
Review
for Exam 2

Classification of sorting
algorithms

We are sorting elements of array A of size n

Sorting algorithms: 1/2

5 8 9 4 8 3

5 8 4 9 8 3

5 8 4 8 9 3

5 8 4 8 3 9

Pass
1

Bubble sort

5 8 9 4 8 3

3 8 9 4 8 5

3 4 9 8 8 5

3 4 5 8 8 9

min = ?

Pass
1

Pass
2

Pass
3

Selection sort

5 8 9 4 8 3

5 8 9 8 3

5 8 9 8 3

4 5 8 9 8 3

Pass
3

4

Insertion sort

Sorting algorithms: 2/2

5 8 9 4 8 3

5 8 9 3 4 8

3

3 4

3 4 5

3 4 5 8

3 4 5 8 8

3 4 5 8 8 9

Merge sort Quick sort

Last
merge

Recursive divide
and conquer

5 8 9 4 8 3

5 8 9 4 8 3

5 4 9 8 8 3

5 4 3 8 8 9

3 4 5 8 8 9

Partition around 5

First
partitioning

j

j

j

Classifying by
number of comparisons
• Comparison-based algorithms:

• O(n2)

• O(n1.5)

• O(n log n)

• No comparisons:

• O(n)

Classifying
by additional memory used
• Sorting “in place”: needs O(1) additional temporary

memory: We rearrange elements inside the array itself

• Sorting “not in place”: needs >=O(n) of additional memory.
We move data between A and temp arrays

Bubble sort?

In place

5 8 9 4 8 3

5 8 4 9 8 3

5 8 4 8 9 3

5 8 4 8 3 9

Pass
1

Insertion sort?

In place

5 8 9 4 8 3

5 8 9 8 3

5 8 9 8 3

4 5 8 9 8 3

Pass
3

4

Quick sort?

In place

5 8 9 4 8 3

5 8 9 4 8 3

5 4 9 8 8 3

5 4 3 8 8 9

3 4 5 8 8 9

Partition around 5

First
partitioning

j

j

j

Merge sort?

Not in place

5 8 9 4 8 3

5 8 9 3 4 8

3

3 4

3 4 5

3 4 5 8

3 4 5 8 8

3 4 5 8 8 9

Last
merge

Recursive divide
and conquer

By stability

• In other words, sorting algorithms that maintain the relative
order of elements with equal keys (equivalent elements
retain their relative positions even after sorting) are called
stable sorting algorithms

• This is an important property: for example, we preserve the
order of insertions (time stamp) even after sorting

Definition:

Sorting algorithm is stable if for all indexes i and j such that the
A[i] = A[j], if element A[i] precedes element A[j] in the original
array, then element A[i] also precedes element A[j] in the
sorted array.

Which algorithms are stable?

To answer this:

• A is the array to be sorted

• Let R and S be two elements of A with the same key and R
appears earlier in the array than S:

• R is at position i, and S at position j, s.t. i<j

• To show that algorithm is stable make sure that in the
sorted output R cannot appear after S

5 8 9 4 8 3

3 4 5 8 8 9

R S

Bubble Sort?

5 8 9 4 8 3

5 8 4 9 8 3

5 8 4 8 9 3

5 8 4 8 3 9

Pass
1

Is it possible that after sorting green 8 will be AFTER red 8?

Bubble Sort?

5 8 9 4 8 3

5 8 4 9 8 3

5 8 4 8 9 3

5 8 4 8 3 9

Pass
1

Elements change order only when a smaller element follows a
larger. Since red 8 is not smaller than green 8 their relative
order cannot change.

Stable

Insertion Sort?

Is it possible that after sorting green 8 will be AFTER red 8?

5 8 9 4 8 3

4 5 8 9 8 3

4 5 8 9 3

4 5 8 8 9 3

Pass
4

8

Insertion Sort?

When red 8 is to be inserted into sorted subarray A[0..j – 1], only
elements larger than it are shifted. Thus green 8 would not be
shifted during red 8’s insertion and hence would always precede it.

5 8 9 4 8 3

4 5 8 9 8 3

4 5 8 9 3

4 5 8 8 9 3

Pass
4

8

Stable

Selection Sort?

Is it possible that after sorting green 8 will be AFTER red 8?

5 8 4 8 3

min = ?

