
Java: reference variables

Lecture 1

CS0445: Algorithms and Data Structures 1

Marina Barsky: mbarsky@pitt.edu
people.cs.pitt.edu/~mbarsky/cs-0445

mailto:mab1095@pitt.edu

Java’s approach to structuring data

• Java bundles data and actions
within a single structure called
object

• Each object has properties
and “knows” how to perform
some actions

• Java program is a simulation
of interacting objects that
communicate by sending
messages to each other

What sounds more natural?

microwave.cook (chicken)

cook (microwave, chicken)

2

New Data Types

• Java is a typed language, so
each object must be of a
specific type

• We add new data types by
defining a new class of
objects

• The definition of a class
contains:

• instance variables (object
properties)

• method definitions (actions
that the object can
perform)

class Microwave {

 int temperature;

 int power;

 void cook(Edible what){

 }

}

3

Encapsulation and data hiding

• We say that variables and methods
are encapsulated within a class

• This encapsulation makes possible to
set access restrictions: author of a
class controls what data users can
access directly

4

class Dog{

 String name;

 String breed;

 int size;

 double weight;

 void bark(){

 …

 }

}

Access modifiers

• These keywords control access of
other classes to properties and
methods within a given class

• public – accessible outside class

• private – inaccessible outside
class

• no modifier - accessible to all
classes in the same package

• protected – accessible only
within class and subclasses [and
same package]

5

class Dog{

 private String name;

 String breed;

 protected int size;

 double weight;

 public void bark(){

 if this.breed == …

 }

}

Only public methods/variables are accessible by the users of the class

Example: Bad Dog

• We should never allow direct access to instance variables!

public class BadDog {

 public String name;

 public int height;

 public void bark() {

 …

 }

 public static void main (String [] args) {

 BadDog d = new BadDog();

 d.height = 0;

 }

}

6

Example: Good Dog

public class GoodDog {
 private String name;
 private int height;

 public void setHeight (int h) {
 if (height > 0)
 height = h;
 }

 public int getHeight() {
 return height;
 }
}

declared
as private

setter

getter

We reject (ignore)
invalid user input

7

Data Hiding

• Encapsulation makes possible data hiding:
• Declare instance variables as private
• Use public methods to access/modify these variables

• The public methods for accessing object data are called:
• Accessors (getters): get some value back
• Mutators (setters): set value of some instance variable

• With Data Hiding and Encapsulation we can:
• validate the parameter passed to the method
• reject unacceptable values (such as negative year): ignore

them or throw an exception
• replace the value with the closest valid or default value
• change method implementation by changing the type of the

inside storage and make it faster/safer without changing any
code that uses our class

8

Protect object data: build the wall

• Programs that use your classes should NOT:

be able to change the value of the instance variables
directly

• Restrict the access to an object’s data so you can only get it or
change it by using methods

Class:
Instance variables
Private methodsProgram

setPublic methods
Getters
Setters

get

Slits
in the
wall 9

Abstraction

• Abstraction - the process of extracting only essential property

from a real-life entity

• In CS: Problem → storage + operations

• As a result of the process of abstraction we get a specification of

data to be stored together with a set of operations on that data

• The user only needs to know the nature and the functionality of

the data, and the public methods specs, but does NOT need to

know/care about the implementation details:

• What actual data types are used in the class

• How the methods are implemented

• These are declared private to the class – known to class author

but not to class user

10

Encapsulation makes Abstraction
possible

• Example: Java BigInteger class

• We hide the details and expose only properties and methods

essential for using this class: we create an abstraction of Big

Integer

• The encapsulation makes the abstraction possible by restricting
access to the implementation details of a class

• Abstraction helps to manage the complexity of the software

11

https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html

Reference variables

12

Recap: primitive numeric types

byteshortintlong

Integer

double float

8
bytes

4
bytes 2

bytes 1

8
bytes 4

bytes

Floating point

13

Recap: primitive numeric types

byteshortintlong

Integer

double float

8
bytes

4
bytes 2

bytes 1

8
bytes 4

bytes

Floating point

int i = 7;

14

Variables to hold objects

• With a new class of Objects – we create a new data type

• How do we declare a variable of a new type – what the
size of a cup should be?

