
Stack and Queue ADTs
Implementing

using arrays and linked lists

Lecture 10

Recap: Abstract Data Types (ADT)

ADT includes:

❑ Specification:

■ What needs to be stored

■ What operations need to be supported

❑ Implementation:

■ Data structures and algorithms used to meet the
specification

Modeling HR roster

We want to model the maintenance of the list of company
employees

➢ When the company grows - we should be able to add a
new employee

Modeling HR roster

➢ When the company grows - we should be able to add a
new employee

Modeling HR roster
➢ When the company grows - we should be able to add a

new employee

➢ When the company downsizes we should be able to
remove the last-added employee (seniority principle)

Modeling HR roster

Requirements:

➢ When the company grows - we should be able to add a
new employee

➢ When the company downsizes we should be able to
remove the last-added employee (seniority principle)

Abstraction of HR roster: Stack

➢ If these are the only important requirements
to the HR roster, then we can model it using
Stack Abstract Data Type

➢ Stack stores a sequence of elements and
allows only 2 operations: adding a new
element on top of the stack and removing
the element from the top of the stack

➢ Thus, the elements are sorted by the time
stamp - from recent to older

➢ Stack is also called a LIFO queue (Last In -
First Out)

A

B

C

Top

1

2

3

3

2

1

Stack: Abstract data type which stores dynamic

sequence and supports following operations:

➔push(e): adds element to collection
➔peek() [top()]: returns most recently-

added element

➔pop(): removes and returns most recently-

added element

➔Boolean isEmpty(): are there any elements?

➔Boolean isFull(): is there any space left?

Specification

ADT: Specification vs. implementation

Specification and implementation have to be disjoint:

❑ One specification

❑ One or more implementations

■ Using different data structures (Array? Linked List?)

■ Using different algorithms

Stack Implementation with Array

size: 0
capacity: 5

Stack Implementation with Array

size: 0
capacity: 5

push(a)

Stack Implementation with Array

a

size: 1
capacity: 5

Stack Implementation with Array

a

size: 1
capacity: 5

push(b)

Stack Implementation with Array

a b

size: 2
capacity: 5

Stack Implementation with Array

a b

size: 2
capacity: 5

peek() → b

Stack Implementation with Array

a b

size: 2
capacity: 5

push(c)

Stack Implementation with Array

a b c

size: 3
capacity: 5

Stack Implementation with Array

a b c

size: 3
capacity: 5

pop()

Stack Implementation with Array

a b

size: 2
capacity: 5

pop() → c

Stack Implementation with Array

a b

size: 2
capacity: 5

push(d)

Stack Implementation with Array

a b d

size: 3
capacity: 5

Stack Implementation with Array

a b d

size: 3
capacity: 5

push(e)

Stack Implementation with Array

a b d e

size: 4
capacity: 5

Stack Implementation with Array

a b d e

size: 4
capacity: 5

push(f)

Stack Implementation with Array

a b d e f

size: 5
capacity: 5

Stack Implementation with Array

a b d e f

size: 5
capacity: 5

push(g)

Stack Implementation with Array

a b d e f

size: 5
capacity: 5

ERROR
isFull() → True

What can be done to
prevent this from
happening?

Stack Implementation with Array

a b d e f

size: 5
capacity: 5

pop()

Stack Implementation with Array

a b d e

size: 4
capacity: 5

isEmpty → False

Stack Implementation with Array

a b d e

size: 4
capacity: 5

pop()

Stack Implementation with Array

a b d

size: 3
capacity: 5

pop()

Stack Implementation with Array

a b

size: 2
capacity: 5

Stack Implementation with Array

a b

size: 2
capacity: 5

pop()

Stack Implementation with Array

a

size: 1
capacity: 5

Stack Implementation with Array

a

size: 1
capacity: 5

pop()

Stack Implementation with Array

size: 0
capacity: 5

isEmpty() → True

Stack ADT: cost of operations

Array Impl.

push(e) O(1)if no resize is needed

peek() O(1)

pop() O(1)

isEmpty() O(1)

isFull() O(1)

Stack Implementation with Linked List

head

push(a)

Stack Implementation with Linked List

head
a

Stack Implementation with Linked List

head
a

push(b)

Stack Implementation with Linked List

head
ab

Stack Implementation with Linked List

head
ab

push(c)

Stack Implementation with Linked List

head
abc

Stack Implementation with Linked List

head
abc

peek()

Stack Implementation with Linked List

head
abc

peek() → c

Stack Implementation with Linked List

head
abc

pop()

Stack Implementation with Linked List

head
ab

pop() → c

Stack Implementation with Linked List

head
ab

isEmpty() → False

Stack ADT: cost of operations

Array Impl. Link. List Impl.

push(e) O(1) O(1)

peek() O(1) O(1)

pop() O(1) O(1)

isEmpty() O(1) O(1)

isFull() O(1) O(1)

