
Review 
for Exam 2



Classification of sorting 
algorithms

We are sorting elements of array A of size n



Sorting algorithms: 1/2
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Sorting algorithms: 2/2
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Classifying by 
number of comparisons
• Comparison-based algorithms:

• O(n2)

• O(n1.5)

• O(n log n)

• No comparisons: 

• O(n)



Classifying 
by additional memory used
• Sorting “in place”: needs O(1) additional temporary 

memory: We rearrange elements inside the array itself

• Sorting “not in place”: needs >=O(n) of additional memory. 
We move data between A and temp arrays



Bubble sort?

In place 
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Insertion sort?

In place 
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Quick sort?
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Merge sort?

Not in place 
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By stability

• In other words, sorting algorithms that maintain the relative 
order of elements with equal keys (equivalent elements 
retain their relative positions even after sorting) are called 
stable sorting algorithms

• This is an important property: for example, we preserve the 
order of insertions (time stamp) even after sorting

Definition:

Sorting algorithm is stable if for all indexes i and j such that the 
A[i] = A[j], if element A[i] precedes element A[j] in the original 
array, then element A[i] also precedes element A[j] in the 
sorted array.



Which algorithms are stable?

To answer this:

• A is the array to be sorted 

• Let R and S be two elements of A with the same key and R 
appears earlier in the array than S:

• R is at position i, and S at position j, s.t. i<j

• To show that algorithm is stable make sure that in the 
sorted output R cannot appear after S

5 8 9 4 8 3

3 4 5 8 8 9

R S



Bubble Sort?

5 8 9 4 8 3

5 8 4 9 8 3

5 8 4 8 9 3

5 8 4 8 3 9

Pass 
1

Is it possible that after sorting green 8 will be AFTER red 8?



Bubble Sort?

5 8 9 4 8 3

5 8 4 9 8 3

5 8 4 8 9 3

5 8 4 8 3 9

Pass 
1

Elements change order only when a smaller element follows a 
larger. Since red 8 is not smaller than green 8 their relative 
order cannot change.

Stable



Insertion Sort?

Is it possible that after sorting green 8 will be AFTER red 8?
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Insertion Sort?

When red 8 is to be inserted into sorted subarray A[0..j – 1], only 
elements larger than it are shifted. Thus green 8 would not be 
shifted during red 8’s insertion and hence would always precede it.
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Selection Sort?

Is it possible that after sorting green 8 will be AFTER red 8?

5 8 4 8 3

min = ?



Selection Sort?

We divide the array into sorted and unsorted portions and iteratively find 
the minimum values in the unsorted portion. After finding a minimum x, 
we swap x into the unsorted portion of A: the element swapped could be 
green 8 which then could be moved behind red 8. 
If we were shifting instead of swapping, we could have made it stable but 
the cost in running time would be very significant.
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Merge Sort?

Is it possible that after sorting green 8 will be AFTER red 8?
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Merge Sort?

In the case of equal elements, the element in the left subarray is moved to 
the output first. Those are the elements that came first in the unsorted 
array. As a result, they will precede later elements with the same key.
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Quick Sort?

Is it possible that after partitioning green 8 will be AFTER red 8?

5 8 4 8 3

Partition around 5



Quick Sort?

The partitioning step can swap the location of elements many times, 
and thus two elements with equal keys could swap positions in the 
final output.
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Recursion and 
tail recursion



Tail recursion

• In tail-recursive algorithms the recursive call is the last 
statement that is executed: So basically nothing is left to 
execute after the recursive call.

• That means there is no need to keep the previous stack 
frame and the recursion can be easily rewritten as iteration: 
each recursive call can be one step of an iterative algorithm



Example 1: Sum of values in the list

Algorithm sum (List lst)

 if len(lst) == 0: 
  return 0 

 return lst[0] + sum(lst[1:])

Is this a tail-recursive algorithm?



Sum of values in the list

Algorithm sum (List lst)

 if len(lst) == 0: 
  return 0 

 return lst[0] + sum(lst[1:])

Is this a tail-recursive algorithm?

No, because we need to wait for the return of sum and only 
then add the value of the first element of the list



Sum of values in the list

Algorithm sum (List lst)

 if len(lst) == 0: 
  return 0 

 return lst[0] + sum(lst[1:])

Can we convert it into a tail-recursive algorithm?



