
Dijkstra’s



Dijkstra’s	Shortest	Path:

- Given:	weighted	graph,	G,	and	source	vertex,	v

- Compute:	shortest	path	to	every	other	vertex	in	G

- Path	length	is	sum	of	edge	weights	along	path.	Shortest															
path	has	smallest	length	among	all	possible	paths



Algorithm:

Grow	a	collection	of	vertices	for	which	shortest	path	is	known

- paths	contain	only	vertices	in	the	set

- add	as	new	vertex	the	one	with	the	smallest	distance	to	the	source

- shortest	path	to	an	outside	vertex	must	contain	a	current	shortest	path	as	a	
prefix	Use	a	greedy	algorithm



Edge	Relaxation:

• Maintain	value	D[u]	for	each	vertex
• Each	starts	at	infinity,	and	decreases	as	we	find	out	about	a	shorter	path	from	
v	to	u	(D[v]	=	0)

• Maintain	priority	queue,	Q,	of	vertices	to	be	relaxed
• use	D[u]	as	key	for	each	vertex
• remove	min	vertex	from	Q,	and	relax	its	neighbors

• Relaxation	for	each	neighbor	of	u:
• If	D[u]	+	w(u,z)	<	D[z]	then,	D[z]	=	D[u]	+	w(u,z)



Pseudocode:

• ShortestPath(G,	v)	
• init D	array	entries	to	infinity	D[v]=0
• add	all	vertices	to	priority	queue	Q	while	Q	not	
empty	do	u	=	Q.removeMin()
• for	each	neighbor,	z,	of	u	in	Q	do	if	D[u]	+	w(u,z)	<	
D[z]	then	D[z]	=	D[u]	+	w(u,z)

• Change	key	of	z	in	Q	to	D[z]
• return	D	as	shortest	path	lengths



Worked	Example:
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Step	1:	Draw	a	table	with	the	set	of	vertices	
(v)
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Step	1:	Draw	a	table	with	the	set	of	vertices	
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Step	2:	Mark	all	vertices	starting	from	‘a’.	Subscript	denotes	the	
vertex	we	connect	from.	
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Step	3:	The	lowest	weight	is	marked	red	(shortest	weight	determined)	
and	the	next	lowest	weight	in	the	row	is	looked	for	– “3a”	in	this	case	
which	is	the	weight	from	‘a’	to	‘b’.	So,	the	next	row	in	the	table	starts	
with	‘b’	and	“3a”	marked	red.	
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Step	3:	The	lowest	weight	is	marked	red	(shortest	weight	determined)	
and	the	next	lowest	weight	in	the	row	is	looked	for	– “3a”	in	this	case	
which	is	the	weight	from	‘a’	to	‘b’.	So,	the	next	row	in	the	table	starts	
with	‘b’	and	“3a”	marked	red.	
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Step	3:	The	next	adjacent	vertex	from	b	is	looked	for	and	compared	
with	the	weight	when	directly	reached	from	a	– “6a”.	When	coming	
via	vertex	b,	the	total	weight	is	a->b(“3a”)+b->d(“2b”)	=	“5b”.	This	
new	weight	will	replace	the	older	weight	in	the	‘d’	column.
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Step	3:	The	next	adjacent	vertex	from	b	is	looked	for	and	compared	
with	the	weight	when	directly	reached	from	a	– “6a”.	When	coming	
via	vertex	b,	the	total	weight	is	a->b(“3a”)+b->d(“2b”)	=	“5b”.	This	
new	weight	will	replace	the	older	weight	in	the	‘d’	column.
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Step	3:	Cannot	reach	anywhere	else	from	‘b’,	so	rest	of	the	weights	–
‘c’,’e’,’f’,’g’	are	copied	down	from	the	first	row	as	they	were
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Step	3:	Cannot	reach	anywhere	else	from	‘b’,	so	rest	of	the	weights	–
‘c’,’e’,’f’,’g’	are	copied	down	from	the	first	row	as	they	were
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Step	4:	Next	lowest	value	is	selected.	So	any	of	“5a”	or	“5b”	
will	be	valid.
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Step	4:	Next	lowest	unmarked	weight	is	selected.	So	any	of	
“5a”	or	“5b”	will	be	valid.
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- c->d	cost:	5a+2c	=	7c	which	is	!<	5b,	so	
weight	in	column	d	remains	5b.

- c->e	cost	=	5a+6c	=	11c	which	is	<		∞,	so	
new	weight	in	column	e	becomes	11c

- Similarly	for	f	and	g,	new	weights	are	8c	and	
12c	respectively.

- Remember:	Subscript	is	where	I’m	coming	
from!



Step	5:	Next	lowest	“5b”.	d->f	=	5b+9d	=	14d	!<	11c.	‘f’	and	‘g’	
are	unreachable	so	their	weights	remain	as	they	are.
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Step	6:	Next	lowest	“8c”.		f->e	=	8c+5f	=	13f	!<	11c.	
f->g	=	8c+1f		=	9f <12c
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Step	7:	No	more	scope	for	improvement	so	the	last	row	gives	
me	the	shortest	path	from	‘a’	to	any	of	the	other	vertices.
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Shortest	Path	weight	from	‘a’	to	‘g’	is	=	9f,	where	f=8c,	where	c	
=	5a.
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So,	the	shortest	path	from	‘a’	to	‘g’	would	be:
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Djikstra Analysis:

• O(nlogn)	time	to	build	priority	queue

• O(nlogn)	time	removing	vertices	from	queue

• O(mlogn)	time	relaxing	edges
• Changing	key	can	be	done	in	O(logn)	time

• Total	time:	O(	(n	+	m)logn )
• which	can	be	O(n2logn)	for	dense	graph


