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DIALOGUE AND
2 CONVERSATIONAL
AGENTS

C: Iwantyou to tell me the names of the fellows on the St.

Louis team.

I'm telling you. Who's on first, What's on second, |

Don’t Know is on third.

You know the fellows’ names?

Yes.

Well, then, who’s playing first?

Yes.

I mean the fellow’s name on first.

Who.

The guy on first base.

Who is on first.

Well what are you askimefor?

I’'m not asking you — I'm telling you. Who is on first.
Who's on First- Bud Abbott and Lou Costello’s ver-
sion of an old burlesque standard.
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The literature of the fantastic abounds in inanimate objesagically en-
dowed with sentience and the gift of speech. From Ovid'wustaff Pygmalion
to Mary Shelley’'s Frankenstein, Cao Xue Qin’s Divine Lunsoent Stone-in-
Waiting to Snow White's mirror, there is something deeplydioing about cre-
ating something and then having a chat with it. Legend hdsait after finishing
his sculpture oMoses Michelangelo thought it so lifelike that he tapped it on the
knee and commanded it to speak. Perhaps this shouldn’t pesing. Language
itself has always been the mark of humanity and sentienakcamversationor conversation
dialogueis the most fundamental and specially privileged arenarajuage. It is om.ocue
certainly the first kind of language we learn as children, fandnost of us, itis the
kind of language we most commonly indulge in, whether we adering curry for
lunch or buying postage stamps, participating in businesstimgs or talking with
our families, booking airline flights or complaining aboletweather.
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This chapter introduces the fundamental structures amafitigns incon-
versational agents also known aspoken dialogue systemsor spoken language
systems These are programs which communicate with users in spoaamah
language in order to make travel arrangements, answerignestout weather or
sports, route telephone calls, act as a general telepheistaam, or perform even
more sophisticated tasks.

Many of these tasks have to do with telephony; speech dialsgstems are
particularly appropriate for applications like telephpmhere only a limited key-
board and/or screen is available (Cohen and Oviatt, 1995¢. i@portant domain
for conversational agents is travel planning, which hasitlzekey concern of di-
alogue systems since the early influential GUS system fomptg airline travel
(Bobrow et al., 1977). More recently, a number of spoken lagg systems for
booking airline flights were built under the Air Traffic Infoation System (ATIS)
(Hemphill et al., 1990) and Communicator (Walker, 2001 )goamns. We will use
this travel domain as an example throughout the chapter ¢assed it to discuss
grammar rules for parsing ATIS sentences in Ch. 9). Fig. 8Adws a sample
dialogue from a Communicator system, taken from Xu and Rukgn{2000).

S1: Hello. You've reached the [Communicator]. Tell me yault fhame

U2: hii'd like to fly to seattle tuesday morning

S3: Traveling to Seattle on Tuesday, August eleventh in tbening. Your full name?

U4: [John Doe]

S5:  Hello, [John], I'm glad to hear from you again. You can resi me for help.

S6: OK. Let’s see | have a United flight departing Pittsburgltea forty five a.m
arriving into Seattle at one fifty seven p.m. Is that OK?

U7: Yes

S8:  Will you return to Pittsburgh from Seattle?

U9: noiwill goto Los Angeles

S10: Traveling to Los Angeles. on what date

U11l: Sorry can we go back to talk about the previous leg again

S12: For the first leg, you are on a United flight 1446 deparfiitsburgh at ten forty
five A.M. tomorrow, arriving in Seattle at one fifty seven PIdb you want to take
that?

U13: actually i want to leave on wednesday

S14: aflight on wednesday.

S15: | have a flight departing Pittsburgh at ten forty five aarrives Seattle at one fifty
seven p.m. Is that OK?

Ul6: Yes

Figure 22.1 The travel domain: a fragment from a successful convensdteo
tween a user (U) and the Communicator system (S) of Xu and iRkl (2000).




Another promising domain is automatic call routing. A caluting system

directs incoming calls in a telephone call center, tramgfgrthe call to the appro-
priate human. Call routing dialogue systems generallyrbégi asking the user
open-ended questions liktow may | help you?Gorin et al., 1997), oHow may

| direct your call?(?). Fig. 22.2 shows sample conversations from the AT&T How
May | Help You (HMIHY) system (Gorin et al., 1997).

can you tell me how much it is to tokyo?

yes that's right

How may | help you?
You want to know the cost of a call?

Please hold on for rate information.

what's the area code for chicago?

(silence)

noCrwocnuocncn

How may | help you?
You want an area code.

The area code for Chicago is 312.

Figure 22.2  The call routing domain: two conversations between a usga(id
the AT&T How May | Help You (HMIHY) system (S) (Gorin et al., 89).

A somewhat different domain, which is very far from the télepy area, is

automatic tutoring systems. Fig. 22.3 shows part of a didgom the ITSPOKE
dialogue system (Litman and Silliman, 2004), which uses\he/2-Atlas text-
based tutoring system as its tutoring backend (?).

S:
U:
S.

I didn’t understand. What force acts on all objects wittlmse proximity to earth?
uh the force of gravity

Fine. Besides the Earth’s gravitational force, are thegeother forces acting on the
person, keys, and elevator after the release?
no

Yep. Thus, keep in mind that after the release, the onlgefon the person, keys,
and elevator is the force of gravity. If gravity is the onlyde acting on an objeqt,
will it be moving or staying still?
it will be moving

Fine. Not only are the person, keys, and elevator movhmgy, have only gravitd
tional forces on them. When an object is falling and has ondyitational force on
it, it is said to be in what?
freefall

Figure 22.3  The tutoring domain: part of an conversation between a stuaser
(U) and the ITSPOKE system (S) of Litman and Silliman (2004).
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Sec. 22.1 starts out with a summary of facts about human ceatven, in-
cluding the idea of turns and utterances, speech acts, dirayrdialogue structure,
and conversational implicature. Sec. 22.2 then introdsteple spoken language
systems, introducing in detail each of the components gbig&y frame-based dia-
logue system, followed by an overview in Sec. 22.3 of the ®&idL language for
implementing these systems. We then turn Sec. 22.4 to th#epnoof evaluating
system performance. Sec. 22.5 then introduces the moresiopted information-
state model of conversation. Sec. 22.6 shows how MarkovdeciProcesses
can provided a motivated probabilistic foundation for censational action. Fi-
nally we discuss some advanced topics, including the BDigfsdesire-intention)
paradigm for dialogue understanding, and a brief mentiorssies involved in
processing human-human dialogue.

22.1 HUMAN CONVERSATION

TURN-TAKING

Conversation is an intricate and complex joint activity. Bégin our discussion of
conversational agents by offering a sketch of some of whatasvn about human
conversation.

22.1.1 Turns and Turn-Taking

Dialogue is characterized hyrn-taking ; Speaker A says something, then speaker
B, then speaker A, and so on. If having a turn (or “taking therflpis a resource
to be allocated, what is the process by which turns are aéd@aHow do speakers
know when it is the proper time to contribute their turn?

It turns out that conversation and language itself are &tred in such a way
as to deal efficiently with this resource allocation proble@ne source of evi-
dence for this is the timing of the utterances in normal hupversations. While
speakers can overlap each other while talking, it turnstaattdn average the total
amount of overlap is remarkably small; perhaps less than [5¢irfson, 1983).
If speakers aren’t overlapping, do they figure out when th b3l waiting for a
pause after the other speaker finishes? This is also very Tagamount of time
between turns is quite small, generally less than a few lashdrilliseconds even
in multi-party discourse. Since it may take more than thvg feindred millisec-
onds for the next speaker to plan the motor routines for priodutheir utterance,
this means that speakers begin motor planning for their ui&tance before the
previous speaker has finished. For this to be possible, alatanversation must
be set up in such a way that (most of the time) people can qufitkire outwho
should talk next, and exacthyhen they should talk. This kind of turn-taking be-
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havior is generally studied in the field Gonversation Analysis(CA). In a key §oNESATON
conversation-analytic paper, Sacks et al. (1974) arguaitdinn-taking behavior,

at least in American English, is governed by a set of turmtakules. These rules

apply at atransition-relevance place or TRP; places where the structure of the
language allows speaker shift to occur. Here is a versioheturn-taking rules
simplified from Sacks et al. (1974):

(22.1) Turn-taking Rule. At each TRP of each turn:

a. If during this turn the current speaker has selected Aexadht
speaker then A must speak next.

b. If the current speaker does not select the next speakeother
speaker may take the next turn.

c. If no one else takes the next turn, the current speaker akaythe next
turn.

There are a number of important implications of rule (224 dialogue
modeling. First, subrule (22.1a) implies that there areesaoiterances by which
the speaker specifically selects who the next speaker willThe2 most obvious
of these are questions, in which the speaker selects arsjibaker to answer the
guestion. Two-part structures lIKBJESTION-ANSWER are calledadjacency pairs — apsacency pars
(Schegloff, 1968); other adjacency pairs incluelREETING followed by GREEF
ING, COMPLIMENT followed by DOWNPLAYER, REQUESTfollowed by GRANT.
We will see that these pairs and the dialogue expectatiasgbt up will play an
important role in dialogue modeling.

Subrule (22.1a) also has an implication for the interpiatedf silence. While
silence can occur after any turn, silence in between the s pf an adjacency
pair is significant silence For example Levinson (1983) notes this example frogfiiReAnT
Atkinson and Drew (1979); pause lengths are marked in pagees (in seconds):

(22.2) A: Isthere something bothering you or not?
(2.0
A: Yes or no?
(1.5)
A: Eh?
B: No.

Since A has just asked B a question, the silence is integpredea refusal
to respond, or perhapsdispreferred response (a response, like saying “no” to @rrererrED
request, which is stigmatized). By contrast, silence ireotilaces, for example
a lapse after a speaker finishes a turn, is not generallypiatable in this way.
These facts are relevant for user interface design in spoldogue systems; users
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UTTERANCE

PERFORMATIVE

SPEECH ACTS

ILLOCUTIONARFRORCE

are disturbed by the pauses in dialogue systems causedvbgé®ch recognizers
(Yankelovich et al., 1995).

Another implication of (22.1) is that transitions betwepeakers don’t occur
just anywhere; th&ansition-relevance placesvhere they tend to occur are gener-
ally atutterance boundaries. Recall from Ch. 9 that spoken utterances drtien
written sentences in a number of ways. They tend to be shamemore likely
to be single clauses or even just single words, the subjeetssaally pronouns
rather than full lexical noun phrases, and they includedipauses and repairs. A
hearer must take all this (and other cues like prosody) iotoant to know where
to begin talking.

22.1.2 Speech Acts

The previous section showed that conversation consistssefgaence of turns,
each of which consists of one or more utterance. A key insigbtconversation
due to Wittgenstein (1953) but worked out more fully by Aogt1962), is that an
utterance in a dialogue is a kind ation being performed by the speaker.

The idea that an utterance is a kind of action is particuleléar inperfor-
mative sentences like the following:

(22.3) | name this ship th&tanic.
(22.4) | second that motion.
(22.5) | bet you five dollars it will snow tomorrow.

When uttered by the proper authority, for example, (22.3)tha effect of chang-
ing the state of the world (causing the ship to have the n@ita@ic) just as any
action can change the state of the world. Verbs figeneor secondvhich perform
this kind of action are called performative verbs, and Austlled these kinds of
actionsspeech actsWhat makes Austin’s work so far-reaching is that speech act
are not confined to this small class of performative verbsstidis claim is that the
utterance of any sentence in a real speech situation agestithree kinds of acts:

e locutionary act: the utterance of a sentence with a particular meaning.

e illocutionary act: the act of asking, answering, promising, etc., in uttering a
sentence.

e perlocutionary act: the (often intentional) production of certain effects upon
the feelings, thoughts, or actions of the addressee inngtersentence.