Selection Sort?

We divide the array into sorted and unsorted portions and iteratively find
the minimum values in the unsorted portion. After finding a minimum x,
we swap x into the unsorted portion of A: the element swapped could be
green 8 which then could be moved behind red 8.
If we were shifting instead of swapping, we could have made it stable but
the cost in running time would be very significant.

5 8 4 8 3

3 8 4 8 5

3 4 8 8 5

3 4 5 8 8

min = ?

Pass
1

Pass
2

Pass
3

Selection sort

Not stable

Merge Sort?

Is it possible that after sorting green 8 will be AFTER red 8?

5 8 9 4 8 3

5 8 9 3 4 8

3

3 4

3 4 5

3 4 5 8

3 4 5 8 8

3 4 5 8 8 9

Last
merge

Recursive divide
and conquer

Merge Sort?

In the case of equal elements, the element in the left subarray is moved to
the output first. Those are the elements that came first in the unsorted
array. As a result, they will precede later elements with the same key.

5 8 9 4 8 3

5 8 9 3 4 8

3

3 4

3 4 5

3 4 5 8

3 4 5 8 8

3 4 5 8 8 9

Last
merge

Recursive divide
and conquer

Stable

Quick Sort?

Is it possible that after partitioning green 8 will be AFTER red 8?

5 8 4 8 3

Partition around 5

Quick Sort?

The partitioning step can swap the location of elements many times,
and thus two elements with equal keys could swap positions in the
final output.

5 8 4 8 3

5 8 4 8 3

5 4 8 8 3

5 4 3 8 8

3 4 5 8 8

Partition around 5

First
partitioning

j

j

j

Not stable

Recursion and
tail recursion

Tail recursion

• In tail-recursive algorithms the recursive call is the last
statement that is executed: So basically nothing is left to
execute after the recursive call.

• That means there is no need to keep the previous stack
frame and the recursion can be easily rewritten as iteration:
each recursive call can be one step of an iterative algorithm

Example 1: Sum of values in the list

Algorithm sum (List lst)

 if len(lst) == 0:
 return 0

 return lst[0] + sum(lst[1:])

Is this a tail-recursive algorithm?

Sum of values in the list

Algorithm sum (List lst)

 if len(lst) == 0:
 return 0

 return lst[0] + sum(lst[1:])

Is this a tail-recursive algorithm?

No, because we need to wait for the return of sum and only
then add the value of the first element of the list

Sum of values in the list

Algorithm sum (List lst)

 if len(lst) == 0:
 return 0

 return lst[0] + sum(lst[1:])

Can we convert it into a tail-recursive algorithm?

Sum of values in the list

Algorithm sum (List lst)

 if len(lst) == 0:
 return 0

 return lst[0] + sum(lst[1:])

Can we convert it into a tail-recursive algorithm?

Algorithm sumTR (List lst, int sumSoFar)

 if len(lst) == 0:
 return sumSoFar
 sumSoFar += lst[0]

 return sumTR(lst[1:], sumSoFar)

We call it: sumTR (list, 0)

Example 2. Tail recursion?

public void printHello (int N) {

 if (N > 1) {

 System.out.println("Hello");

 printHello (N - 1);

 } else

 System.out.println("Hello");

}

• Is this a tail-recursive method? Yes

Example 3: Tail recursion?

public void printReverse (String s) {

 if (s.length() > 0) {

 printReverse(s.substring(1));

 System.out.print(s.charAt(0));

}

}

• Is this a tail-recursive method? No

• Can we convert it into tail-recursive method?

Print reverse TR
public void printReverse (String s) {

 if (s.length() > 0) {

 printReverse(s.substring(1));

 System.out.print(s.charAt(0));
}

}

public void printReverseTR (String s, reverseSoFar) {

 if (s.length() > 0) {

 reverseSoFar = s.charAt(0) + reverseSoFar;

 printReverseTR(s.substring(1), reverseSoFar);

}

else {

 System.out.println(reverseSofar);

}

}

Memoization
Optimizing recursive algorithms

Memoization

• Memoization is a term describing an optimization technique
where you cache previously computed results, and return
the cached result when the same computation is needed
again

• It is based on the assumption that calculations take long
time, lookups are faster – so we save the results of
calculations for future lookup

Which data structures can be used for efficient lookup?

