnode = new Node(‘M’);
Node parent = getNth(0);
parent.next = mnode;
mnode.next = parent.next;

B.

E. None of the above

remove (int index, E element)
reference to

the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

Which of the following correctly removes node at index 2?

Node parent = getNth(1);
Node child = parent.next
parent.next = child.next;

A.

Node parent = getNth(1);
parent.next = parent.next.next;

B.

C. Both A and B

D. Neither A nore B

Implementing List ADT using
Linked List: tradeoffs

+
• No worries about running

out of space – no need for
doubling

• No empty slots

• Direct access to head in O(1)

-
• Space overhead to keep

links (reference variables)

• Difficult to access later
elements: O(n)

• We must always start
from the head

• We can traverse only
forward

Using tail pointer

● Add at the end is improved

 tail.next = new Node()

● Remove from the end is not improved: we know why

 Need to update tail pointer – but we lose the tail

● Ambiguity: if head==tail – is the list empty or contains a single
node?

Ask if head==null

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

reference to
the last node

tail

Doubly-linked Lists: Node

class Node {

 int data;

 Node next;

}

class DoublyLinkedNode {

 int data;

 Node prev;

 Node next;

}

Doubly-Linked List with tail pointer

● Keeps reference/links in both directions
● Traversing can start from either end

DoublyLinkedList:

head tail

DoublyLinkedNode

Moving heads and tails in doubly-linked lists

• When we add/remove in front – we need to update head

• When we add/remove at the end – we need to update tail

• When the linked list currently is or becomes empty:
head=tail=null

• Many special cases arise!

Example: add in front

head tail

newNode

tail

newNode

head

newNode = new DoublyLinkedNode(newData, prev=null, next=null)
if head == null: //adding to an empty list
 head = newNode
 tail = head

newNode = new DoublyLinkedNode(newData, prev=null, next=null)
if head == null:
 head = newNode
 tail = head
else: //list with at least one real node
 newNode.next = head

tailhead

newNode

tail

Example: add in front

newNode

head

newNode = new DoublyLinkedNode(newData, prev=null, next=null)
if head == null: //empty list
 head = newNode
 tail = head
else: //list with at least one real node
 newNode.next = head
 head.prev = newNode

tailhead

newNode

tailhead

Example: add in front

newNode

newNode = new DoublyLinkedNode(newData, prev=null, next=null)
if head == null: //empty list
 head = newNode
 tail = head
else: //list with at least one real node
 newNode.next = head
 head.prev = newNode
 head = newNode

tailhead

newNode

tail

head

Example: add in front

newNode

Doubly-Linked List: tradeoffs

✓ Links in both directions: → can traverse forwards and backwards!

✓ ALL tail operations (including remove last) are fast! Why?

We have direct access to the tail node & its predecessor

× Additional code complexity in each list operation

Example: add (int index, E element) need to consider 4 cases:

empty list

add to front

add to tail

add in middle

× Additional space consumption (storing previous)

head tail

Circular lists: discussion

reference to
the first node

head

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

reference to
the last node

tail

● Given Linked List with tail – how can we make a circular list?
● Do we need to keep both head and tail?
● How can we use a circular list to shift all values in the sequence

by one position forward?

next:

data:
‘E’

next:

data:
‘B’

next:

data:
‘O’

NULL

data:
‘R’

0 1 2 3

next:

data:
‘B’

next:

data:
‘O’

next:

data:
‘R’

NULL

data:
‘E’

0 1 2 3

Java classes that implement List interface

● ArrayList
Resizable-array implementation of the List interface. Implements all
optional list operations, and permits all elements, including null.
In addition to implementing the List interface, this class provides
methods to manipulate the size of the array that is used internally to
store the list.

● LinkedList
Doubly-linked list implementation of the List and Deque interfaces.
Implements all optional list operations, and permits all elements
(including null).
All of the operations perform as could be expected for a doubly-linked
list. Operations that index into the list will traverse the list from the
beginning or the end, whichever is closer to the specified index.

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

	Slide 1: ADT List
	Slide 2: Modeling Achievements
	Slide 3: ADT: Sequence of values, List
	Slide 4: List ADT: possible implementations
	Slide 5: Implementing List ADT using a Dynamic Array: tradeoffs
	Slide 6: Implementing List ADT using Linked List
	Slide 7: Traversal: get node by position
	Slide 8: Traversal: get node by position
	Slide 9: Traversal: get node by position
	Slide 10
	Slide 11: General add (int index, E element)
	Slide 12: remove (int index, E element)
	Slide 13: Implementing List ADT using Linked List: tradeoffs
	Slide 14: Using tail pointer
	Slide 15: Doubly-linked Lists: Node
	Slide 16: Doubly-Linked List with tail pointer
	Slide 17: Moving heads and tails in doubly-linked lists
	Slide 18: Example: add in front
	Slide 19: Example: add in front
	Slide 20: Example: add in front
	Slide 21: Example: add in front
	Slide 22: Doubly-Linked List: tradeoffs
	Slide 23: Circular lists: discussion
	Slide 24: Java classes that implement List interface