15

Reference variables

• A special reference variable does not hold the object
itself, but it holds something like a pointer (or an
address)

• Size of reference variables is the same for a given
operating system: for example, it is long for 64-bit
system

• In Java we don’t really know the value stored in the
reference variable – no pointer manipulation is allowed

• And the Java Virtual Machine knows how to use the
reference to get to the actual object

16

Reference and value

• An object reference is just another variable value: the
value of an address

• Something that goes into the cup.

reference
int

Primitive variable:
int x=7;

The bits
representing 7 go
into the cup

Primitive
value

Reference variable:
Dog d=new Dog();

The bits representing
the memory location
of the Dog object go
into the cup

Dog
object

2048

17

Declaring Reference Variables

Dog myDog;

• reference variable of type Dog

• does not reference any actual object yet

• has default value null

• cannot call any methods of Dog class

referenceshortintlong 18

null

Instantiating reference variable: creating
an actual object

myDog=new Dog();

myDog.bark();

Now we can call the
methods of class Dog

• All objects in Java are allocated dynamically
• Memory is allocated using the new operator
• Once allocated, objects exist for an indefinite period of time

• As long as there is an active reference to the object

19

Example 1: assigning references

Book b=new Book();

Book c=new Book();

Book

Book
object 1

b

References:

Objects:

Book

Book
object 2

c

2

2

20

Example 1: assigning references

Book b=new Book();

Book c=new Book();

Book d=c;

Book

Book
object 1

b

References:

Objects:

Book

Book
object 2

c

Book

d

3

2

21

Example 1: assigning references

Book b=new Book();

Book c=new Book();

Book d=c;

c=b;

References:

Objects:

Book
object 2

Book

d

Book

Book
object 1

b

Book

c

3

2

22

Example 2: assigning references

Book b=new Book();

Book c=new Book();

b=c;

Book
object 1

References:

Reachable Objects:

Abandoned objects:

Book

b

Book

Book
object 2

c

2

1

1

23

Example 2: assigning references

Book b=new Book();

Book c=new Book();

b=c;

c=null;

Book

Book
object 1

b

Active References: 1
Null references: 1
Reachable Objects: 1
Abandoned objects: 1

Book

Book
object 2

c

24

Recycling abandoned objects

• Java provides a feature called a garbage collector that
automatically discovers when an object is no longer in use and
destroys it

• This is a process that runs in the background during program
execution

• When the amount of available memory runs low, the garbage
collector reclaims objects that have been marked for collection

• The garbage collector provides a higher level of insurance against
the insidious problem of memory leaks

25

Notes to class

• Most frequent word

• Piazza

26

Example: comparing reference variables

PRIMITIVE TYPE
int i;

i = 8643;

int j = i;

if (i == j)

REFERENCE TYPE
String s;

s = new String("Hello");

String t = s;

String u = new String(s);

if (t == s) ...

if (u == s) ...

i

j

s

t

u

8643

8643

Hello

Hello

true

true

false

[s = "Hello";]

27

Reference comparison

• Know what you want to
compare: references or contents

• For reference variables, we use a
method to compare contents

• ex. for strings, equals()

• u.equals(s) returns true

• We can redefine equals() for our
own classes

28

String s;

s = new String("Hello");

String t = s;

String u = new String(s);

Reference variables: summary 1/2

• Assignment creates aliases – references that refer to the same object

p1 = p2;

• Comparison operator checks if two references refer to the same
object

(p1 == p2)

• Unlike in C/C++ we cannot perform mathematical operations (no
pointer arithmetic)

p1 + p2 p1++

• We do not need dereferencing: just access internal fields or call
methods of an object using the dot operator on a reference variable
itself

 String s = "Hello World!";

 System.out.println(s.length);
29

Reference variables: summary 2/2

• If two objects are exactly the same but are located in different

memory locations, comparing their references will yield false

 (p1 == p2)

• You need to implement a special method .equals() to compare

objects themselves rather than their location addresses

 (p1.equals(p2))

• Assigning references only copies a memory location and does not

copy the object

 p1 = p2;

• You would need to implement the .clone() method to copy content

of an object

 p1 = p2.clone();

30

Array of References

Dog pets = new Dog[7];

• This is array of references not array of dogs

• What is missing?

• Actual dogs!

0 1 2 3 4 5 6

31

How to create an array of Dogs

Dog pets = new Dog[7];

pets[0] = new Dog();

pets[1] = new Dog();

pets[0].name = "Fido";

0 1 2 3 4 5 6

Fido

32

How to create an array of Dogs

Dog pets = new Dog[7];

pets[0] = new Dog();

pets[1] = new Dog();

pets[0].name = "Fido";

pets[0] = pets[1];

0 1 2 3 4 5 6

Fido

• Who references “Fido”?
• What is stored in pets[2]?
• What is it pointing to?

33

Reference variables as method parameters

• Parameters in Java are ALWAYS passed by value (by copy):
only this time we copy the memory location!