For example, Austin explains that the utterance of exan#e6) might have the
illocutionary force of protesting and the perlocutionary effect of stoppingdte
dressee from doing something, or annoying the addressee.

(22.6) You can't do that.
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The termspeech actis generally used to describe illocutionary acts rather
than either of the other two types of acts. Searle (1975hddifying a taxonomy
of Austin’s, suggests that all speech acts can be classiitedone of five major
classes:

e Assertives: committing the speaker to something’s being the casgdest-
ing, putting forward swearing boasting concluding.

e Directives: attempts by the speaker to get the addressee to do something
(asking ordering, requestinginviting, advising begging.

e Commissives:committing the speaker to some future course of actioonfis-
ing, planning, vowing, betting, opposing

e Expressives:expressing the psychological state of the speaker aboate st
of affairsthanking apologizing welcoming deploring

e Declarations: bringing about a different state of the world via the uttesn
(including many of the performative examples abdvesign You're fired)

Recent research has focused both on formalizing the defindf each of
these kinds of acts, and on extending the notion of speedo detal with conver-
sational phenomena like grounding, the topic of the nexi@ec

22.1.3 Grounding

The previous section suggested that each turn or utterandd be viewed as an

action by a speaker. But dialogue is not a series of unrelagependent acts.
Instead, dialogue is a collective act performed by the sgreaikd the hearer. One
implication of joint action is that, unlike in monologuegtbpeaker and hearer must
constantly establishbommon ground (Stalnaker, 1978), the set of things thataren crouno
mutually believed by both speakers. The need to achieve @ymground means

that the hearer muground the speaker’s utterances, making it clear that the heasremo
has understood the speaker’s meaning and intention.

As Clark (1996) points out, people need closure or grounftingon-linguistic
actions as well. For example, why does a well-designed temitton light up
when it's pressed? Because this indicates to the woulddwatelr traveler that she
has successfully called the elevator. Clark phrases tleid fa closure as follows
(after (?)):

Principle of closure. Agents performing an action require evidence, suffi-
cient for current purposes, that they have succeeded inrparfg it.

Grounding is also important when the hearer needs to irelibat the speaker
hasnot succeeded in performing an action. If the hearer has prablamander-
standing, she must indicate these problems to the speajain so that mutual
understanding can eventually be achieved.
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CONTRIBUTION

REFORMULATING

COLLABORATIVE
COMPLETION

CONTINUER
BACKCHANNEL

How is closure achieved? Clark and Schaefer (1989) intredlve idea that
each joint linguistic act ocontribution has two phases, callgatesentation and
acceptance In the first phase, a speaker presents the hearer with alande
performing a sort of speech act. In the acceptance phaske#rer has to ground
the utterance, indicating to the speaker whether undelisigiwvas achieved.

What methods can the hearer (call her B) use to ground thé&epAs utter-
ance? Clark and Schaefer (1989) discuss five main types dbagtordered from
weakest to strongest:

1. Continued attention: B shows she is continuing to attend and therefore re-
mains satisfied with A's presentation.

2. Relevant next contribution: B starts in on the next relevant contribution.

3. Acknowledgement:B nods or says a continuer likdr-huh yeah or the like,
or anassessmertike that's great

4. Demonstration: B demonstrates all or part of what she has understood A
to mean, for example bgeformulating (paraphrasing) A's utterance, or by
collaborative completionof A's utterance.

5. Display: B displays verbatim all or part of A's presentation.

Let’s look for examples of these in a human-human dialog@engte. We'll
be returning to this example throughout the chapter; inroimlelesign a more so-
phisticated machine dialogue agent, it helps to look at hbwmaan agent performs
similar tasks. Fig. 22.4 shows part of a dialogue betweemzanuravel agent and
a human client.

Utterance A, in which the agent repeaits May, repeated below in boldface,
shows the strongest form of grounding, in which the heargpldys their under-
standing by repeating verbatim part of the speakers words:

Ci: ...l need to travein May.
A1 And, what dayin May did you want to travel?

This particular fragment doesn’t have an example ofieknowledgement
but there’s an example in another fragment:

C: He wants to fly from Boston
A: Mm hmm
C: to Baltimore Washington International

The wordmm-hmrrhere is acontinuer, also often called &ackchannelor
anacknowledgement token A continuer is a short utterance which acknowledges
the previous utterance, indicating to the speaker thatsheaderstood and hence
cueing the other speaker to continue talking (Jefferso®41%chegloff, 1982;
Yngve, 1970).
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Ci1. ...lIneedto travel in May.

Ai1:  And, what day in May did you want to travel?

C,. OKuh I need to be there for a meeting that’s from the 12th ¢olibth.

A2:  And you're flying into what city?

Cs:. Seattle.

Asz:  And what time would you like to leave Pittsburgh?

C4: Uh hmm | don't think there’s many options for non-stop.

A4 Right. There’s three non-stops today.

Cs:  What are they?

As.  The first one departs PGH at 10:00am arrives Seattle at 1Bédbtime.
The second flight departs PGH at 5:55pm, arrives Seattlerat &md the
last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

Cs:  OK I'll take the 5ish flight on the night before on the 11th.

Ag: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pi8, Air
flight 115.

Cz: OK.

Figure 22.4  Part of a conversation between a travel agent (A) and cl@ént (

In Clark and Schaefer’s third method, the speaker starts itheir relevant
next contribution. We see a number of examples of this in #mepte dialogue
above, for example where the speaker asks a question ance#ner answers
it. We mentioned thesadjacency pairs above; other examples includero-
POSAL followed by ACCEPTANCEOr REJECTION APOLOGY followed by ACCEP-
TANCE/REJECTION SUMMONS followed by ANSWER, and so on.

In a more subtle but very important kind of grounding act, $peaker can
combine this method with the previous one. For example edkiat whenever the
client answers a question, the agent begins the next qnestth And The And
indicates to the client that the agent has successfullyrstated the answer to the
last question:

And, what day in May did you want to travel?
A'nd you're flying into what city?

A'nd what time would you like to leave Pittsburgh?

As we will see in Sec. 22.5, the notions of grounding and domtions can
be combined with speech acts to give a more sophisticateelnbpbint action in
conversation; these more sophisticated models are aditdajue acts

Grounding is just as crucial in human-machine conversagiis in human
conversation. The examples below, from Cohen et al. (2G)gest how unnat-
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ural it sounds when a machine doesn’t ground properly. Tleeofi©kay makes
(22.7) a much more natural response than (22.8) to groundr& usjection:

(22.7) System: Did you want to review some more of your peabkprofile?
Caller: No.
System:Okay,what’s next?

(22.8) System: Did you want to review some more of your peakprofile?
Caller: No.
System: What's next?

Indeed, this kind of lack of grounding can cause errors. eltién et al.
(1993) and Yankelovich et al. (1995) found that humans getused when a con-
versational system system doesn’t give explicit acknogéeaents.

22.1.4 Conversational Structure

We have already seen how conversation is structured byemjggairs and con-
tributions. Here we’'ll briefly discuss one aspect of twerall organization of a
conversation: conversational openings. The openingsleptiene conversations,
for example, tend to have a 4-part structure (Clark, 1994; ?)

Stage 1:Enter a conversation, with summons-response adjacency pai
Stage 2:Identification

Stage 3:Establish joint willingness to converse

Stage 4:The first topic is raised, usually by the caller.

These four stages appear in the opening of this short taskted conversa-
tion from Clark (1994).

Stage Speaker & Utterance

1 A1. (rings B’s telephone)

1,2 | By: Benjamin Holloway

2 A1 this is Professor Dwight's secretary, from Polymania €gd
2,3 | B1: oohyes—

4 Aj1: uh:m . about the: lexicology *seminar*

4 Bi: *yes*

It is common for the person who answers the phone to speak($irste
the caller’s ring functions as the first part of the adjacepaly) but for the caller to
bring up the first topic, as the caller did above concernireglixicology seminar”.
This fact that the caller usually brings up the first topicsesiconfusion when the
answerer brings up the first topic instead; here’s an exaofpkés from the British
directory enquiry service from Clark (1994):
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Customer: (rings)

Operator: Directory Enquiries, for which town please?

Customer: Could you give me the phone number of um: Mrs. unmtHSon?
Operator: Yes, which town is this at please?

Customer: Huddleston.

Operator: Yes. And the name again?

Customer: Mrs. Smithson.

In the conversation above, the operator brings up the tdpionhich town
please? in her first sentence, confusing the caller, who ignores thpic and
brings up her own. This fact that callers expect to bring @ptdpic explains why
conversational agents for call routing or directory infation generally use very
open prompts likedlow may | help youdr How may | direct your callZather than
a directive prompt likd=or which town please?Open prompts allow the caller to
state their own topic, reducing recognition errors causedustomer confusion.

Conversation has many other kinds of structure, includivgintricate na-
ture of conversational closings and the wide use of presegse We will discuss
structure based otoherencein Sec. 22.7.

22.1.5 Conversational Implicature

We have seen that conversation is a kind of joint activitywhich speakers pro-
duce turns according to a systematic framework, and thatgh&ibutions made
by these turns include a presentation phase of performingdadt action, and an
acceptance phase of grounding the previous actions of teddautor. So far we
have only talked about what might be called the ‘infrasuiteet of conversation.
But we have so far said nothing about the actual informati@ gets communi-
cated from speaker to hearer in dialogue.

While Ch. 14 showed how we can compute meanings from sergeihterns
out that in conversation, the meaning of a contribution isrfjuite a bit extended
from the compositional meaning that might be assigned flewiords alone. This
is because inference plays a crucial role in conversatidre ifiterpretation of an
utterance relies on more than just the literal meaning oftrgences. Consider
the client’s response Grom the sample conversation in Fig. 22.4, repeated here:

A1. And, what day in May did you want to travel?
C,: OK uh | need to be there for a meeting that’s from the 12th ¢olthth.

Notice that the client does not in fact answer the questidre dlient merely
states that he has a meeting at a certain time. The semaotitsi$ sentence
produced by a semantic interpreter will simply mention thiseting. What is it
that licenses the agent to infer that the client is mentigrnims meeting so as to
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inform the agent of the travel dates?
Now consider another utterance from the sample conversatis one by
the agent:

Ay ...There’s three non-stops today.

Now this statement would still be true if there were seven-stops today,
since if there are seven of something, there are by defingtism three. But what
the agent means here is that there are thretnot more than three non-stops
today. How is the client to infer that the agent meanky three non-stops?

These two cases have something in common; in both casesdalkesseems
to expect the hearer to draw certain inferences; in othedsyahe speaker is com-
municating more information than seems to be present inttbead words. These
kind of examples were pointed out by Grice (1975, 1978) asqfdris theory of
conversational implicature. Implicature means a particular class of licensed in-
ferences. Grice proposed that what enables hearers to kblea® inferences is that
conversation is guided by a setrofixims, general heuristics which play a guiding
role in the interpretation of conversational utterances.prbposed the following
four maxims:

e Maxim of Quantity: Be exactly as informative as is required:
1. Make your contribution as informative as is required (foe current

purposes of the exchange).
2. Do not make your contribution more informative than isuiegd.

e Maxim of Quality: Try to make your contribution one that is true:

1. Do not say what you believe to be false.
2. Do not say that for which you lack adequate evidence.

e Maxim of Relevance:Be relevant.
e Maxim of Manner: Be perspicuous:

1. Avoid obscurity of expression.

2. Avoid ambiguity.

3. Be brief (avoid unnecessary prolixity).
4. Be orderly.

It is the Maxim of Quantity (specifically Quantity 1) that@is the hearer to
know thatthree non-stopdid not mearseven non-stopd his is because the hearer
assumes the speaker is following the maxims, and thus iftbaker meant seven
non-stops she would have said seven non-stops (“as infwmemas is required”).
The Maxim of Relevance is what allows the agent to know thatdlient wants
to travel by the 12th. The agent assumes the client is fafigvihe maxims, and
hence would only have mentioned the meeting if it was releagthis point in the
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dialogue. The most natural inference that would make thdingeeelevant is the
inference that the client meant the agent to understandchibakeparture time was
before the meeting time.