Stack: Summary

➔ ADT Stack can be implemented with either an Array or a

Linked List Data structure

➔ Each stack operation is O(1): Push, Pop, Peek,

IsEmpty

➔ Considerations:

◆ Linked Lists have storage overhead

◆ Arrays need to be resized when full

Recap:
Abstraction of the Doctor Queue

We want to model a list of patients waiting in the Hospital ER

➢ When a new patient arrives - we should be able to add
him to the end of the queue

➢ When the doctor calls for the next patient, we should be
able to remove the patient from the front of the queue

Abstraction of Patient List:
Queue
➢ If these are the only two required operations, then we

can model the Doctor queue using a Queue ADT

➢ As in the Stack ADT, the elements in the Queue are
also sorted by timestamp, but in a different order:
from the earlier to the later

➢ This ADT is called a FIFO Queue (First In First Out)

A B C RearFront

1 2 3

Queue: Abstract Data Type which stores dynamic data and

supports the following operations:

➔ enqueue(e): adds element e to collection

➔ getFront(): returns least recently-added (the oldest)

key

➔ dequeue(): removes and returns least recently-added

key

➔ Boolean isEmpty(): are there any elements?

➔ Boolean isFull(): is there any space left?

Specification

Queue Implementation with Linked List

head tail

Queue Implementation with Linked List

enqueue(a)

head tail

Queue Implementation with Linked List

head tail

a

Queue Implementation with Linked List

head tail

a

enqueue(b)

Queue Implementation with Linked List

head tail

a b

Queue Implementation with Linked List

head tail

a

enqueue(c)

b

Queue Implementation with Linked List

head tail

a b c

Queue Implementation with Linked List

head tail

a b c

dequeue()

Queue Implementation with Linked List

head tail

b c

dequeue() → a

Queue Implementation with Linked List

➔ Use Linked List augmented with the tail pointer

➔ For enqueue(e) add an element to the end

➔ For dequeue() remove from the front

➔ For isEmpty() use (head == NULL?)

Queue ADT: cost of operations

Link. List Impl. with tail Array Impl.

enqueue (e) O(1)

dequeue () O(1)

getFront () O(1)

IsEmpty() O(1)

Recap:
Queue Implementation with a
circular Array

c d e

2

read

0

write
0

1

23

4

Circular array with one empty slot

f c d e

Enqueue(g) → ERROR

Cannot set read = write

isFull() → True

2

read

1

write

Of course we can
resize the array at
this point

When read = write the queue is empty

read==write

isEmpty() → True

1

read

1

write

Queue Implementation with Array

➔ Queue ADT can be implemented with a circular Array

➔ We need 2 pointers (indexes in the array): read and
write

➔ When we enqueue(e) we add e at position write, and
increment write. If write was at the last position, it
wraps around to position 0

➔ After enqueue(e) read and write cannot be equal -
because next time you write you would erase the first
element of the queue pointed to by read

➔ When we dequeue() we remove the element at position
read, and increment read

➔ If read==write then the queue is empty

Queue ADT: cost of operations

Link. List Impl. with tail Array Impl.circular

enqueue (e) O(1) O(1)amortized

dequeue() O(1) O(1)

getFront() O(1) O(1)

IsEmpty() O(1) O(1)

Queue: Summary

➔ Queue ADT can be implemented with either a Linked

List (with tail) or an Array (Circular) Data structure

➔ Each queue operation is O(1): enqueue, dequeue,

isEmpty

➔ Considerations:

◆ Linked Lists have unlimited storage

◆ Arrays need to be resized when full

◆ Linked Lists have simpler maintenance for the

Queue ADT

Balanced Brackets Problem

Input: A string str consisting of '(', ')', '[',

']','{', '}' characters.

Output: Return whether or not the string’s

parentheses and brackets are

balanced.

Sample Application

Balanced:

“([])[]()”,

“((([([])]))())”

Unbalanced:

“(]()”

“][”

“([)]”

“([]”

Examples

Solution

• Stacks can be used to check whether the given expression has
balanced symbols. This algorithm is used by compilers.

• Each time the parser reads one character at a time.

• If the character is an opening delimiter such as (, {, or [- then it is
written to the stack.

• When a closing delimiter is encountered like), }, or]-the stack is
popped.

• The opening and closing delimiters are then compared. If they match,
the parsing of the string continues.