• Thus inside the method we can manipulate the same object
through a copy of the reference

public class Dog {

 int size;

}

public class Dogs {

 static void grow(Dog d){

 d.size ++;

 }

 public static void main (String[] args){

 Dog myDog = new Dog();

 myDog.size = 5;

 grow(myDog);

 System.out.println(myDog.size);

 }

}

Copied myDog reference into a
variable d

Manipulating the same object
through a different reference

myDog has size 6

34

Dog at
address 111

111

myDog

111

d: copy of
myDog

Reference variables changing inside
methods have no effect

• As long as reference parameter does not change an address stored
in it, both the original and the copy refer to the same object and
all the manipulations inside the methods are reflected in the
original object

public class Dog {

 int size;

}

public class Dogs {

 static void reset(Dog d){

 d = new Dog();

 d,size = 0;

 }

 public static void main (String[] args){

 Dog myDog = new Dog();

 myDog.size = 5;

 reset(myDog);

 System.out.println(myDog.size);

 }

}
35

Dog at
111

111

myDog

111

d: copy of
myDog

Reference variables changing inside
methods have no effect

• Once we change the address in a copy of reference variable,
everything we do to an object at this new address is not reflected
in an original object

public class Dog {

 int size;

}

public class Dogs {

 static void reset(Dog d){

 d = new Dog();

 d,size = 0;

 }

 public static void main (String[] args){

 Dog myDog = new Dog();

 myDog.size = 5;

 reset(myDog);

 System.out.println(myDog.size);

 }

}

Manipulating a different
object now

myDog has the
same size 5

36

Dog at
111

111

myDog

222

d: copy of
myDog

Dog at
222

Demo
Dog.java
Example1.java

37

public static void main (String [] args) {
 Dog d1 = new Dog();
 d1.name = "Bart";
 Dog [] pets = new Dog[2];
 pets[0] = new Dog();
 pets[0].name = "Lisa";

 pets[1] = new Dog();
 pets[1].name = "Marge";

 pets[0] = pets[1];
 pets[1].name = "Homer";
 pets[1] = d1;

 for(Dog d : pets)
 d.bark();
}

• Homework test:

• What is printed?
public class Dog {
 String name;
 int size;
 public void bark() {
 String sound = "Ruff!";
 System.out.println(name +
 " says " + sound);
 }

}

Homer says Ruff!
Bart says Ruff!

Lisa says Ruff!
Homer says Ruff!

Lisa says Ruff!
Marge says Ruff!

Bart says Ruff!
Bart says Ruff!

NONE OF THE ABOVE

A

B

C

D

E

38

public static void main (String [] args) {
 Dog d1 = new Dog();
 d1.name = "Bart";
 Dog [] pets = new Dog[2];
 pets[0] = new Dog();
 pets[0].name = "Lisa";

 pets[1] = new Dog();
 pets[1].name = "Marge";

 pets[0] = pets[1];
 pets[1].name = "Homer";
 pets[1] = d1;

 for(Dog d : pets)
 d.bark();
}

• Homework test:

• What is printed?
public class Dog {
 String name;
 int size;
 public void bark() {
 String sound = "Ruff!";
 System.out.println(name +
 " says " + sound);
 }

}

Homer says Ruff!
Bart says Ruff!

Lisa says Ruff!
Homer says Ruff!

Lisa says Ruff!
Marge says Ruff!

Bart says Ruff!
Bart says Ruff!

NONE OF THE ABOVE

A

B

C

D

E

39

public static void main (String [] args) {
 Dog d1 = new Dog();
 d1.name = "Bart";
 Dog [] pets = new Dog[2];
 pets[0] = new Dog();
 pets[0].name = "Lisa";

 pets[1] = new Dog();
 pets[1].name = "Marge";

 pets[0] = pets[1];
 pets[1].name = "Homer";
 pets[1] = d1;

 for(Dog d : pets)
 d.bark();
}

• How many references?
public class Dog {
 String name;
 int size;
 public void bark() {
 String sound = "Ruff!";
 System.out.println(name +
 " says " + sound);
 }

}

• How many total
objects?

• How many abandoned
objects?

3

3

1

• What is the name of an
abandoned Dog?

“Lisa”

40

Q&A

41

Q&A

Q. Some of the terminology is unclear - instances, references,
addresses, pointers, objects

• A. References (variables of type reference) in Java store a memory
address of an object. In C/C++ the address is stored in a variable of type
pointer. Both pointer and reference store the number: the memory address
where they can find an object. The difference between a reference and a
pointer is that to get to the place in memory from pointer we need to
perform a dereferencing operation, but in Java we just use the reference
variable as if it was an object itself (with dot). Every object is an instance
of a specific type (or class).

