Dijkstra's

Dijkstra's Shortest Path:

- Given: weighted graph, G, and source vertex, v
- Compute: shortest path to every other vertex in G
- Path length is sum of edge weights along path. Shortest path has smallest length among all possible paths

Algorithm:

Grow a collection of vertices for which shortest path is known

- paths contain only vertices in the set
- add as new vertex the one with the smallest distance to the source
- shortest path to an outside vertex must contain a current shortest path as a prefix Use a greedy algorithm

Edge Relaxation:

- Maintain value D[u] for each vertex
 - Each starts at infinity, and decreases as we find out about a shorter path from v to u (D[v] = 0)
- Maintain priority queue, Q, of vertices to be relaxed
 - use D[u] as key for each vertex
 - remove min vertex from Q, and relax its neighbors
- Relaxation for each neighbor of u:
 - If D[u] + w(u,z) < D[z] then, D[z] = D[u] + w(u,z)

Pseudocode:

- ShortestPath(G, v)
 - init D array entries to infinity D[v]=0
 - add all vertices to priority queue Q while Q not empty do u = Q.removeMin()
 - for each neighbor, z, of u in Q do if D[u] + w(u,z) < D[z] then D[z] = D[u] + w(u,z)
 - Change key of z in Q to D[z]
 - return D as shortest path lengths

Worked Example:

Step 1: Draw a table with the set of vertices (v)

Step 1: Draw a table with the set of vertices

(V)

V	a	b	С	d	е	f	g
а							

Step 2: Mark all vertices starting from 'a'. Subscript denotes the vertex we connect from.

V	a	b	С	d	е	f	g
а	O _a	3 _a	5 _a	6 _a	∞ _a	∞ _a	∞ _a

Step 3: The lowest weight is marked red (shortest weight determined) and the next lowest weight in the row is looked for – "3a" in this case which is the weight from 'a' to 'b'. So, the next row in the table starts with 'b' and "3a" marked red.

V	а	b	С	d	е	f	g
а	0 _a	3 _a	5 _a	6 _a	∞ _a	∞ _a	∞ _a

Step 3: The lowest weight is marked red (shortest weight determined) and the next lowest weight in the row is looked for – "3a" in this case which is the weight from 'a' to 'b'. So, the next row in the table starts with 'b' and "3a" marked red.

V	a	b	С	d	е	f	g
а	O _a	3 _a	5 _a	6 _a	∞ _a	∞ _a	∞ _a
b	0 _a	3 _a					

Step 3: The next adjacent vertex from b is looked for and compared with the weight when directly reached from a - "6a". When coming via vertex b, the total weight is a->b("3a")+b->d("2b") = "5b". This new weight will replace the older weight in the 'd' column.

V	a	b	С	d	е	f	g
а	O _a	3 _a	5 _a	6 _a	∞ _a	∞ _a	∞ _a
b	0 _a	3 _a					

Step 3: The next adjacent vertex from b is looked for and compared with the weight when directly reached from a - "6a". When coming via vertex b, the total weight is a->b("3a")+b->d("2b") = "5b". This new weight will replace the older weight in the 'd' column.

V	a	b	С	d	е	f	g
а	O _a	3 _a	5 _a	6 _a	∞ _a	∞ _a	∞ _a
b	0 _a	3 _a		5 _b			

Step 3: Cannot reach anywhere else from 'b', so rest of the weights – 'c','e','f','g' are copied down from the first row as they were

V	a	b	С	d	е	f	g
а	O _a	3 _a	5 _a	6 _a	∞ _a	∞ _a	∞ _a
b	O _a	3 _a		5 _b			

Step 3: Cannot reach anywhere else from 'b', so rest of the weights – 'c','e','f','g' are copied down from the first row as they were

V	a	b	С	d	е	f	g
а	O _a	3 _a	5 _a	6 _a	∞ _a	∞ _a	∞ _a
b	O _a	3 _a	5 _a	5 _b	∞ _a	∞ _a	∞ _a

Step 4: Next lowest value is selected. So any of "5a" or "5b" will be valid.

V	a	b	С	d	е	f	g
а	O _a	3 _a	5 _a	6 _a	∞ _a	∞ _a	∞ _a
b	0 _a	3 _a	5 _a	5 _b	∞ _a	∞ _a	∞ _a

Step 4: Next lowest unmarked weight is selected. So any of "5a" or "5b" will be valid.

- c->d cost: 5a+2c = 7c which is !< 5b, so
 weight in column d remains 5b.
- c->e cost = 5a+6c = 11c which is < ∞, so
 new weight in column e becomes 11c
- Similarly for f and g, new weights are 8c and 12c respectively.
- Remember: Subscript is where I'm coming from!

V	a	b	С	d	е	f	g
а	O _a	3 _a	5 _a	6 _a	∞ _a	∞ _a	∞ _a
b	0 _a	3 _a	5 _a	5 _b	∞ _a	∞ _a	∞ _a
С	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c

Step 5: Next lowest "5b". d->f=5b+9d=14d!<11c. 'f' and 'g' are unreachable so their weights remain as they are.

V	a	b	С	d	е	f	g
а	O _a	3 _a	5 _a	6 _a	∞ _a	∞ _a	∞ _a
b	0 _a	3 _a	5 _a	5 _b	∞ _a	∞ _a	∞ _a
С	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c
d	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c

Step 6: Next lowest "8c". f > e = 8c + 5f = 13f! < 11c. f > g = 8c + 1f = 9f < 12c

V	a	b	С	d	е	f	g
а	O _a	3 _a	5 _a	6 _a	∞ _a	∞ _a	∞ _a
b	O _a	3 _a	5 _a	5 _b	∞ _a	∞ _a	∞ _a
С	O _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c
d	O _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c
f	O _a	3 _a	5 _a	5 _b	11 _c	8 _c	9 _f

Step 7: No more scope for improvement so the last row gives me the shortest path from 'a' to any of the other vertices.

V	а	b	С	d	е	f	g
а	O _a	3 _a	5 _a	6 _a	∞ _a	∞ _a	∞ _a
b	0 _a	3 _a	5 _a	5 _b	∞ _a	∞ _a	∞ _a
С	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c
d	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c
f	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	9 _f

Shortest Path weight from 'a' to 'g' is = 9f, where f=8c, where c = 5a.

V	а	b	С	d	е	f	g
а	0 _a	3 _a	5 _a	6 _a	∞ _a	∞ _a	∞ _a
b	O _a	3 _a	5 _a	5 _b	∞ _a	∞ _a	∞ _a
С	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c
d	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c
f	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	9 _f

So, the shortest path from 'a' to 'g' would be:

V	a	b	С	d	е	f	g
а	O _a	3 _a	5 _a	6 _a	∞ _a	∞ _a	∞ _a
b	0 _a	3 _a	5 _a	5 _b	∞ _a	∞ _a	∞ _a
С	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c
d	0 _a	3 _a	5 _a	5 _b	11 _c	8 _c	12 _c
f	O _a	3 _a	5 _a	5 _b	11 _c	8 _c	9 _f

Djikstra Analysis:

• *O*(*n*log*n*) time to build priority queue

• O(nlogn) time removing vertices from queue

- O(mlogn) time relaxing edges
 - Changing key can be done in $O(\log n)$ time
- Total time: $O((n + m)\log n)$
 - which can be $O(n^2 \log n)$ for dense graph