22.2 Basic DIALOGUE SYSTEMS

Now that we've seen a bit about how human dialogue workss ¢'scribe the
spoken dialogue systems used in commercial applicatiadesytd=ig. 22.5 shows
a typical architecture for a dialogue system. It has six comepts. The speech
recognition and understanding components extract medrongthe input, while
the generation and TTS components map from meaning to speduoh dialog
manager controls the whole process, along with a task mamdgeh has knowl-
edge about the task domain (such as air travel). We'll goutliinoeach of these
components in the next sections. Then we’'ll explore moréiistipated research
systems in following sections.

Speech Natural Language
Recognition Understanding

Dialogue Task
Manager Manager

Text-to-Speech ~ Natural Language
Synthesis Generation

Figure 22.5  Simplified architecture of the components of a conversatiagent.

22.2.1 ASR component

The ASR (automatic speech recognition) component take® aupout, generally
from the telephone, and returns a transcribed string of syasl discussed in chap-
ters Ch. 6 through Chapter 6. The ASR system may also be @giihin various
ways for use in conversational agents. For example while agfems used for
dictation or transcription generally use a single broadiynedN-gram language
model, ASR systems in conversational agent generally usgiége models that
are specific to a dialogue state. For example, if the systesnjust asked the
user “What city are you departing from?”, the ASR languageleh@an be con-
strained to only consist of city names, or perhaps sentevicié® form ‘I want to
(leavedepart) from [CITYNAME]'. These dialogue-state-specifamguage mod-
els can consist of hand-written finite-state or contex¢-fyjeammars, or dil-gram
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RESTRICTIVE
GRAMMAR

grammars trained on subcorpora extracted from the answeesticular questions
in some training set. When the system wants to constrain $beto respond to
the system’s last utterance, it can use suobstrictive grammar. When the sys-
tem wants to allow the user more options, it might mix thisestpecific language
model with a more general language model. As we will see, liwéce between
these strategies can be tuned based on how nmitéltive the user is allowed.

For tasks where the possible things the user is allowed t@asagxtremely
limited, commercial dialogue systems often do not Nsgram language models
at all. Instead, they use non-probabilistic language nsotaked on finite-state
grammars. These grammars are generally hand-written, @exifg all possible
responses that the system understands. We’'ll see an exafhspleh a hand-written
grammar for a VoiceXML system in Sec. 22.3

Another way that ASR is influenced by being embedded in a gisdsystem
has to do with adaptation. Since the identity of the user nesneonstant across
the telephone call, speaker adaptation techniques carpliecfo improve recog-
nition as the system hears more and more speech from theTuugs.techniques
like MLLR and VTLN (Chapter 8) can provide useful improventem ASR rates
in a dialogue situation.

22.2.2 NLU component

The NLU (natural language understanding) component obdis systems must
produce a semantic representation which is appropriatbdéatialogue task. Many
speech-based dialogue systems, since as far back as they&ei® éBobrow et al.,
1977), are based on the frame-and-slot semantics discusSéapter 15. A travel
system, for example, which has the goal of helping a user firaparopriate flight,
would have a frame with slots for information about the fligtitus a sentence
like Show me morning flights from Boston to San Francisco on Tyestght
correspond to the following filled-out frame (from Miller &t (1994)):

SHOW:
FLIGHTS:
ORIGIN:
CITY: Boston
DATE:
DAY-OF-WEEK: Tuesday
TIME:
PART-OF-DAY: morning
DEST:

CITY: San Francisco

How does the NLU component generate this semantics? Iniplkenany of
the methods for semantic analysis discussed in Ch. 15 caulehiployed. For
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example, in the SRI GEMINI NLU engine, used in the ATIS and WS&Tdialogue
systems (?, ?), semantic attachments are added to a unificgimmar. A parser
produces a sentence meaning, from which the slot-fillergxdracted.

In practice, most dialogue systems rely on simpler dompeéeisic semantic
analyzers, such as tlsemantic grammarsalso discussed in Ch. 15. In a seman-
tic grammar, the actual node names in the parse tree comgdpahe semantic
entities which are being expressed, as in the following gnamfragments:

SHOW — show me iwant| caniseé..

DEPART.TIME_RANGE — (afteraroundbefore) HOUR|
morning| afternoon evening

HOUR — ongtwo|thredfour.. [twelve (AMPM)
FLIGHTS — (a) flight| flights

AMPM — am|pm

ORIGIN — from CITY

DESTINATION — to CITY

CITY — Boston| San FranciscoDenver| Washington

These grammars take the form of context-free grammars, endehcan be
parsed by any standard CFG parsing algorithm, such as the &@Kérley algo-
rithms introduced in Ch. 10. In fact, since these domaireifigedialogue system
grammars are often simple enough to have no recursion, trepe processed by
more efficient finite-state methods. In cases where therenegecursion, effi-
cient augmentations of finite-state algorithms such agse@itransition networks
have been applied (Issar and Ward, 1993; Ward and Issar).1984 result of the
CFG or RTN parse is a hierarchical labeling of the input gtiith semantic node
labels:

SHOW FLIGHTS ORIGIN DESTINATION DEPART_DATE DEPART_TIME
Show me flights from boston to san francisco on tuesday  morni ng

Since semantic grammar nodes like ORIGIN correspond toltiie m the
frame, the slot-fillers can be read almost directly off theuteng parse above. It
remains only to put the fillers into some sort of canonicairf¢for example dates
can benormalized into a DD:MM:YY form, times can be put into 24-hour time yormaLizen
etc).

The semantic grammar approach is very widely used, but hasweak-
nesses: discreteness (since it is non-probabilistic itrfeaambiguity-resolution
method) and hand-coding (hand-written grammars are exgeand slow to cre-
ate).

The discreteness problem can be solved by adding proledbild the gram-
mar; one such probabilistic semantic grammar system is iN& $ystem (Seneff,
1995) shown in Fig. 22.6; note the mix of syntactic and sermaitide names. The
grammar rules in TINA are written by hand, but parse tree rmadéabilities are
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SENTENCE

Q-SUBJECT BE-QUESTION

LINK SUBJECT PRED-ADJUNCT
|
ARTICLE A-PLACE ON-STREET

|
AHOTEL
WHAT STREET HOTEL-NAME ON  A-STREET
What sfreet s the Hyatt on Q-SUBJECT

Figure 22.6 A parse of a sentence in the TINA semantic grammar (from (fsene

1995)). PLACEHOLDER FIGURE.

trained by a modified version of the SCFG method describedhinl@. Instead
of conditioning non-terminals just on the parent node, they also conditioned
on the previous non-terminal; this amounts to computingNagram grammars of
non-terminals conditioned on the parent non-terminal.

P(ARTICLE,A-PLACE|SUBJECT =
P(ARTICLE|SUBJECT < START >) x P(A-PLACE|SUBJECTART ICLE(22.9)

An alternative to semantic grammars which addresses betliitreteness
and hand-coding problems is the semantic HMM model of Paénaet al. (1991).
The hidden states of this HMM are semantic slot labels, wthi¢eobserved words
are the fillers of the slots. Fig. 22.18 shows how a sequendddolen states,
corresponding to slot names, could be decoded from (or gmridrate) a sequence
of observed words. Note that the model includes a hiddee stted DUMMY
which is used to generate words which do not fill any slots enfthme.

The goal of the HMM model is to compute the labeling of sentamtiesC =
C1,C,...,Gi (C for ‘cases’ or ‘concepts’) that has the highest probgbM(C|W)
given some wordgV = wy,Wo, ..., W,. As usual, we use Bayes Rule as follows:

P(W|C)P(C)
argmaxP(C|W) = argmax———-—-=

= argmaxXP(W|C)P(C) (22.10)
c
N M

= rLP(W| |Wi,1...W1,C)P(W1|C) rl P(Ci ‘Ci,]_...C]_) (2211)
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R

Show me flights that go from Boston to San Francisco

Figure 22.7 The Pieraccini et al. (1991) HMM model of semantics for fijjislots
in frame-based dialogue systems.

The Pieraccini et al. (1991) model makes a simplificatiort the concepts
(the hidden states) are generated by a Markov process (amtviegram model),
and that the observation probabilities for each state arergéed by a state-dependent
(concept-dependent) wold-gram word model:

P(Wi|Wi_1,...,w1,C) = P(WWi_1,...,;Wi_N+1,Ci) (22.12)
P(ci[Ci-1,...,¢1) = P(Ci[Ci-1,...,Ci-m+1) (22.13)

Based on this simplifying assumption, the final equatioredus the HMM
model are as follows:

N M
arnga>P(C|W) = rLP(Wi |Wi_1...Wi_N+1,Ci) rl P(ci|ci-1..-Ci—m+1{22.14)
i= i—

These probabilities can be trained on a labeled trainingusyrin which each
sentence is hand-labeled with the concepts/slot-namesiatsd with each string
of words. The best sequence of concepts for a sentence, argigimment of
concepts to word sequences, can be computed by the standeardi decoding
algorithm.

In summary, the resulting HMM model is a generative modehwito com-
ponents. Th&(C) component represents the choice of what meaning to exjress;
assigns a prior over sequences of semantic slots, compytacdncepiN-gram.
P(W|C) represents the choice of what words to use to express thatimgeahe
likelihood of a particular string of words being generateohf a given slot. It is
computed by a worél-gram conditioned on the semantic slot. This model is very
similar to the HMM model fomamed entity detection we saw in Ch. 15.

One problem with the semantic HMM model, as Young (2002) {sogut,
is that it suffers from a data fragmentation problem. Not€im 22.18 that each
city is labeled as either a@rigin or aDestination Each city name in the training
data can only count as training data for one of the two classtst we'd like is a
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way to capture the fact that Boston is the origin and San kseocthe destination,
while simultaneously modeling the fact that both are citigss suggests the need
for a hierarchical model.

A third approach to semantic understanding, the Hidden tstaleding Model
(HUM), attempts solve this problem by combining the advgesaof the semantic
grammar and semantic HMM approaches (Miller et al., 1999612000). Like
the HMM, it doesn't require hand-written grammar rules. Bkeé the semantic
grammar, it has the ability to model the hierarchical natfrlanguage structure.
The HUM is based on stochastic recursive transition netsv¢8RTNS), allowing
the semantic labels to have hierarchy and recursion. R#wlla recursive tran-
sition network is a notational variant of a context-freergnaar. Fig. 22.8 shows
a representation of the HUM structure of the sentéBb®w me United flight 203
from Dallas to Atlanta’

Figure 22.8 Computation of P(C) via the structure of a sentence in thedétid
Understanding Model. (from (Miller et al., 1994)) PLACEHOER FIGURE.

