
CS 1501: Algorithm
Implementation

LZW Data Compression

Data Compression

� Reduce the size of data

◦ Reduces storage space and hence the cost

◦ Reduces time to retrieve and transmit data

Compression ratio = original data size / compressed data size

Lossless and Lossy Compression

� compressedData = compress(originalData)

� decompressedData = decompress(compressedData)

� Lossless compression è originalData = decompressedData

� Lossy compression è originalData ¹ decompressedData

Lossless and Lossy Compression

� Lossy compressors generally obtain much higher compression ratios
as compared to lossless compressors

e.g. 100 vs. 2

� Lossless compression is essential in applications such as text file
compression.

� Lossy compression is acceptable in many audio and imaging
applications

◦ In video transmission, a slight loss in the transmitted video is not noticable
by the human eye.

Text Compression

� Lossless compression is essential

� Popular text compressors such as zip and Unix’s compress are
based on the LZW (Lempel-Ziv-Welch) method.

LZW Compression

� Character sequences in the original text are replaced by codes
that are dynamically determined.

� The code table is not encoded into the compressed text,
because it may be reconstructed from the compressed text
during decompression.

LZW Compression

� Assume the letters in the text are limited to {a, b}
◦ In practice, the alphabet may be the 256 character ASCII set.

� The characters in the alphabet are assigned code numbers
beginning at 0

� The initial code table is:

code

key

0

a

1

b

Compression
� public static void compress() {
� String input = BinaryStdIn.readString();
� TST<Integer> st = new TST<Integer>();
� for (int i = 0; i < R; i++)
� st.put("" + (char) i, i);
� int code = R+1; // R is codeword for EOF
� while (input.length() > 0) {
� String s = st.longestPrefixOf(input); // Find max prefix match s.
� BinaryStdOut.write(st.get(s), W); // Print s's encoding.
� int t = s.length();
� if (t < input.length() && code < L) // Add s to symbol table.
� st.put(input.substring(0, t + 1), code++);
� input = input.substring(t); // Scan past s in input.
� }
� BinaryStdOut.write(R, W);
� BinaryStdOut.close();
� }

� Original text = abababbabaabbabbaabba

� Compression is done by scanning the original text from left to right.

� Find longest prefix p for which there is a code in the code table.

� Represent p by its code pCode and assign the next available code
number to pc, where c is the next character in the text to be compressed.

LZW Compression

code

key

0

a

1

b

� Original text = abababbabaabbabbaabba

� p = a pCode = 0 Compressed text = 0
� c = b

� Enter p | c = ab into the code table.

2

ab

LZW Compression

code

key

0

a

1

b

� Original text = abababbabaabbabbaabba
� Compressed text = 0

code

key

0

a

1

b

2

ab

3

ba

• p = b pCode = 1 Compressed text = 01
• c = a

• Enter p | c = ba into the code table.

� Original text = abababbabaabbabbaabba
� Compressed text = 01

code

key

0

a

1

b

2

ab

3

ba

• p = ab pCode = 2 Compressed text = 012
• c = a

• Enter aba into the code table

4

aba

� Original text = abababbabaabbabbaabba
� Compressed text = 012

code

key

0

a

1

b

2

ab

3

ba

• p = ab pCode = 2 Compressed text = 0122
• c = b

• Enter abb into the code table.

4

aba

5

abb

� Original text = abababbabaabbabbaabba
� Compressed text = 0122

code

key

0

a

1

b

2

ab

3

ba

• p = ba pCode = 3 Compressed text = 01223
• c = b

• Enter bab into the code table.

4

aba

5

abb

6

bab

� Original text = abababbabaabbabbaabba
� Compressed text = 01223

code

key

0

a

1

b

2

ab

3

ba

• p = ba pCode = 3 Compressed text = 012233
• c = a

• Enter baa into the code table.