Q. How to know whether I am dealing with the reference variables or
the content of the reference variables.

• A. the content of a reference variable is always an address. If this address
is not 0 (null), then using the dot operator on reference variable will
change properties and call methods of an object at this memory location.
The reference variable remains unchanged.

42

Q. Effects of Modifying Object Attributes vs. Reassigning References

• A. We can assign a new value to a reference variable in 2 ways only: either
with keyword new or by assigning an address stored in another reference
variable. With the new keyword JVM finds a free space in memory, builds all
object compartments at this space, and returns an address of a new object to
be stored in a reference variable. Modifying object attributes does not modify
the reference (the address of an object in memory).

Q. assigning one variable another variable's value, then changing the
assigned variable's value after the assignment, and how that affects the
initial variable's value.

• A. It does not!

 b = 4

a = b

b = 10

b is now 10, but a is still 4.

43

a = new String(“a”);
b = a;
a= new String(“aaa”);

The same works if a and b are reference variables

which store numeric addresses: Originally address

of string object “a” was 111, after assignment both a

and b store 111. When a changes its value to

address 222, this does not impact address stored in

b – still 111.

Q. how arrays of reference variables specifically interact with
memory

• A. Because reference variables are all of the same size, the arrays of
addresses are not different from other arrays of numbers: they are
allocated in memory consecutively.

Q. how we will be implementing new data structures and arrays

• A. Array is too fundamental to the operating system and memory
management, so we are not going to reimplement it ☺. We might extend
the arrays with more functionalities, for example we can implement
dynamic arrays which grow on demand. We will implement data structures
more complex than an array, which might contain arrays inside them or

use linked structures instead of arrays.

44

Q. I don't understand how the machine knows how to allocate more
space from object to object?

• A. That is performed by the operating system. In general, there are two
types of memory: Stack and Heap. Stack is the place where all the
primitive values are allocated, and the objects are allocated on the heap.
Operating system keeps track which addresses in memory are not in use.
When your program reaches the command new, the OS returns an
address value, and it places an object with all its properties and code of
methods in this memory location, occupying as much space as needed.

Q. Garbage Collection reclaiming objects?

• A. reclaiming here is in sense of reusing the place for new objects.

45

Q. I am still confused as to why instance variables should be declared as
private.

A. If they are declared public, then any program that uses your class can modify
them directly, and you cannot prevent the invalid values in your variables.

Consider variable height. If it is declared public, then it can be set to 0. The
program has no place where to check that. Later in your program you compute
the BMI index, and need to divide by height. You will get a run-time exception,
which is not an acceptable program behavior. The object should not have
accepted the zero value in the first place! The only way to check this is to declare
height as private and to force the user of your class to change the height through
a mutator (setter) method, in which you can put a check for validity.

Q. what is abstraction? Any application?

A. Abstraction in CS is a process of hiding the complexity of an entity behind a set
of specs, which allow the specific use of a complex code without learning all the
details. The whole of CS is based on the idea of abstraction. We will talk more
about that when we discuss Abstract Data Types.

46

	Slide 1: Java: reference variables
	Slide 2: Java’s approach to structuring data
	Slide 3: New Data Types
	Slide 4: Encapsulation and data hiding
	Slide 5: Access modifiers
	Slide 6: Example: Bad Dog
	Slide 7: Example: Good Dog
	Slide 8: Data Hiding
	Slide 9: Protect object data: build the wall
	Slide 10: Abstraction
	Slide 11: Encapsulation makes Abstraction possible
	Slide 12: Reference variables
	Slide 13: Recap: primitive numeric types
	Slide 14: Recap: primitive numeric types
	Slide 15: Variables to hold objects
	Slide 16: Reference variables
	Slide 17: Reference and value
	Slide 18: Declaring Reference Variables
	Slide 19: Instantiating reference variable: creating an actual object
	Slide 20: Example 1: assigning references
	Slide 21: Example 1: assigning references
	Slide 22: Example 1: assigning references
	Slide 23: Example 2: assigning references
	Slide 24: Example 2: assigning references
	Slide 25: Recycling abandoned objects
	Slide 26: Notes to class
	Slide 27: Example: comparing reference variables
	Slide 28: Reference comparison
	Slide 29: Reference variables: summary 1/2
	Slide 30: Reference variables: summary 2/2
	Slide 31: Array of References
	Slide 32: How to create an array of Dogs
	Slide 33: How to create an array of Dogs
	Slide 34: Reference variables as method parameters
	Slide 35: Reference variables changing inside methods have no effect
	Slide 36: Reference variables changing inside methods have no effect
	Slide 37: Demo
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Q&A
	Slide 42: Q&A
	Slide 43
	Slide 44
	Slide 45
	Slide 46