The model folP(W|C) in the HUM model is exactly the same as in the HMM
model described above: a concept-specific Wwdrgram model. The model for
P(C) is different; instead of using a flat-gram model of concepts, the HUM uses
a modified SCFG model of concept probabilities, followindNAl Seneff (1995).
Both TINA and HUM assign probabilities based on the stateddmnedN-grams
discussed above. The difference between TINA and HUM lighénrole of the
hand-written grammar. In TINA, the grammar rules are wnithy hand, and thus
the allowable sequence of non-terminals is prespecified,irgiudes both syn-
tactic and semantic nodes. In the HUM model the non-termseguences are
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solely semantic, expressing frame slots, and they come & pnobabilistic finite-
state network (RTN) of concepts in which any concept caro¥olany other; the
only ordering constraint comes from the network probabdit trained on a la-
beled training set. Fig. 22.9 shows one of the subnetworkshi® ATIS flight
concept; thdlight node probabilistically generates a sequence of slots,(date
gin, airline etc); The arcs on this network represent thgrésh) transition prob-
ability of one slot following another, conditioned on thergr node, such as
P(flight ind|airline, flight). The individual nodes likairline act as recursiveump
arcs in the RTN, calling a subnetwork for the airline concept

A«

QA0

- X .«4,6
iRy a )
-man-;=@

Y NS e
ey

QAT

Q=7 =0

Figure 22.9  The computation oP(C) from the Probabilistic RTN corresponding
to the Flight concept, from (Miller et al., 1994). PLACEHOER FIGURE.

As with the HMM, HUM decoding (choosing the most likely seqoe of
concepts for a given sentence) can be done via the Viterbritigh. Since the
network is a recursive transition network, states must begged dynamically
during the search.

22.2.3 Generation and TTS components

The generation component of a conversational agent chabsesncepts to ex-
press to the user, plans out how to express these conceptsds,vand assigns any
necessary prosody to the words, as described in Ch. 20. TBec®mponent then
takes these words and their prosodic annotations and syntisea waveform, as
described in Ch. 7. Both these components may be optimizedriaus ways for
use in conversational agents.
As Ch. 20 describes, the generation task can be separatethiottasks:

what to say andhow to say it The content planner module addresses the first
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task, decides what content to express to the user, whethski® question, present
an answer, and so on. The content planning component ofgdialgystems is
often merged with the dialogue manager.

The language generationmodule addresses the second task, choosing the
syntactic structures and words needed to express the ngeabémguage gener-
ation modules are implemented in one of two ways. In the sstphnd most
common method, all or most of the words in the sentence totbeedtto the user
are prespecified by the dialogue designer. This method iskias template-based
generation. While most of the words in the template are fikeihplates can in-
clude some variables which are filled in by the generatom #isd following:

What time do you want to leave CITY-ORIG?
Will you return to CITY-ORIG from CITY-DEST?

A second method for language generation relies onnéteiral language
generation techniques covered in Ch. 20. Here the dialogue managetsbail
representation of the meaning of the utterance to be exguessid passes this
meaning representation to a full generator. Such genergmerally have three
components, a sentence planner, surface realizer, anddyressigner. A sketch
of this architecture is shown in Fig. 22.10.

Content Sentence Surface Prosody

Speech
Planner | [ Planner Realizer | | Assigner | [ P

Synthesizer|

What to Say How to Say it

Figure 22.10 Architecture of a generator for a dialogue system, afteikéfahnd
Rambow (2002).

Whichever method is used, conversational dialogue placesrdoer of con-
straints on the sentence generator related to Human Comlipteeaction (HCI).
Some of these constraints are not that different than oiheslof generation, and
reflect the kind of discourse coherence discussed in Ch.d@xample, as Cohen
et al. (2004) show, the use of discourse markers and prormoakes the dialogue
in (22.16) more natural than the dialogue in (22.15):

(22.15) Please say the data.

Please say the start time.
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Please say the duration.

Please say the subject.
(22.16) First, tell me the date.

i\'l'ext, I'll need the time it starts.
;I"'hanks.<pause Now, how long is it supposed to last?
Last of all, I just need a brief description...

Another important case of discourse coherence occurs wdréinydar prompts
may need to be said to the user repeatedly. In these casestahidard in dialogue
systems to uséapered prompts, prompts which get incrementally shorter. Therereo prowets
following example from Cohen et al. (2004) shows a seriesjpéted prompts:

(22.17) System: Now, what'’s the first company to add to youcivéist?
Caller: Cisco
System: What'’s the next company name? (Or, you can say,stienl”)
Caller: IBM
System: Tell me the next company name, or say, “Finished.”
Caller: Intel
System: Next one?
Caller: America Online.
System: Next?
Caller: ...

Other constraints on generation are more specific to spolkdogde, and
refer to facts about human memory and attentional processgexample, when
humans are prompted to give a particular response, it taegsmhemory less if the
suggested response is the last thing they hear. Thus as @bhén2004) point
out, the prompt “To hear the list again, say ‘Repeat list"e&sier for users than
“Say ‘Repeat list’ to hear the list again.”

Similarly, presentation of long lists of query results (gpptential flights, or
movies) can tax users. Thus most dialogue systems haventgiéaning rules
to deal with this. In the Mercury system for travel plannirgsdribed in (Seneff,
2002), for example, a content planning rule specifies thttdfe are more than
three flights to describe to the user, the system will justtlis available airlines
and describe explicitly only the earliest flight.

22.2.4 Dialogue Manager

The final component of a dialogue system is the dialogue nenagpich controls
the architecture and structure of the dialogue. The diaaganager takes input
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from the ASR/NLU components, maintains some sort of stateyfeces with the
task manager, and passes output to the NLG/TTS modules.

We saw a very simple dialogue manager in Chapter 2's ELIZApsehar-
chitecture was a simple read-substitute-print loop. Tistesy read in a sentence,
applied a series of text transformations to the sentenckthem printed it out. No
state was kept; the transformation rules were only awarkeoturrent input sen-
tence. What makes a modern dialogue manager very diffdrantELIZA is both
amount of state that the manager keeps about the conversatid the ability of
the manager to model structures of dialogue above the Iéeetimgle response.

Four kinds of dialogue management architectures are mostncm. The
simplest and most commercially developed architecturegefstate and frame-
based, are discussed in this section. Later sections digbesmore powerful
information-state dialogue managers, including a prdisioiversion of information-
state managers based on Markov Decision Processes, arty tlireaimore classic
plan-based architectures.

ﬁ‘ What city are you leaving from? i|=

‘ Where are you going? I

Y
‘ What date do you want to leave? I

‘ Is it a one-way trip? I

Yes \1:10

Do you want to go from

<FROM> to <TO> on <DATE>? ‘ What date do you want to return? I
L0 |
No Yes \

Do you want to go from <FROM> to <TO>
on <DATE> returning on <RETURN>?

\
Yes No

Book the flight

Figure 22.11 A simple finite-state automaton architecture for a dialoga@ager.

The simplest dialogue manager architecture is a finite-stenager. For
example, imagine a trivial airline travel system whose jaswo ask the user for
a departure city, a destination city, a time, and whethetripevas round-trip or
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not. Fig. 22.11 shows a sample dialogue manager for suchtensysThe states
of the FSA correspond to questions that the dialogue maresierthe user, and
the arcs correspond to actions to take depending on whatstreresponds. This
system completely controls the conversation with the usasks the user a series
of questions, ignoring (or misinterpreting) anything tiseusays that is not a direct
answer to the system’s question, and then going on to theguestion.

Systems that control the conversation in this way are calelem initia-
tive or single initiative systems. We say that the speaker that is in control efstiaumanve
conversation has thaitiative . In normal human-human dialogue, initiative shifts: nmarve
back and forth between the participants (?). The limitedlsimitiative finite-state wmanve
dialogue manager architectures may be sufficient for vanplka tasks (perhaps
for entering a credit card number, or a name and passworcheopttone). Fur-
thermore, they have the advantage that the system alwaysskwbat question
the user is answering. This means the system can preparpdaehsrecognition
engine with a specific language model tuned to answers femiestion. Know-
ing what the user is going to be talking about also makes tsle dathe natural
language understanding engine easier. Pure systemtimtinite-state dialogue
manager architectures are probably too restricted, haweven for the relatively
uncomplicated task of a spoken dialogue travel agent system

Single initiative systems can also be controlled by the,usewhich case
they are callediser initiative systems. Pure user initiative systems are generahsg inmanve
used for stateless database querying systems, where thasksesingle questions
of the system, which the system converts into SQL databasgesy and returns
the results from some database.

The problem is that neither of these kinds of single-init@asystems is prac-
tical for the majority of problems. Pure system-initiatisgstems require that the
user answer exactly the question that the system asked.hButadn make a dia-
logue awkward and annoying. Users often need to be able teaagthing that is
not exactly the answer to a single question from the systemeXample, in a travel
planning situation, users often want to express their bigoals with complex sen-
tences that may answer more than one question at a time, asnimGnicator
example (22.18) repeated from Fig. 22.1, or ATIS examplel@2

(22.18) HiI'd like to fly to Seattle Tuesday morning

(22.19) I want a flight from Milwaukee to Orlando one way leayafter five p.m.
on Wednesday.

A finite state dialogue system, as typically implemented'td@andle these
kinds of utterances since it requires that the user answer gaestion as it is
asked. Of course it is theoretically possible to create aefisiate architecture
which has a separate state for each possible subset of apgesiiat the user's
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UNIVERSAL

MIXED INITIATIVE

FRAME-BASED
FORM-BASED

statement could be answering, but this would require a wgdbdsion in the number
of states, making this a difficult architecture to concelitea

Most finite-state systems do allow the user to do things aiifeen answer
exactly the question which the system asked. The systems ativersal com-
mands. Universals are commands that can be said anywhere dialog. They
are implemented by essentially allowing every state toge@e the universal com-
mands in addition to the answer to the question that themsyjsigt asked. Common
universals includénelp, which gives the user a (possibly state-specific) help mes-
sage,start over (or main menu), which returns the user to some specified main
start state, and some sort of command to correct the systamdsrstanding of
the users last statement. For example, in the travel syste&dareSegundo et al.
(2001), when the system misrecognizes a user’s utterameeser can sagorrect
and the system will erase the misrecognition and go back.

But adding universals to a system-initiative architectisrstill insufficient.
Therefore, most systems avoid the pure system-initiativiéefstate approach and
use an architecture that allowsixed initiative, in which conversational initiative
can shift between the system and user at various points ididiegue.

One common mixed initiative dialogue architecture relingtee structure of
the frame itself to guide the dialogue. Théseme-basedor form-baseddialogue
managers asks the user questions to fill slots in the framegllowv the user to
guide the dialogue by giving information that fills othertslin the frame. Each
slot may be associated with a question to ask the user, obtloving type:

Slot Question

ORIGIN CITY “From what city are you leaving?”
DESTINATION CITY “Where are you going?”
DEPARTURE TIME  “When would you like to leave?”
ARRIVAL TIME “When do you want to arrive?”

A frame-based dialogue manager thus needs to ask questiaghe aser,
filling any slot that the user specifies, until it has enougbrmation to perform
a data base query, and then return the result to the usere ligér happens to
answer two or three questions at a time, the system has ta fitidése slots and
then remember not to ask the user the associated questiathe felots. Not every
slot need have an associated question, since the dialogigndemay not want the
user deluged with questions. Nonetheless, the system madti® to fill these slots
if the user happens to specify them. This kind of form-fillidiglogue manager
thus does away with the strict constraints that the finiégestnanager imposes on
the order that the user can specify information.

While some domains may be representable with a single frathers, like
the travel domain, seem to require the ability to deal withtiple frames. In



Section 22.2. Basic Dialogue Systems

25

order to handle possible user questions, we might need $ravitk general route
information (for questions lik&Vhich airlines fly from Boston to San Francisgp?
information about airfare practices (for questions like | have to stay a specific
number of days to get a decent airfaje@ about car or hotel reservations. Since
users may switch from frame to frame, the system must be aldesambiguate
which slot of which frame a given input is supposed to fill, #meh switch dialogue
control to that frame.