Sum of values in the list

Algorithm sum (List lst)

 if len(lst) == 0: 
  return 0 

 return lst[0] + sum(lst[1:])

Can we convert it into a tail-recursive algorithm?

Algorithm sumTR (List lst, int sumSoFar)

 if len(lst) == 0: 
  return sumSoFar
 sumSoFar += lst[0]

 return sumTR(lst[1:], sumSoFar)

We call it: sumTR (list, 0)



Example 2. Tail recursion?

public void printHello (int N) {

    if (N > 1) {

      System.out.println("Hello");

      printHello (N - 1); 

    } else

      System.out.println("Hello");

} 

• Is this a tail-recursive method? Yes



Example 3: Tail recursion?

public void printReverse (String s) {

    if (s.length() > 0) {

      printReverse(s.substring(1));  

      System.out.print(s.charAt(0)); 

}

}

• Is this a tail-recursive method? No

• Can we convert it into tail-recursive method?



Print reverse TR
public void printReverse (String s) {

    if (s.length() > 0) {

      printReverse(s.substring(1));  

      System.out.print(s.charAt(0)); 
}

}

public void printReverseTR (String s, reverseSoFar) {

    if (s.length() > 0) {

 reverseSoFar = s.charAt(0) + reverseSoFar;

      printReverseTR(s.substring(1), reverseSoFar );    

}

else {

  System.out.println(reverseSofar);

}

}



Memoization
Optimizing recursive algorithms



Memoization

• Memoization is a term describing an optimization technique 
where you cache previously computed results, and return 
the cached result when the same computation is needed 
again

• It is based on the assumption that calculations take long 
time, lookups are faster – so we save the results of 
calculations for future lookup

Which data structures can be used for efficient lookup?



Example 1: Fibonacci numbers

n-th Fibonacci number

Fn = 

0,  if n=0

1,  if n=1  
  Fn−1 +  Fn−2,  if n > 1

Algorithm Fib_recurs(n)

if n ≤ 1:  

   return n

else:

return Fib_recurs(n − 1) + Fib_recurs(n − 2)



Fibonacci numbers: problems
Algorithm Fib_recurs(n)

if n ≤ 1:  

   return n

else:

return Fib_recurs(n − 1) + Fib_recurs(n − 2)

F6

F5
F4

F4 F3 F3 F2

F3 F2 F2 F1 ...

Running time: O(2n)

Note the repeating calls 
with the same arguments

We can store the results of 
computation for each Fi in 
a position i of an array

In this case for each i Fi 
will be computed only 
once



Fibonacci numbers: 
with memoization

Algorithm Fib_recurs_memo(n, FibArray of size n)
  if n ≤ 1:  

     FibArray[n] = n

     return n

  else:

  if FibArray[n - 1] is null

    FibArray[n - 1]  = Fib_recurs_memo (n - 1)

  if FibArray[n -2] is null

    FibArray[n - 2]  = Fib_recurs_memo (n - 2)

return FibArray[n - 1] + FibArray[n - 2] 



Example 2: power XN

Algorithm power (int X, int N) 

  if (N == 0):

    return 1

  

  if (N % 2 == 0) // N is even

    return power(X, N/2)* power(X, N/2) 

  else

    return X* power(X, N/2)* power(X, N/2)  
  

 

What is wrong with this implementation?



Bad implementation of power XN

power will be called with the same parameters multiple times

N

N/2N/2

N/4

N/8

1

N/4

N/8

N/4
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N/8N/8N/8

N/4

N/8N/8N/8

1 1 1…



power XN with memoization

global power_table – array of size N

Algorithm power_memo (int X, int N) 

  if (N == 0):

    return 1

 

  if power_table[N/2] is null

    power_table[N/2] = power_memo (X, N/2) 

  

  if (N % 2 == 0) // N is even

    return power_table[N/2] * power_table[N/2] 

  else

    return X* power_table[N/2] * power_table[N/2]  
  

 



Map or Set?



Which ADT would you use for the 
following tasks?