Example 1: Fibonacci numbers

n-th Fibonacci number

Fn =

0, if n=0

1, if n=1
 Fn−1 + Fn−2, if n > 1

Algorithm Fib_recurs(n)

if n ≤ 1:

 return n

else:

return Fib_recurs(n − 1) + Fib_recurs(n − 2)

Fibonacci numbers: problems
Algorithm Fib_recurs(n)

if n ≤ 1:

 return n

else:

return Fib_recurs(n − 1) + Fib_recurs(n − 2)

F6

F5
F4

F4 F3 F3 F2

F3 F2 F2 F1 ...

Running time: O(2n)

Note the repeating calls
with the same arguments

We can store the results of
computation for each Fi in
a position i of an array

In this case for each i Fi
will be computed only
once

Fibonacci numbers:
with memoization

Algorithm Fib_recurs_memo(n, FibArray of size n)
 if n ≤ 1:

 FibArray[n] = n

 return n

 else:

 if FibArray[n - 1] is null

 FibArray[n - 1] = Fib_recurs_memo (n - 1)

 if FibArray[n -2] is null

 FibArray[n - 2] = Fib_recurs_memo (n - 2)

return FibArray[n - 1] + FibArray[n - 2]

Example 2: power XN

Algorithm power (int X, int N)

 if (N == 0):

 return 1

 if (N % 2 == 0) // N is even

 return power(X, N/2)* power(X, N/2)

 else

 return X* power(X, N/2)* power(X, N/2)

What is wrong with this implementation?

Bad implementation of power XN

power will be called with the same parameters multiple times

N

N/2N/2

N/4

N/8

1

N/4

N/8

N/4

1…11

N/8N/8N/8

N/4

N/8N/8N/8

1 1 1…

power XN with memoization

global power_table – array of size N

Algorithm power_memo (int X, int N)

 if (N == 0):

 return 1

 if power_table[N/2] is null

 power_table[N/2] = power_memo (X, N/2)

 if (N % 2 == 0) // N is even

 return power_table[N/2] * power_table[N/2]

 else

 return X* power_table[N/2] * power_table[N/2]

Map or Set?

Which ADT would you use for the
following tasks?

1. Finding out whether array A contains duplicates

2. Producing count for each element of A

3. Finding the most popular name from a 2023 database of
all newborn babies

4. Removing duplicates from the array

5. Given student id -- finding student’s phone number

Sample exam: analysis

• Question 10

• Question 11

• Question 7

• Question 15

• Question 18

• Question 16

• Question 12

Question 10First: sort

int n=A.length;

int maxCount = 0;

int currentCount = 0;

int bestNumber = A[0];

int currentNumber = A[0];

for (int i=1; i<n; i++) {

if (A[i] == currentNumber)

 currentCount ++;

else {

 currentNumber = A[i];

 currentCount = 1;

}

if (currentCount > maxCount) {

 maxCount = currentCount;

 bestNumber = currentNumber;

}

}

return bestNumber;

What is the total running time of this

entire solution?

O(n) + O(n log n) = O(n log n)

n log n

n

• O (n)
• O (n2)
• O (n log n) for sorting

Question 11

In each iteration of insertion sort we insert the first element of an

unsorted partition into its proper place in the sorted partition.

Because this partition is sorted, we could find the place for a new

element using binary search in time O(log n).

If we do O(n) iterations and in each iteration we do the search for

the correct position in time O(log n), this will make the improved

insertion sort run in time O(n log n).

Ask yourself:
• Have I ever heard of Insertion sort in time O(n log n)?

• Even after I found the place I need to shift to make space inside the
sorted part

• And if not shift – Linked List – I cannot search in time log n

Question 7
We are devising a recursive algorithm to compute a sum of integer values contained in
the nodes of a Linked List.
Which of the following implementations are correct? Select all that apply.

A.
int sum (Node node) {
 if (node.next == null)
 return node.data;
 return node.data + sum(node.next);
}

B.
int sum (Node node) {
 if (node == null)
 return 0;
 return node.data + sum(node.next);
}

C.
int sum (Node node) {
 if (node == null)
 return node.data;
 return node.data + sum(node.next);
}

Can node be null?

Can node be null?

Question 15

We have an array which is sorted in a reverse order (from the

largest to the smallest).