Because of this need to dynamically switch control, fraraedd systems are
often implemented aproduction rule systems. Different types of inputs cause
different productions to fire, each of which can flexibly filldifferent frames. The
production rules can then switch control based on factach a8 the user’s input
and some simple dialogue history like the last questionttieasystem asked. The
Mercury flight reservation system (Seneff and PolifroniQ@0Seneff, 2002) uses
a large ‘dialogue control table’ to store 200-350 rules,erng request for help,
rules to determine if the user is referring to a flight in a(istl take that nine a.m.
flight”), and rules to decide which flights to describe to tisenfirst.

Now that we've seen the frame-based architecture, letsmeb our discus-
sion of conversational initiative. It's possible in the saagent to allow system-
initiative, user-initiative, and mixed-initiative int@ctions. We said earlier that ini-
tiative refers to who has control of the conversation at anigitp The phrasenixed
initiative is generally used in two ways. It can mean that the systemeousler
could arbitrarily take or give up the initiative in variousays (?; Chu-Carroll and
Brown, 1997). This kind of mixed initiative is difficult to a@&ve in current dia-
logue systems. In form-based dialogue system, the termdniigative is used
for a more limited kind of shift, operationalized based ommbination of prompt
type (open versus directive) and the type of grammar usedeASR. Anopen

prompt is one in which the system gives the user very few constraatkswing open prowpT

the user to respond however they please, as in:
How may | help you?

A directive prompt is one which explicitly instructs the user how to respond:  oirective promPT

Sayyesif you accept the call; otherwise, sag.

In Sec. 22.2.1 we definedrastrictive grammar as a language model which
strongly constrains the ASR system, only recognizing propgponses to a given
prompt.

In Fig. 22.12 we then give the definition of initiative usedform-based
dialogue systems, following Singh et al. (2002) and othdiese a system initiative
interaction uses a directive prompt and a restrictive gramthe user is told how to
respond, and the ASR system is constrained to only recofmezesponses that are
prompted for. In user initiative, the user is given an opermgt, and the grammar
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Prompt Type
Grammar Open Directive
Restrictive Doesn’t make sense System Initiative
Non-Restrictive User Initiative Mixed Initiative
Figure 22.12 Operational definition of initiative, following Singh et §2002).

must recognize any kind of response, since the user couldrsging. Finally,
in a mixed initiative interaction, the system gives the wsdirective prompt with
particular suggestions for response, but the non-resgigtammar allows the user
to respond outside the scope of the prompt.

Defining initiative as a property of the prompt and grammaetin this way
allows systems to dynamically change their initiative typedifferent users and
interactions. Novice users, or users with high speech rétog error, might be
better served by more system initiative. Expert users, osghwho happen to
speak more recognizably, might do well with mixed or usetidtiive interactions.
We will see in Sec. 22.6 how machine learning techniques eamskd to choose
initiative.

22.3 \VoICEXML

VOICEXML
VXML

VoiceXML is the Voice Extensible Markup Language, an XML-based diao
design language released by the W3C. The goal of VoiceXMLvonl) is to
create simple audio dialogues of the type we have been deggrimaking use
of ASR and TTS, and dealing with very simple mixed-initiatimn a frame-based
architecture. While VoiceXML is more common in the commakaather than
academic setting, it offers a convenient summary of theodia system design
issues we have discussed, and will continue to discuss.

A VoiceXML document contains a set of dialogs, each of whieh be a
form or amenu We will limit ourselves to introducing forms; see (?) for reo
information on VoiceXML in general. The VoiceXML document Fig. 22.13
defines a form with a single field named ‘transporttype’. Th#&lfhas an attached
prompt,Please choose airline, hotel, or rental ¢cavhich can be passed to the TTS
system. It also has a grammar (language model) which is ¢pdesthe speech
recognition engine to specify which words the recognizexlswved to recognize.
In the example in Fig. 22.13, the grammar consists of a disjom of the three
wordsairline, hotel andrental car.

A <form> generally consists of a sequence<dield> s, together with a
few other commands. Each field has a name (the name of theriéldyi 22.13
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<form>
<field name="transporttype">
<prompt>
Please choose airline, hotel, or rental car.
</prompt>
<grammar type="application/x=nuance-gs|">
[airline hotel "rental car"]
</grammar>
<[field>
<block>
<prompt>
You have chosen <value expr="transporttype">.
</prompt>
</block>
</form>

Figure 22.13 A minimal VoiceXML script for a form with a single field. Uses i
prompted, and the response is then repeated back.

is transporttype ) which is also the name of the variable where the user’s re-
sponse will be stored. The prompt associated with the fiekpeified via the
<prompt> command. The grammar associated with the field is specifeethei
<grammar> command. VoiceXML supports various ways of specifying angra
mar, including XML Speech Grammar, ABNF, and commerciahd#ads, like
Nuance GSL. We will be using the Nuance GSL format in the faithg examples.

The VoiceXML interpreter walks through a form in documender;, repeat-
edly selecting each item in the form. If there are multiplé&dethe interpreter will
visit each one in order. The interpretation order can be gbadmn various ways,
as we will see later. The example in Fig. 22.14 shows a forrh thitee fields, for
specifying the origin, destination, and flight date of atirzérflight.

The prologue of the example shows two global defaults fasremandling.

If the user doesn’'t answer after a prompt (i.e., silence edsa timeout thresh-
old), the VoiceXML interpreter will play thenoinput> prompt. If the user says
something, but it doesn’t match the grammar for that field, thiceXML inter-
preter will play the<nomatch> prompt. After any failure of this type, itis normal
to re-ask the user the question that failed to get a resp&isee these routines can
be called from any field, and hence the exact prompt will biediht every time,
VoiceXML provides a<reprompt\> command, which will repeat the prompt
for whatever field caused the error.

The three fields of this form show another feature of VoiceX thie<filled>
tag. The<filled> tagforafield is executed by the interpreter as soon as thk fiel
has been filled by the user. Here, this feature is used to lgévager a confirmation
of their input.

The last fielddepartdate , shows another feature of VoiceXML, thgoe
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<noinput>
I'm sorry, | didn’t hear you. <reprompt/>
</noinput>
<nomatch>
I'm sorry, | didn’t understand that. <reprompt/>
</nomatch>
<form>

<block> Welcome to the air travel consultant. </block>

<field name="origin">

<prompt> Which city do you want to leave from? </prompt>

<grammar type="application/x=nuance-gsl">
[(san francisco) denver (new york) barcelona]
</grammar>
<filled>
<prompt> OK, from <value expr="origin"> </prompt>
</ffilled>
<[field>
<field name="destination">
<prompt> And which city do you want to go to?  </prompt>
<grammar type="application/x=nuance-gs|">
[(san francisco) denver (new york) barcelona]
</grammar>
<filled>
<prompt> OK, to <value expr="destination">  </prompt>
</filled>
</field>
<field name="departdate" type="date">
<prompt> And what date do you want to leave? </prompt>

<filled>
<prompt> OK, on <value expr="departdate">  </prompt>
</filled>
</field>
<block>
<prompt> OK, | have you are departing from <value expr="orig in">
to <value expr="destination"> on <value expr="departdate ">
</prompt>
send the info to book a flight...
</block>

</form>

Figure 22.14 A VoiceXML script for a form with 3 fields, which confirms each
field and handles theoinput andnomatch situations.

attribute. VoiceXML 2.0 specifies seven built-in grammardg,boolean ,currency
date , digits , number, phone, andtime . Since the type of this field is
date , a data-specific language model (grammar) will be automifitipassed to
the speech recognizer, so we don't need to specify the grammena explicitly.

Fig. 22.15 gives a final example which shows mixed initiatihe a mixed
initiative dialogue, users can choose not to answer thetignethat was asked by
the system. For example, they might answer a different guesbr use a long
sentence to fill in multiple slots at once. This means thaithiee XML interpreter
can no longer just evaluate each field of the form in orderpéds to skip fields
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<noinput> I'm sorry, | didn't hear you. <reprompt/> </noinp
<nomatch> I'm sorry, | didn't understand that. <reprompt/>

<form>
<grammar type="application/x=nuance-gs|">
<I[ CDATA[
Flight ( ?[
(i [wanna (want to)] [fly go])
('d like to [fly go])
([(i wanna)(i'd like a)] flight)

( [from leaving departing] City:x) {<origin $x>}
( [(?going to)(arriving in)] City:x) {<destination $x>}
( [from leaving departing] City:x
[(?going to)(arriving in)] City:y) {<origin $x> <destinat

?please

City [ [(san francisco) (s f 0)] {return( "san francisco, cal
[(denver) (d e n)] {return( "denver, colorado")}
[(seattle) (s t x)] {return( "seattle, washington")}

1]> </grammar>

<initial name="init">
<prompt> Welcome to the air travel consultant. What are your
<[initial>

<field name="origin">
<prompt> Which city do you want to leave from? </prompt>
<filled>
<prompt> OK, from <value expr="origin"> </prompt>
</ffilled>
</field>
<field name="destination">
<prompt> And which city do you want to go to? </prompt>
<filled>
<prompt> OK, to <value expr="destination"> </prompt>
</ffilled>
</field>
<block>
<prompt> OK, | have you are departing from <value expr="orig
to <value expr="destination">. </prompt>
send the info to book a flight...
</block>
</form>

ut>

</nomatch>

ion

ifornia")}

travel plan

in">

By>}

57

initial prompt by specifying origin city, destination cjtyr both.

Figure 22.15 A mixed initiative VoiceXML dialog. The grammar allows ser
tences which specify the origin or destination cities ohbaiser can respond to th

[1°

whose values are set. This is done bguard condition a test that keeps a field
from being visited. The default guard condition for a fieldtseto see if the field’s
form item variable has a value, and if so the field is not inigd.

</prompt>
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Fig. 22.15 also shows a much more complex use of a grammax gfdrinmar
is a CFG grammar with two rewrite rules, nanfdaght  andCity . The Nuance
GSL grammar formalism uses parentheses () to mean contiatemad square
brackets [] to mean disjunction. Thus arule like (22.20) nsgthatWantsentence
can be expanded aswant to fly ori want to go ,andAirports can
be expanded asan francisco  ordenver .

(22.20) Wantsentence (i want to [fly go])
Airports [(san francisco) denver]

Grammar rules can refer to other grammar rules recursiegig, so in the
grammar in Fig. 22.15 we see the grammarftight referring to the rule for
City .

VoiceXML grammars take the form of CFG grammars with opticesmantic
attachments. The semantic attachments are generally eitiest string (such as
"denver, colorado” ) or a slot and a filler. We can see an example of the
former in the semantic attachments for Gay rule (thereturn statements
at the end of each line), which pass up the city and state narhe. semantic
attachments for thElight  rule shows the latter case, where the stair{gin>
or <destination> or both) is filled with the value passed up in the variable
from theCity rule.

Because Fig. 22.15 is a mixed initiative grammar, the grammag to be
applicable to any of the fields. This is done by making the esjma forFlight
a disjunction; note that it allows the user to specify onlg drigin city, only the
destination city, or both.

22.4 DALOGUE SYSTEM EVALUATION

An optimal dialogue system is one which allows a user to agiisimtheir goals
(maximizing task success) with the least problems (minimgizosts). A number
of metrics for each of these two criteria have been proposed.

Task Completion Success: Task success can be measured by evaluating the cor-
rectness of the total solution. For a frame-based architecthis might be the
percentage of slots that were filled with the correct valaeshe percentage of
subtasks that were completed (Polifroni et al., 1992). &ififferent dialogue sys-
tems may be applied to different tasks, it is hard to comgaeenton this metric,

so Walker et al. (1997) suggested using the Kappa coeffijcienb compute a
completion score which is normalized for chance agreemedtbetter enables
Cross-system comparison.
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METHODOLOGY BOX: DESIGNING DIALOGUE SYSTEMS

How does a dialogue system developer choose dialoguegéastarchi-
tectures, prompts, error messages, and so on? The threa gesiciples
of Gould and Lewis (1985) can be summarizedser-Centered Design:
Study the user and task, Build simulations and prototyped,I&ratively
test them on the user and fix the problems.