4

aba

5

abb

6

bab

7

baa

� Original text = abababbabaabbabbaabba
� Compressed text = 012233

code

key

0

a

1

b

2

ab

3

ba

• p = abb pCode = 5 Compressed text = 0122335
• c = a

• Enter abba into the code table.

4

aba

5

abb

6

bab

7

baa

8

abba

� Original text = abababbabaabbabbaabba
� Compressed text = 0122335

code

key

0

a

1

b

2

ab

3

ba

• p = abba pCode = 8 Compressed text = 01223358
• c = a

• Enter abbaa into the code table.

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

� Original text = abababbabaabbabbaabba
� Compressed text = 01223358

code

key

0

a

1

b

2

ab

3

ba

• p = abba pCode = 8 Compressed text = 012233588
• c = null

• No need to enter anything to the table

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

LZW Decompression

� Original text = abababbabaabbabbaabba
� Compressed text = 012233588

• Convert codes to text from left to right.

• pCode=0 represents p=a DecompressedText = a

code

key

0

a

1

b

Expand
� public static void expand() {
� String[] st = new String[L];
� int i; // next available codeword value

� // initialize symbol table with all 1-character strings
� for (i = 0; i < R; i++)

� st[i] = "" + (char) i;
� st[i++] = ""; // (unused) lookahead for EOF
� int codeword = BinaryStdIn.readInt(W);

� if (codeword == R) return; // expanded message is empty string
� String val = st[codeword];

� while (true) {
� BinaryStdOut.write(val);
� codeword = BinaryStdIn.readInt(W);

� if (codeword == R) break;
� String s = st[codeword];

� if (i == codeword) s = val + val.charAt(0); // special case hack
� if (i < L) st[i++] = val + s.charAt(0);
� val = s;

� }
� BinaryStdOut.close();

� }

LZW Decompression

� Original text = abababbabaabbabbaabba
� Compressed text = 012233588

• pCode=1 represents p = b DecompressedText = ab

• lastP = a followed by first character of p is entered into the code
table (a | b)

code

key

0

a

1

b

2

ab

� Original text = abababbabaabbabbaabba
� Compressed text = 012233588

• pCode = 2 represents p=ab DecompressedText = abab

• lastP = b followed by first character of p is entered into the code
table (b | a)

code

key

0

a

1

b

2

ab

3

ba

� Original text = abababbabaabbabbaabba
� Compressed text = 012233588

• pCode = 2 represents p = ab DecompressedText = ababab.

• lastP = ab followed by first character of p is entered into the code
table (ab | a)

code

key

0

a

1

b

2

ab

3

ba

4

aba

� Original text = abababbabaabbabbaabba
� Compressed text = 012233588

• pCode = 3 represents p = ba DecompressedText = abababba.

• lastP = ab followed by first character of p is entered into the code
table

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

� Original text = abababbabaabbabbaabba
� Compressed text = 012233588

• pCode = 3 represents p = ba DecompressedText = abababbaba.

• lastP = ba followed by first character of p is entered into the code
table.

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

� Original text = abababbabaabbabbaabba
� Compressed text = 012233588

• pCode = 5 represents p = abb DecompressedText = abababbabaabb.

• lastP = ba followed by first character of p is entered into the code
table.

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

� Original text = abababbabaabbabbaabba
� Compressed text = 012233588

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

• 8 represents ???
• When a code is not in the table (then, it is the last one entered), and its

key is lastP followed by first character of lastP

• lastP = abb
• So 8 represents p = abba Decompressed text = abababbabaabbabba

8

abba

� Original text = abababbabaabbabbaabba
� Compressed text = 012233588

• pCode= 8 represents p=abba DecompressedText=abababbabaabbabbaabba.

• lastP = abba followed by first character of p is entered into the code
table (abba | a)

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

Time Complexity

� Compression
Expected time = O(n)
where n is the length of the text that is being compressed.

� Decompression
O(n), where n is the length of the decompressed text.