• If they do not match, the parser indicates that there is an error on
the line. A linear-time

• O(n) algorithm based on stack can be given as:

Solution pseudocode

Create a stack

while (end of input is not reached) :
If the character read is not a symbol to be balanced, ignore it
If the character is an opening symbol like (, [, {:
 Push it onto the stack
If it is a closing symbol like),],}:
 Pop the stack

If the symbol popped is not the corresponding opening
symbol:

Return false

Return true

Algorithm isBalanced

Create a stack

while (end of input is not reached) :
If the character read is not a symbol to be balanced, ignore it
If the character is an opening symbol like (, [, {:
 Push it onto the stack
If it is a closing symbol like),],}:
 Pop the stack

If the symbol popped is not the corresponding opening
symbol:

Return false

Return true

There are two errors in this solution

Sample input 1: () (() [()])

Next symbol Stack

((push

) pop (. match

((push

(((push

) (pop (. match

[([push

(([(push

) ([pop (. match

] (pop [. match

) pop (. match

Tracing the algorithm.
For this input the algorithm correctly return True (is balanced)

Sample input 2: ()]

Next symbol Stack

((push

) pop (. match

] Stack is empty –
nothing to pop

For this input the algorithm will blow off:
it will try to pop but the Stack is empty

Sample input 3: ([]

Next symbol Stack

((push

[([push

] (pop [. match

For this input the algorithm will finish the loop over the input
and will return true (is balanced).
However there is an unbalanced square bracket in the Stack.
By the end: we must check that the Stack is empty to return true

Algorithm isBalanced

Create a stack

while (end of input is not reached) :
If the character read is not a symbol to be balanced, ignore it
If the character is an opening symbol like (, [, {:
 Push it onto the stack
If it is a closing symbol like),],}:
 If the stack is empty return false
 Pop the stack

If the symbol popped is not the corresponding opening
symbol:

Return false

If the stack is not empty return false

Return true
CORRECTED

	Slide 1: Stack and Queue ADTs
	Slide 2: Recap: Abstract Data Types (ADT)
	Slide 3: Modeling HR roster
	Slide 4: Modeling HR roster
	Slide 5: Modeling HR roster
	Slide 6: Modeling HR roster
	Slide 7: Abstraction of HR roster: Stack
	Slide 8: Specification
	Slide 9: ADT: Specification vs. implementation
	Slide 10: Stack Implementation with Array
	Slide 11: Stack Implementation with Array
	Slide 12: Stack Implementation with Array
	Slide 13: Stack Implementation with Array
	Slide 14: Stack Implementation with Array
	Slide 15: Stack Implementation with Array
	Slide 16: Stack Implementation with Array
	Slide 17: Stack Implementation with Array
	Slide 18: Stack Implementation with Array
	Slide 19: Stack Implementation with Array
	Slide 20: Stack Implementation with Array
	Slide 21: Stack Implementation with Array
	Slide 22: Stack Implementation with Array
	Slide 23: Stack Implementation with Array
	Slide 24: Stack Implementation with Array
	Slide 25: Stack Implementation with Array
	Slide 26: Stack Implementation with Array
	Slide 27: Stack Implementation with Array
	Slide 28: Stack Implementation with Array
	Slide 29: Stack Implementation with Array
	Slide 30: Stack Implementation with Array
	Slide 31: Stack Implementation with Array
	Slide 32: Stack Implementation with Array
	Slide 33: Stack Implementation with Array
	Slide 34: Stack Implementation with Array
	Slide 35: Stack Implementation with Array
	Slide 36: Stack Implementation with Array
	Slide 37: Stack ADT: cost of operations
	Slide 38: Stack Implementation with Linked List
	Slide 39: Stack Implementation with Linked List
	Slide 40: Stack Implementation with Linked List
	Slide 41: Stack Implementation with Linked List
	Slide 42: Stack Implementation with Linked List
	Slide 43: Stack Implementation with Linked List
	Slide 44: Stack Implementation with Linked List
	Slide 45: Stack Implementation with Linked List
	Slide 46: Stack Implementation with Linked List
	Slide 47: Stack Implementation with Linked List
	Slide 48: Stack Implementation with Linked List
	Slide 49: Stack ADT: cost of operations
	Slide 50: Stack: Summary
	Slide 51: Recap: Abstraction of the Doctor Queue
	Slide 52: Abstraction of Patient List: Queue
	Slide 53: Specification
	Slide 54: Queue Implementation with Linked List
	Slide 55: Queue Implementation with Linked List
	Slide 56: Queue Implementation with Linked List
	Slide 57: Queue Implementation with Linked List
	Slide 58: Queue Implementation with Linked List
	Slide 59: Queue Implementation with Linked List
	Slide 60: Queue Implementation with Linked List
	Slide 61: Queue Implementation with Linked List
	Slide 62: Queue Implementation with Linked List
	Slide 63: Queue Implementation with Linked List
	Slide 64: Queue ADT: cost of operations
	Slide 65: Recap: Queue Implementation with a circular Array
	Slide 66: Circular array with one empty slot
	Slide 67: When read = write the queue is empty
	Slide 68: Queue Implementation with Array
	Slide 69: Queue ADT: cost of operations
	Slide 70: Queue: Summary
	Slide 71
	Slide 72: Balanced Brackets Problem
	Slide 73: Examples
	Slide 74: Solution
	Slide 75: Solution pseudocode
	Slide 76: Algorithm isBalanced
	Slide 77: Sample input 1: () (() [()])
	Slide 78: Sample input 2: ()]
	Slide 79: Sample input 3: ([]
	Slide 80: Algorithm isBalanced