1. Early Focus on Users and Task:Understand the potential users
and the nature of the task, via interviews with users andsiiyation of
similar systems, and study of related human-human diakgue

2. Build Prototypes: In Wizard-of-Oz (WOZ) or PNAMBIC (Pay
No Attention to the Man Behind the Curtain) systems, the suggeract
with what they think is a software system, but is in fact a hnroperator
("wizard”) behind some disguising interface software (e(ould et al.,
1983; Good et al., 1984; Fraser and Gilbert, 1991) . The names from
the children’s booklhe Wizard of O£Baum, 1900), in which the Wizard
turned out to be just a simulation controlled by a man behiodréain. A
WOZ system can be used to test out an architecture beforemgpitation;
only the interface software and databases need to be in plaeavizard’s
linguistic output can be be disguised by a text-to-speedtesy, or via
text-only interactions. It is difficult for the wizard to ety simulate the
errors, limitations, or time constraints of a real systessuits of WOZ
studies are thus somewhat idealized, but still can provigseéul first idea
of the domain issues.

3. lterative Design: An iterative design cycle with embedded use
testing is essential in system design (Nielsen, 1992; Galk,d.994, 1997;
Yankelovich et al., 1995; Landauer, 1995). For examplesBtiéin et al.
(1993) and Yankelovich et al. (1995) found that users of cpesystems
consistently tried to interrupt the systeba(ge-in), suggesting a redesign
of the system to recognize overlapped speech. The itenatdthod is also
very important for designing prompts which cause the useespond in
understandable or normative ways: Kamm (1994) and Cole. ¢1293)
found thatdirective prompts (“Say yesif you accept the call, otherwise,
sayna’) or the use of constrained forms (Oviatt et al., 1993) pratlibet-
ter results than open prompts like “Will you accept the ¢alBtmulations
can also be used at this stage; user simulations that ibigithica dialogue
system can help test the interface for brittleness or e(f@sing, 2004).

See Cohen et al. (2004) for more details on conversatiotatfate
design.
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BARGE-IN

CONCEPT
ACCURACY

Finally, Walker et al. (2001) notes that sometimes the sgesiceptionof
whether they completed the task is a better predictor of satsfaction than the
above measures. In more recent studies on evaluation ofydialsystems, Walker
et al. (2002) gives users an on-line survey after complainigalogue, which ask
for a yes-no answer as to whether the task was completed.

Efficiency Cost. Efficiency costs are measures of the system’s efficiencylpt he
ing users. This can be measured via the total elapsed tintedatialogue in sec-
onds, the number of total turns or of system turns, or the tatember of queries
(Polifroni et al., 1992). Other metrics include the numbiesystem non-responses,
and the “turn correction ratio”: the number of system or usens that were used
solely to correct errors, divided by the total number of sufDanieli and Gerbino,
1995; Hirschman and Pao, 1993).

Quality Cost:  Quality cost measures other aspects of the interactioraffextt
users’ perception of the system. One such measure is theemwhtimes the ASR
system failed to return any sentence, or the number of ASRRtien prompts (‘I'm
sorry, | didn’t understand that’). Similar metrics incluttee number of times the
user had tdoarge-in (interrupt the system), or the number of time-out prompts
played when the user didn’t respond quickly enough. Othatityumetrics focus
on how well the system understood and responded to the usisrcdn include the
inappropriateness (verbose or ambiguous) of the systame'stigns, answers, and
error messages (Zue et al., 1989), or the correctness ofgesstion, answer, or
error message (Zue et al., 1989; Polifroni et al., 1992). A waportant quality
cost isconcept accuracyor concept error rate, which measures the percentage
of semantic concepts that the NLU component returns cdyrdeor frame-based
architectures this can be measured by counting the pegeentaslots that are filled
with the correct meaning. For example if the sentence ‘| i@atrive in Austin at
5:00’ is misrecognized to have the semantics "DEST-CITYst®a, Time: 5:00”
the concept accuracy would be 50% (one of two slots are wr)g)

How should these success and cost metrics be combined agbted? The
PARADISE algorithm (Walker et al., 1997) (PARAdigm for Diglue System
Evaluation) applies multiple regression to this problenine Blgorithm first uses
questionnaires to assign each dialogue a user satisfaetiog. A set of cost and
success factors like those above is then treated as a selepigndent factors; mul-
tiple regression is used to train a weight (coefficient) facte factor, measuring
its importance in accounting for user satisfaction. Figl8Zhows the particular
model of performance that the PARADISE experiments havenasd. Each box
is related to a set of factors that we summarized on the prsypage. The resulting
metric can be used to compare quite different dialogueesgfiet.

The user satisfaction rating is computed by having usersptaima survey
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MAXIMIZE USER SATISFACTION I

/

MAXIMIZE TASK MINIMIZE COSTS I
SUCCESS
EFFICIENCY QUALITY
MEASURES MEASURES

Figure 22.16 PARADISE’s structure of objectives for spoken dialoguefper
mance. After Walker et al. (2001).

TTS Performance Was the system easy to understand ?

ASR Performance Did the system understand what you said?

Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?

System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?

Future Use Do you think you'd use the system in the future?

Figure 22.17 User satisfaction survey, adapted from Walker et al. (2001)

with questions such as those in Fig. 22.17, probing theicqgion of different

aspects of the system’s performance (Shriberg et al., 1P8froni et al., 1992;

Stifelman et al., 1993; Yankelovich et al., 1995). Survey$ARADISE studies
are multiple choice, with the responses mapped into theerahg to 5. The scores
for each question are then averaged to get a total userssditisf rating.

Walker et al. (2001, 2002) applied the PARADISE algorithnthiee differ-
ent dialogue systems and found three factors that were tifeehest predictors of
user satisfaction: (1) the average concept accuracy fovkizde dialogue, (2) the
user’s (binary) opinion about whether they completed tek saiccessfully, and (3)
the total elapsed time.

22.5 INFORMATION-STATE & DIALOGUE ACTS

The basic frame-based dialogue systems we have introduckd are only capa-
ble of limited domain-specific conversations. This is beseathe semantic inter-
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INFORMATION-STATE

pretation and generation processes in frame-based dakygtems are based only
on what is needed to fill slots. In order to be be usable for nfoaa just form-
filling applications, a conversational agent needs to be tbflo things like decide
when the user has asked a question, made a proposal, oedegestiggestion, and
needs to be able to ground a users utterance, ask clarificgtiestions, and sug-
gest plans. This suggests that a conversational agent septisticated models
of interpretation and generation in terms of speech actgemthding, and a more
sophisticated representation of the dialogue contextjinsra list of slots.

In this section we sketch a more advanced architecture tdoglie man-
agement which allows for these more sophisticated comgsnerhis model is
generally called thenformation-state architecture (Traum and Larsson, 2003),
although we will use the term loosely to include architeesusuch as Allen et al.
(2001). A probabilistic architecture which can be seen agxension of the
information-state approach, tMarkov decision procesanodel, will be described
in the next section. The termformation-state architecture is really a cover term
for a number of quite different efforts toward more sophkistitd agents; we'll as-
sume here a structure consisting of 5 components:

¢ the information state (the ‘discourse context’ or ‘mentaidal’)

e adialogue act interpreter (or “interpretation engine”)

¢ adialogue act generator (or “generation engine”)

¢ a set of update rules, which update the information statéadsgiie acts are
interpreted, and which include rules to generate dialogt® a

e a control structure to select which update rules to apply

The terminformation state is intended to be very abstract, and might include
things like the discourse context and the common groundeoftlo speakers, the
beliefs or intentions of the speakers, user models, and.sGmeially, information
state is intended to be a more complex notion than the stitiessin a finite-
state dialogue manager; the current state includes thesralumany variables, the
discourse context, and other elements that are not easdgledby a state-number
in a finite network.

Dialogue acts are an extension of speech acts which ineegtaas from
grounding theory, and will be defined more fully fully in thext subsection. The
interpretation engine takes speech as input and figureentergial semantics and
an appropriate dialogue act. The dialogue act generates tdlalogue acts and
sentential semantics as input and produces text/speecli@ag.o

Finally, the update rules modify the information state witle information
from the dialogue acts. These update rules are a geneiatizztthe production
rules used in frame-based dialogue systems described &beneff and Polifroni,
2000, inter alia). A subset of update rules, callsdlection rules are used to gen-
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erate dialogue acts. For example, an update rule might sawtien the interpre-
tation engine recognizes an assertion, that the informatiate should be updated
with the information in the assertion, and an obligation &fgrm a grounding
act needs to be added to the information state. When a gnésti®@cognized,
an update rule might specify the need to answer the ques@ure way to think
about the information-state approach is to view the contlnaf the update rules
and control structure as a kind of “Behavioral Agent” of thidkproposed in the
TRIPS system (Allen et al., 2001).

Speeci‘ Natural Nonwmal /Speech
lLogie Information State LS
[Understanding] Generation
-discourse context /
-beliefs 3
Dialogue Act /| - . Dialogue Act
Interpreter -user model Generator
-task context

:

Behavioral Agent
-update rules
-control

Figure 22.18 A version of the information-state approach to dialogudigecture.

While the intuition of the information-state model is qugenple, the de-
tails can be quite complex. The information state might iweaich discourse
models such as Discourse Representation Theory or saattésti models of the
user’s belief, desire, and intention (which we will retumin Sec. 22.7). Instead
of describing a particular implementation here, we willdemn the dialogue act
interpretation and generation engines. The next subsectigl present a defini-
tion of dialogue acts, a model for detecting them, and a mimdejenerating them.
The following section will then show how to use Markov dearsiprocesses to
implement a probabilistic version of the information-statchitecture.

22.5.1 Dialogue Acts

As we implied above, the speech acts as originally defineddstiA don’t model

key features of conversation such as grounding, contabsfiadjacency pairs and

so on. In order to capture these conversational phenomenase/ an extension

of speech acts calledialogue acts(Bunt, 1994) (odialogue movesor conversa-  biaLoGUE ACT
tional moves(Power, 1979; Carletta et al., 1997b). A dialogue act exgespech woves
acts with internal structure related specifically to thefeioconversational func-

tions (Allen and Core, 1997; Bunt, 2000).
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A wide variety of dialogue act tagsets have been proposed.2Pi19 shows
a very domain-specific tagset for the Verbmobil two-partiyestuling domain, in
which speakers were asked to plan a meeting at some futuge Natice that it
has many very domain-specific tags, such as&8EsT, used for when someone
proposes a particular date to meet, andcAPTand REJECT, used to accept or
reject a proposal for a date. Thus it has elements both frenptasentation and
acceptance phases of the Clark contributions discussedga?f.

| Tag Example
THANK Thanks
GREET Hello Dan
INTRODUCE It's me again
BYE Allright bye
REQUESFCOMMENT How does that look?
SUGGEST from thirteenth through seventeenth June
REJECT No Friday I'm booked all day
ACCEPT Saturday sounds fine,
REQUESTFSUGGEST What is a good day of the week for you?
INIT | wanted to make an appointment with you
GIVE_REASON Because | have meetings all afternoon
FEEDBACK Okay
DELIBERATE Let me check my calendar here
CONFIRM Okay, that would be wonderful
CLARIFY Okay, do you mean Tuesday the 23rd?
DIGRESS [we could meet for lunch] and eat lots of ice cream
MOTIVATE We should go to visit our subsidiary in Munich
GARBAGE Oops, I-
Figure 22.19  The 18 high-level dialogue acts used in Verbmobil-1, alotd
over a total of 43 more specific dialogue acts. Examples ara fiekat et al. (1995).

