CS 1501: Algorithm
Implementation

LZW Data Compression

Data Compression

Reduce the size of data

Reduces storage space and hence the cost

Reduces time to retrieve and transmit data

Compression ratio = original data size / compressed data size

Lossless and Lossy Compression

Lossless compression =

Lossy compression =

Lossless and Lossy Compression

Lossy compressors generally obtain much higher compression ratios
as compared to lossless compressors

e.g. 100 vs. 2

Lossless compression is essential in applications such as text file
compression.

Lossy compression 1s acceptable in many audio and imaging
applications

In video transmission, a slight loss in the transmitted video is not noticable
by the human eye.

Text Compression

Lossless compression is essential

Popular text compressors such as zip and Unix’s compress are
based on the LZW (Lempel-Ziv-Welch) method.

LZW Compression

Character sequences in the original text are replaced by codes
that are dynamically determined.

The code table 1s not encoded into the compressed text,
because 1t may be reconstructed from the compressed text
during decompression.

LZW Compression

Assume the letters in the text are limited to {a, b}
In practice, the alphabet may be the 256 character ASCII set.

The characters 1n the alphabet are assigned code numbers
beginning at 0

The 1nitial code table 1s:

code

key

Compression

public static void compress() {
String input = BinaryStdIn.readString();
TST<Integer> st = new TST<Integer>();
for (int1=0; 1 <R; i++)
st.put("" + (char) 1, 1);
int code = R+1; // R is codeword for EOF
while (input.length() > 0) {
String s = st.longestPrefixOf(input); // Find max prefix match s.
BinaryStdOut.write(st.get(s), W); // Print s's encoding.
int t = s.length();
if (t < mput.length() && code <L) // Add s to symbol table.
st.put(input.substring(0, t + 1), code++);
input = input.substring(t); // Scan past s in input.
h
BinaryStdOut.write(R, W);
BinaryStdOut.close();

LZW Compression

code

key

Original text =

Compression is done by scanning the original text from left to right.

Find longest prefix » for which there is a code in the code table.

Represent 1 by its code pCode and assign the next available code
number to ¢, where © 1s the next character in the text to be compressed.

LZW Compression

code

key

Original text =

Compressed text = 0

Enter into the code table.

code

key

Original text — d

Compressed text = 0

Enter

Compressed text = 0|

into the code table.

code

key

Original text ab
Compressed text = 01

. Compressed text = 012

 Enter into the code table

code

key

Original text abab
Compressed text = 012

. Compressed text = 0122

* Enter into the code table.

code

key

Original text ababab
Compressed text = 0122

. Compressed text = 01223

 Enter into the code table.

code

key

Original text abababba
Compressed text = 01223

. Compressed text = 012233

* Enter into the code table.

code

key

Original text abababbaba
Compressed text = 012233

. Compressed text = 0122335

* Enter into the code table.

code

key

Original text - abababbabaabb

Compressed text = 0122335

. Compressed text = 01223358

* Enter into the code table.

Original text = abababbabaabbabba
Compressed text = 01223358

. Compressed text = 012233588

* No need to enter anything to the table

LZW Decompression

code

key

Original text = abababbabaabbabbaabba
Compressed text — 012233588

* Convert codes to text from left to right.

. O represents DecompressedText

Expand

public static void expand() {
String[] st = new String[L];
int 1; // next available codeword value
// 1nitialize symbol table with all 1-character strings
for 1=0;1<R;i1++)
st[i] ="" + (char) 1;
stfi++]=""; // (unused) lookahead for EOF
int codeword = BinaryStdIn.readInt(W);
if (codeword == R) return; // expanded message is empty string
String val = st[codeword];
while (true) {
BinaryStdOut.write(val);
codeword = BinaryStdIn.readInt(W);
if (codeword == R) break;
String s = st[codeword];
if (1 == codeword) s = val + val.charAt(0); // special case hack
if (i <L) st[i++] = val + s.charAt(0);
val =s;
h
BinaryStdOut.close();

LZW Decompression

code

key

Original text = abababbabaabbabbaabba
Compressed text = (112233588

* | represents DecompressedText =

. followed by first character of | is entered into the code
table (+)

code

key

Original text ababbabaabbabbaabba
Compressed text = (112233588

2 represents DecompressedText =

followed by first character of | is entered into the code
table (0 2)

code

key

Original text abbabaabbabbaabba
Compressed text = (/1 7233588

2 represents DecompressedText =

followed by first character of | is entered into the code
table ()

code

key
Original text babaabbabbaabba
Compressed text = 33588
3 represents DecompressedText =

followed by first character of | is entered into the code
table

code

key
Original text baabbabbaabba
Compressed text = 3588
3 represents DecompressedText =

table.

followed by first character of

is entered into the code

code

key
Original text abbabbaabba
Compressed text = 588

5 represents DecompressedText =

followed by first character of | is entered into the code
table.

code

key

Original text

Compressed text =

8 represents ?7?7?

When a code 1s not in the table (then, it is the last one entered), and its

abbaabba
88

key 1s followed by first character of

So © represents

Decompressed text =

code

key
Original text abba
Compressed text = 8
. 8 represents DecompressedText=
. followed by first character of | is entered into the code

table ()

Time Complexity

Compression

Expected time =
where 1 1s the length of the text that 1s being compressed.

Decompression
where 1 1s the length of the decompressed text.

9