1. Finding out whether array A contains duplicates

2. Producing count for each element of A

3. Finding the most popular name from a 2023 database of 
all newborn babies 

4. Removing duplicates from the array

5. Given student id -- finding student’s phone number



Sample exam: analysis

• Question 10

• Question 11

• Question 7

• Question 15

• Question 18

• Question 16

• Question 12



Question 10First: sort

int n=A.length;

int maxCount = 0;

int currentCount = 0;

int bestNumber = A[0];

int currentNumber = A[0];

for (int i=1; i<n; i++) {

if (A[i] == currentNumber)

 currentCount ++;

else {

 currentNumber = A[i];

 currentCount = 1;

}

 

if (currentCount > maxCount) {

 maxCount = currentCount;

 bestNumber = currentNumber;

}

}

return bestNumber;

What is the total running time of this 

entire solution?

O(n) + O(n log n) = O(n log n)

n log n

n

• O (n)
• O (n2)
• O (n log n) for sorting



Question 11

In each iteration of insertion sort we insert the first element of an 

unsorted partition into its proper place in the sorted partition. 

Because this partition is sorted, we could find the place for a new 

element using binary search in time O(log n). 

If we do O(n) iterations and in each iteration we do the search for 

the correct position in time O(log n), this will make the improved 

insertion sort run in time O(n log n).

Ask yourself:
• Have I ever heard of Insertion sort in time O(n log n)?

• Even after I found the place I need to shift to make space inside the 
sorted part

• And if not shift – Linked List – I cannot search in time log n



Question 7
We are devising a recursive algorithm to compute a sum of integer values contained in 
the nodes of a Linked List.
Which of the following implementations are correct? Select all that apply.

A.
int sum (Node node) {
 if (node.next == null)
  return node.data;
 return node.data + sum(node.next);
}

B.
int sum (Node node) {
 if (node == null)
  return 0;
 return node.data + sum(node.next);
}

C.
int sum (Node node) {
 if (node == null)
  return node.data;
 return node.data + sum(node.next);
}

Can node be null?

Can node be null?



Question 15

We have an array which is sorted in a reverse order (from the 

largest to the smallest).

For the Selection sort algorithm this is:

A. The worst-case input

B.  The best-case input

C.  There are no worst case / best case inputs for Selection sort

Selection sort 
does not stop 
early



• The Rabin-Karp pattern matching algorithm matches the hash 

value of a pattern to a hash value of each substring in the text. 

Consider using the Rabin Karp pattern matching algorithm for 

finding ALL occurrences of pattern P in text T (not the first 

occurrence of a pattern). Now consider that we use the Monte 

Carlo version of the algorithm for solving this task (if the hashes 

match, we DO NOT check the substring).

Select all the statements about this algorithm that are true.

1.The algorithm runs in time O(N).

2.The algorithm runs in time O(NM).

3.The worst-case input is when every substring of T hashes into the 

same value as the pattern.

4.The worst-case input is when every substring of T matches the 

pattern.

5.The worst-case input is when none of substrings of T match the 

pattern.

6.There is no worst-case input for this algorithm: it performs the 

same number of operations for any input.

Question 18



1.Algorithm partition (A, l, r)
2. x ← A[ℓ] # pivot
3. j ← ℓ
4. for i from ℓ + 1 to r :
5. if A[i] > x :
6. j ← j + 1
7. swap A[j] and A[i ]
8. swap A[ℓ] and A[j]
9. return j

Where is a bug?

Question 16

J is a divider between <= and >

It will increment only if we found <x



Given an array of 3-letter strings A = {“bar”, “dad”, “are”}.

What would this array look like after the first iteration of 

the Radix Sort?

1.{“are”, “bar”, “dad”}

2.{“bar”, “dad”, “are”}

3.{“dad”, “are”, “bar”}

4.None of the above

Question 12



Given an array of 3-letter strings A = {“bar”, “dad”, “are”}.

What would this array look like after the first iteration of 

the Radix Sort?

1.{“are”, “bar”, “dad”}

2.{“bar”, “dad”, “are”}

3.{“dad”, “are”, “bar”}

4.None of the above

Question 12

The radix sort was distributing to the bins 
starting with the last character, and then 
putting back into A according to the order 
of these bins



Some useful things to remember

• When placing things into a hash table array with open 
addressing: this is a circular array so the positions wrap 
around

• Some sorting algorithms are not based on the comparison 
of pairs of elements. 

• What is it easier to sort: Array? Linked List? Hash Table?
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