A more domain-independent dialogue act tagset is the DAM3ikl¢gue
Act Markup in Several Layers) architecture, which drawsiregion from the work
on grounding, speech acts, and conversational analysigssied at the beginning
of the chapter. (Allen and Core, 1997; Walker et al., 1996]eda et al., 1997a;
Core et al., 1999).

For example, drawing on the idea of contributions (Clark &odaefer, 1989)
and the work of Allwood et al. (1992), Allwood (1995), the DAV tag set dis-
tinguishes between thierward looking and backward looking function of an
utterance. The forward looking function of an utterancepds the Searle/Austin
speech act:
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Forward Looking Function

STATEMENT a claim made by the speaker
INFO-REQUEST a question by the speaker

CHECK a question for confirming information
INFLUENCE-ON-ADDRESSEE (=Searle’s directives)

OPEN-OPTION a weak suggestion or listing of options

ACTION-DIRECTIVE an actual command
INFLUENCE-ON-SPEAKER (=Austin’s commissives)

OFFER speaker offers to do something,

(subject to confirmation)

COMMIT speaker is committed to doing something
CONVENTIONAL other

OPENING greetings

CLOSING farewells

THANKING thanking and responding to thanks

The backward looking function of DAMSL focuses on the relaghip of
an utterance to previous utterances by the other speakeseTihclude accepting

and rejecting proposals (since DAMSL is focused on tas&nved dialogue), and
grounding and repair acts:

Backward Looking Function

AGREEMENT speaker’s response to previous proposal
ACCEPT accepting the proposal
ACCEPT-PART accepting some part of the proposal
MAYBE neither accepting nor rejecting the proposal
REJECT-PART rejecting some part of the proposal
REJECT rejecting the proposal
HOLD putting off response, usually via subdialogue
ANSWER answering a question
UNDERSTANDING whether speaker understood previous
SIGNAL-NON-UNDER. speaker didn’t understand
SIGNAL-UNDER. speaker did understand
ACK demonstrated via continuer or assessment
REPEAT-REPHRASE demonstrated via repetition or reformata
COMPLETION demonstrated via collaborative completion

Fig. 22.20 shows a labeling of our sample conversation ugngjons of the
DAMSL Forward and Backward tags.

Traum and Hinkelman (1992) proposed that the core speeslaadtground-
ing actts that constitute dialogue acts could fit into an ewelmer hierarchy of
conversation acts Fig. 22.21 shows the four levels of act types they propogf, WSM/ERSATION
the two levels corresponding to DAMSL dialogue acts as thadimitwo (ground-
ing and core speech acts). What is new is the idea of turmgakcts, as well as
the kind of coherence relations that we saw in Ch. 18.
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[assert] G: ...Ineedto travel in May.

[info-req,ack] A And, what day in May did you want to travel?

[assert, answer] £ OKuh | need to be there for a meeting that's from the 12th
to the 15th.

[info-req,ack] A: And you're flying into what city?

[assert,answer] £ Seattle.

[info-req,ack] As:  And what time would you like to leave Pittsburgh?

[check,hold] G: Uh hmm | don't think there’s many options for non-stop.

[accept,ack] A: Right.

[assert] There’s three non-stops today.

[info-req] Cs: What are they?

[assert, open-As:  The first one departs PGH at 10:00am arrives Seattle at 12:05

option] their time. The second flight departs PGH at 5:55pm, arfives
Seattle at 8pm. And the last flight departs PGH at 8:15pm
arrives Seattle at 10:28pm.

[accept,ack] G OK/I'll take the 5ish flight on the night before on the 11th.

[check,ack] A: Onthe 11th?

[assert,ack] OK. Departing at 5:55pm arrives Seattle at,8gr8. Air
flight 115.

[ack] C;: OK.

Figure 22.20 A potential DAMSL labeling of the fragment in Fig. 22.4.

Act type Sample Acts

turn-taking take-turn, keep-turn, release-turn, assign-turn

grounding acknowledge, repair, continue

core speech ac inform, wh-question, accept, request, offer

argumentation elaborate, summarize, question-answer, clarify

Figure 22.21 Conversation act types, from Traum and Hinkelman (1992).

The acts form a hierarchy, in that performance of an act aglaenilevel (for
example a core speech act) entails performance of a lowgrdev (taking a turn).
We will see the use of conversational acts in generation ¢attén this section, and
will return to the question of coherence and dialogue stingcin Sec. 22.7.

22.5.2 Interpreting Dialogue Acts

How can we do dialogue act interpretation, deciding whethgiven input is a
QUESTION, a STATEMENT, a SUGGEST (directive), or an ACKNO®MDGE-
MENT? Perhaps we can just rely on surface syntax? We saw i8 @iat yes-no-
questions in English havaux-inversion (the auxiliary verb precedes the subject)
statements have declarative syntax (no aux-inversiod)cammands have no syn-

tactic subject:
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(22.21) YES-NO-QUESTION Will breakfast be served on USABI?
STATEMENT | don’t care about lunch
COMMAND Show me flights from Milwaukee to Orlando.

Alas, as is clear from Abbott and Costello’s famad$o’s on Firstroutine
at the beginning of the chapter, the mapping from surfacen far illocutionary
act is complex. For example, the following ATIS utteranceki®like a YES-NO-
QUESTION meaning something likkere you capable of giving me a list of. ... ?

(22.22) Can you give me a list of the flights from Atlanta to Bo&

In fact, however, this person was not interested in whethersystem was
capableof giving a list; this utterance was a polite form of a REQUE®iEaning
something more liké’lease give me a list of.. .Thus what looks on the surface
like a QUESTION can really be a REQUEST.

Similarly, what looks on the surface like a STATEMENT canlisede a
QUESTION. The very common CHECK question (Carletta et &97b; Labov
and Fanshel, 1977), is used to ask an interlocutor to conbmeghing that she has
privileged knowledge about. CHECKS have declarative serfarm:.

A OPEN-OPTION | was wanting to make some arrangements for a trip that
I'm going to be taking uh to LA uh beginning of the
week after next.

B HOLD OK uh let me pull up your profile and I'll be right with
you here. [pause]

B CHECK And you said you wanted to travel next week?

A ACCEPT Uh yes.

Utterances which use a surface statement to ask a questi@sudace ques-
tion to issue a request, are calledlirect speech acts How can a surface yes-joSECT SPEeCH
no-question likeCan you give me a list of the flights from Atlanta to Bostde?
mapped into the correct illocutionary act REQUEST?
Dialogue act interpretation can be modeled as a superviassification task,
with dialogue act labels as hidden classes to be detectechiMalearning classi-
fiers are trained on a corpus in which each utterance is rabyeldd for dialogue
acts. The features used in dialogue act interpretatione&om the conversational
context and from the actisiicrogrammar (Goodwin, 1996): lexical, collocation, mcrograumar
and prosodic features characteristic of the act. Stolckd é2000a), for example,
used three kinds of features:

1. Words and Collocations: Pleaseor would youis a good cue for a RE-
QUEST,are youfor YES-NO-QUESTIONS.

2. Prosody: Rising pitch is a good cue for a YES-NO-QUESTION. Loudness
or stress can help distinguish theahthat is an AGREEMENT from thgeah
that is a BACKCHANNEL.
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3. Conversational Structure: A yeahfollowing a proposal is probably an
AGREEMENT; ayeahafter an INFORM is likely a BACKCHANNEL.

We can integrate these cues into a dialogue act classifiesihg an HMM,

in which the dialogue acts are the hidden events (Nagata amhidto, 1994;
Woszczyna and Waibel, 1994; Reithinger et al., 1996; Kitalet1996; Warnke

et al., 1997; Chu-Carroll, 1998; Stolcke et al., 1998; Tagbal., 1998; Stolcke
et al., 2000b). In the HMM approach, given all available eviceE about a con-
versation, the goal is to find the dialogue act sequéhee{d;,d,...,dy} that has
the highest posterior probabili§(D|E) given that evidence (as usual here we use
capital letters for sequences). Applying Bayes’ Rule we get

D* = argma¥®(D|E)
D

= arg Dmax%

argmaxP(D)P(E|D) (22.23)
D

Assuming the three types of evidence (words, prosody, andetcsational struc-
ture) and making an (incorrect but) simplifying assumptibat the prosody and
the words are independent, we can estimate the evidentiaditid for a sequence
of dialogue act® as in (22.24):

P(E|D) = P(F|D)P(W|D) (22.24)
D* = argmax¥(D)P(F|D)P(W|D) (22.25)
D

The resulting equation (22.25) thus has three componentsfar each of
the kinds of cues discussed above. Let’s briefly discuss efdtiese three compo-
nents. The prior probability of a sequence of dialogue B) acts as a model of
conversational structure. Drawing on the idea of adjaceains (Schegloff, 1968;
Sacks et al., 1974) introduced above, we can make the syimgiiassumption that
conversational structure is modeled as a Markov sequendi@lofjue acts.

M
P(D) = |1 P(d[di_1...0i_m+1) (22.26)

Woszczyna and Waibel (1994) give the dialogue HMM shown o BR.22 for a
Verbmobil-like appointment scheduling task.

The lexical component of the HMM likelihood, designed to ttae the mi-
crogrammar of each dialogue act, is modeled by training araép wordN-gram
grammar for each dialogue act, just as we saw with the coritigidil.
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Figure 22.22 A dialogue act HMM (after Woszczyna and Waibel (1994))

N
P(W|D) = ‘[LP(W”Wi—l'"Wi—N—{—ladi) (22.27)

Prosodic models of dialogue act microgrammar rely on as¢d&oundaries,
or their acoustic correlates like FO, duration, and endrgy.example the pitch rise
at the end ofrES-NO-QUESTIONSIS a useful cue (Sag and Liberman, 1975; Pier-
rehumbert, 1980; Waibel, 1988; Daly and Zue, 1992; Kompd.e1893; Taylor
et al., 1998). Declarative utterances (like STATEMENTS)dfgnal lowering: a rinaLoweriNG
drop in FO at the end of the utterance (Pierrehumbert, 1980).

Shriberg et al. (1998) trained CART-style decision treesiorple acoustically-
based prosodic features such as the slope of FO at the ené ottdrance, the
average energy at different places in the utterance, amougagluration measures,
normalized in various ways. They found that these featues® wseful, for exam-
ple, in distinguishing the four dialogue adSATEMENT (S), YES-NO QUESTION
(QY), DECLARATIVE-QUESTIONSIlike CHECKS(QD) andwH-QUESTIONS(QW).
Fig. 22.23 shows the decision tree which gives the posteriaability P(d|F ) of
a dialogue act type given sequence of acoustic featuFes Note that the dif-
ference between S and QY toward the right of the tree is bagreithe feature
norm _fO _diff (normalized difference between mean FO of end and penu#iima
regions), while the difference between WQ and QD at the bottdt is based on
utt _grad , which measures FO slope across the whole utterance.

Decision trees produce a posterior probabild|f), and equation (22.25)
requires a likelihoodP(F|d). Therefore we need to massage the output of the
decision tree by Bayesian inversion (dividing by the pfgd;) to turn it into a
likelihood). If we make the simplifying assumption that fm®sodic decisions for
each sentence are independent of other sentences, weartihefollowing final
equation for HMM tagging of dialogue acts:

D* = argma¥(D)P(F|D)P(W|D)
D

M N . N
= I_L P(di|di_1...di_m+1) u P;c(l,(;llj) Il P(Wi |Wi_1...Wi_n+1,di (22.28)
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Standard HMM decoding techniques (like Viterbi) can thembed to search
for this most-probable sequence of dialogue acts givendgeesce of input utter-
ances culminating in the user’s most recent utterance.