For the Selection sort algorithm this is:

A. The worst-case input

B. The best-case input

C. There are no worst case / best case inputs for Selection sort

Selection sort
does not stop
early

• The Rabin-Karp pattern matching algorithm matches the hash

value of a pattern to a hash value of each substring in the text.

Consider using the Rabin Karp pattern matching algorithm for

finding ALL occurrences of pattern P in text T (not the first

occurrence of a pattern). Now consider that we use the Monte

Carlo version of the algorithm for solving this task (if the hashes

match, we DO NOT check the substring).

Select all the statements about this algorithm that are true.

1.The algorithm runs in time O(N).

2.The algorithm runs in time O(NM).

3.The worst-case input is when every substring of T hashes into the

same value as the pattern.

4.The worst-case input is when every substring of T matches the

pattern.

5.The worst-case input is when none of substrings of T match the

pattern.

6.There is no worst-case input for this algorithm: it performs the

same number of operations for any input.

Question 18

1.Algorithm partition (A, l, r)
2. x ← A[ℓ] # pivot
3. j ← ℓ
4. for i from ℓ + 1 to r :
5. if A[i] > x :
6. j ← j + 1
7. swap A[j] and A[i]
8. swap A[ℓ] and A[j]
9. return j

Where is a bug?

Question 16

J is a divider between <= and >

It will increment only if we found <x

Given an array of 3-letter strings A = {“bar”, “dad”, “are”}.

What would this array look like after the first iteration of

the Radix Sort?

1.{“are”, “bar”, “dad”}

2.{“bar”, “dad”, “are”}

3.{“dad”, “are”, “bar”}

4.None of the above

Question 12

Given an array of 3-letter strings A = {“bar”, “dad”, “are”}.

What would this array look like after the first iteration of

the Radix Sort?

1.{“are”, “bar”, “dad”}

2.{“bar”, “dad”, “are”}

3.{“dad”, “are”, “bar”}

4.None of the above

Question 12

The radix sort was distributing to the bins
starting with the last character, and then
putting back into A according to the order
of these bins

Some useful things to remember

• When placing things into a hash table array with open
addressing: this is a circular array so the positions wrap
around

• Some sorting algorithms are not based on the comparison
of pairs of elements.

• What is it easier to sort: Array? Linked List? Hash Table?

	Slide 1: Review
	Slide 2: Classification of sorting algorithms
	Slide 3: Sorting algorithms: 1/2
	Slide 4: Sorting algorithms: 2/2
	Slide 5: Classifying by number of comparisons
	Slide 6: Classifying by additional memory used
	Slide 7: Bubble sort?
	Slide 8: Insertion sort?
	Slide 9: Quick sort?
	Slide 10: Merge sort?
	Slide 11: By stability
	Slide 12: Which algorithms are stable?
	Slide 13: Bubble Sort?
	Slide 14: Bubble Sort?
	Slide 15: Insertion Sort?
	Slide 16: Insertion Sort?
	Slide 17: Selection Sort?
	Slide 18: Selection Sort?
	Slide 19: Merge Sort?
	Slide 20: Merge Sort?
	Slide 21: Quick Sort?
	Slide 22: Quick Sort?
	Slide 23: Recursion and tail recursion
	Slide 24: Tail recursion
	Slide 25: Example 1: Sum of values in the list
	Slide 26: Sum of values in the list
	Slide 27: Sum of values in the list
	Slide 28: Sum of values in the list
	Slide 29: Example 2. Tail recursion?
	Slide 30: Example 3: Tail recursion?
	Slide 31: Print reverse TR
	Slide 32: Memoization
	Slide 33: Memoization
	Slide 34: Example 1: Fibonacci numbers
	Slide 35: Fibonacci numbers: problems
	Slide 36: Fibonacci numbers: with memoization
	Slide 37: Example 2: power XN
	Slide 38: Bad implementation of power XN
	Slide 39: power XN with memoization
	Slide 40: Map or Set?
	Slide 41: Which ADT would you use for the following tasks?
	Slide 42: Sample exam: analysis
	Slide 43: Question 10
	Slide 44: Question 11
	Slide 45: Question 7
	Slide 46: Question 15
	Slide 47: Question 18
	Slide 48: Question 16
	Slide 49: Question 12
	Slide 50: Question 12
	Slide 51: Some useful things to remember