SQY QW QD
0.250.250.25 0.25

cont_speech_frames < 196.5\ cont_speech_frames >= 196.5

Qw S
0.2561 0.1642 0.2732 0.306 0.2357 0.4508 0.1957 0.1178

end_grad < 32.345 | end_grad >= 32.345 cont_speech_frames_n < 98.334

Qw QY s s
0.23270.2018 0.1919 0.37; 0.29780.09721 0.41810.1869 \_0.2581 0.2984 0.2796 0.164 0.2191 0.5637 0.1335 0.0836

f0_mean_zcv < 0.76806 \ f0_mean_zcv >= 0.76806 norm_fO_diff < 0.064562 "\ norm_f0_diff >= 0.064562

s Qw s Qv
0.2760.2811 01747 0.2682 \_0.1859 0.116 0.2106 0.4878 03089 0.3387 0.1419 0.2105  \_0.1857 0.241 0.4756 0.097

cont_speech_frames_n < 98.388\ cont_speech_frames_n >= 98.388 f0_mean_zcv < 0.76197 \ fO_mean_zcv >=0.76197

QW S s Qw
0.2935 0.1768 0.2017 0.328 0.2438 0.4729 0.125 01582 0.3253 04315 0.1062 0.1 0.2759 01517 0.2138 0.358

utt_grad < -36.113 | utt_grad >=-36.113 stdev_enr_utt < 0.02903 stdev_enr_utt >= 0.02903

QW QD QW S
0.20440.11350.1362 0.5450 \_0.3316 0.20380.2297 0.2348 {_0.3069 0.08995 0.1799 0.4238 \_0.2283 0.5668 0.1115 0.0933%

Figure 22.23 Decision tree for the classification of STATEMENT (S), YE®XQUESTIONS (QY)
WH-QUESTIONS (QW) and DECLARATIVE QUESTIONS (QD), after @berg et al. (1998). Eaq
node in the tree shows four probabilities, one for each ofdbiedialogue acts in the order S, QY, QW,
QD; the most likely of the four is shown as the label for the @.od

cont_speech_frames_n >= 98.334

>

Many statistical classifiers besides HMMs have been usedtéopret dia-
logue acts, as well as the non-statistical BDI model, whitarprets dialogue acts
based on plan-inference (see Sec. 22.7).

22.5.3 Detecting Correction Acts

In addition to the general-purpose dialogue act interpicetaalgorithms just de-
scribed, we may want to build special-purpose detectorpddicularly important
acts. In this section we briefly introduce the issues in désgyone such detector,
CORRECTION for the recognition of usetorrection of system errors. If a dialogue system mis-

recognizes an utterance (usually as a result of ASR erroesiiger will generally
correct the error by repeating themselves, or rephrasiegitterance. Dialogue
systems need to recognize that users are doing a correatonthen figure out
what the user is trying to correct, perhaps by interactinp e user further.
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Unfortunately, corrections are actualigrderto recognize than normal sen-
tences. Swerts et al. (2000) found that corrections in th@Tdialogue system
were misrecognized about twice as often (in terms of WER)asaworrections.
One reason for this is that speakers use a very differenogiostyle callechyper-
articulation for corrections. In hyperarticulated speech, some pafttefitterance HFRARTICULA:
has exaggerated energy, duration, or FO contours, sutisad BAL-TI-MORE,
not Boston(?; Oviatt et al., 1998; Levow, 1998; Hirschberg et al., 2001

Speakers use various strategies to make corrections; Seteat (2000) cat-
egorize these as repetition (REP), paraphrase (PAR), @adintent (ADD), and
omitting content (OMIT), as shown in Fig. 22.24. They fouhdttmost corrections
were repetitions and omissions rather than paraphrases.

Turn Corr
Type

S On which day of the week do you want to leave?
S Sorry, | didn’'t hear anything from you. Please tell me yoepatture
date
U Um tomorrow NA
S You can say the departure date. For example, you can sagy’tod
'tomorrow’. Or you can say 'Monday’, 'Tuesday’, 'Wednesday

U  Tomorrow REP

S You can say the departure date. For example, you can sagy'tod
'tomorrow’. Or you can say 'Monday’, 'Tuesday’, 'Wednesday

U  Saturday PAR

S Do you want to leave on Saturday?

U Yes

S What time do you want to leave?

U Eight o’clock A M

S Do you want to leave around ten oclock p-m

U  Eighto’clock OMIT]

S Do you want to leave around ten oclock p-m

U No OMIT

S What time do you want to leave?

U Eighto'clock AM ADD

Figure 22.24 Dialogue fragment from the TOOT system labeled for coroect]
type, from Swerts et al. (2000).

Various machine learning classifiers have been applied égptbblem of
detecting correction acts (Levow, 1998; Hirschberg et 2001; Bulyko et al.,
2004). Useful features include lexical information (woliéte “no”, “correction”,

“I don't”, swear words), prosodic and hyperarticulatioratigres (increases in FO

range, pause duration, and word duration, generally nazethlby the values
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Cue Turn-taking acts signaled

um KEEP-TURN, TAKE-TURN, RELEASE-TURN
<lipsmack>, <click>, so, uh. KEEP-TURN, TAKE-TURN

you know, isn’t that so ASSIGN-TURN

Figure 22.25 Language used to perform turn-taking acts, from Stent (2002

for previous sentences), features indicating utteranogtthe ASR features (con-
fidence, language model probability), and various dialdgagures.

In addition to correction detection, a conversational &4géso needs appro-
priate control or update rules in the dialogue manager (Bugt al., 2004).

22.5.4 Generating Dialogue Acts: Confirmation and Rejectin

Deciding which dialogue acts to generate is a an extremetyptex problem that
has received much less attention than the problem of dialegti interpretation.
Stent (2002) is one recent model of dialogue act generatidghe TRIPS system
(Allen et al., 2001), based on Conversation Acts (page 38)tha BDI model to
be described in Sec. 22.7. Stent uses a set of update rulesritagnt planning.
One such rule says that if a user has just released the tersy#tem can perform
a TAKE-TURN act. Another rule says that if the system has @lera-solving
need to summarize some information for the user, then itldhme the ASSERT
conversation act with that information as the semanticeraniThe content is then
mapped into words using the same techniques as the othealnHanguage gener-
ation systems described in Ch. 20. After an utterance isrgtat the information
state (discourse context) is updated with its words, syietatructure, semantic
form, and semantic and conversation act structure. We keltch in Sec. 22.7
some of the issues in modeling and planning that make géme@tough ongoing
research effort.

Stent showed that a crucial issue in dialogue generatidrdtdesn’t occur in
monologue text generation is turn-taking acts. Fig. 22I&ws some example of
the turn-taking function of various linguistic forms, framer labeling of conversa-
tion acts in the Monroe corpus.

In the rest of this section, rather than trying to cover thiererield, we’ll
focus narrowly on one kind of dialogue act generation task & probably the
most explored in this relatively new research area. Thikestask of generating
confirmation andrejection acts. Because this task is often solved by probabilistic
methods, we’ll continue this discussion in Sec. 22.6.

In a dialogue system, mishearings are a particularly ingmbrtlass of prob-
lems, because speech recognition has such a high errottret¢herefore impor-
tant for dialogue systems to make sure that they have achtbeecorrect interpre-
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tation of the user’s input. This is generally done by confiiorawith the user. A

system using thexplicit confirmation strategy asks the user a direct question B mon
confirm their understanding. Here are two examples of exglmfirmations from

travel planning systems. The (boldface) confirmation doestare both yes-no
guestions, one using a single sentence, the other pregentaclarative sentence
followed by a tag question (a short question phrase likehtft or “isn’t it?”):

Which city do you want to leave from?

Baltimore.

Do you want to leave from Baltimore?

Yes.

I'd like to fly from Denver Colorado to New York City on Septe

ber twenty first in the morning on United Airlines

S: Let's see then. | have you going from Denver Colorado to New
York on September twenty first. Is that correct?

U: Yes

ccrcw

A system using thenplicit confirmation strategy, rather than asking a direcd§5mon
question, uses th@emonstratioror displaygrounding strategies described above,
confirming to the user by repeating back what the system statet the user to
have said:

U: | want to travel to Berlin

S:  When do you want to travel to Berlin?

U2: Hild like to fly to Seattle Tuesday Morning

A3: Traveling to Seattle on Tuesday, August eleventh in the mom
ing. Your full name?

Explicit and implicit confirmation have complementary sgéhs. Explicit
confirmation makes it easier for users to correct the systemsrecognitions since
the user can just answer ‘no’ to the confirmation questiomi{@&gaand Gerbino,
1995; ?). But explicit confirmation is awkward and increates length of the
conversation (Danieli and Gerbino, 1995; Walker et al.,8)99he explicit con-
firmation dialogue fragments above sound non-natural afidigdy non-human;
implicit confirmation is much more conversationally natura

While early dialogue systems tended to fix the choice of expr implicit
confirmation, recent systems treat the question of how téiroomore like a dia-
logue act generation task, in which the confirmation stsate@daptive, changing
from sentence to sentence.

Various factors can be used in making this decision. The nmogortant
factor is some measure of ASR performance. A number of systionexample,
use the acoustic confidence that the ASR system assigns ttessmee, computed
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REJECTION

PROGRESSIVE
PROMPTING

from the acoustic log-likelihood of the utterance, to decighether to make an
explicit confirmation. Such systems explicitly confirm sawes for which the
recognizer was not confident of its output (?; San-Segundn.,e001; Litman
et al., 1999; Litman and Pan, 2002). Recent research hasddoon more so-
phisticated measures of confidence that go beyond acoagtiikklihood, such as
prosodic factors; for example utterances with longer ppauses, FO excursions,
and longer durations are likely to be misrecognized, (?)thAar important factor
in deciding whether to explicitly confirm is the cost of anogrrobviously before
actually booking a flight or moving money in an account, eiplconfirmation
is important (Kamm, 1994; Cohen et al., 2004). All of thesetdes can thus be
combined in a machine learning approach to predict whetk@iog confirmation
should be used. This can be done with a simple classifier,aomdre complex
methods; what is required needed is that the informatiateshclude information
about utterance prosody, ASR confidence.

22.5.5 Rejection

Confirmation is just one kind of conversational action thaystem has to express
lack of understanding. Another option rigjection. An ASR system rejects an
utterance by giving the user a prompt liken sorry, | didn't understand thatas in
the VoiceXML nomatch prompts we saw in Sec. 22.3. Rejection might happen
when the ASR confidence is so low, or the best interpretasosoisemantically
ill-formed, that the system can be relatively sure that ther's input was not rec-
ognized at all. Systems thus might have a three-tiered t#vebnfidence; below
a certain confidence threshold, an utterance is rejectedvéithe threshold, it is
explicitly confirmed. If the confidence is even higher, theexgnce is implicitly
confirmed.

Sometimes utterances are rejected multiple times. Thisitnmiggan that the
user is using language that the system is unable to followsT¥hen an utterance
is rejected, systems often follow a strategypadgressive promptingor escalating
detail (Yankelovich et al., 1995; ?) as in this example from Coheal.€2004):

System: When would you like to leave?

Caller:  Well, um, | need to be in New York in time for the first Vb
Series game.

System: <reject>. Sorry, | didn’'t get that. Please say the month and
day you'd like to leave.

Caller: | wanna go on October fifteenth.

In this example, instead of just repeating ‘When would yd&e lio leave?’,
the rejection prompt gives the caller more guidance about twoformulate an
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utterance the system will understand. If the caller's attee gets rejected yet
again, the prompt can reflect this 6till didn’t get that’), and give the caller even
more guidance. An alternative strategy for error handIswgapid reprompting, F&ER e
in which the system rejects an utterance just by saying “lom&” or “What
was that?”. Only if the caller’s utterance is rejected a sddime does the system
start applying progressive prompting. Cohen et al. (200#4)rearizes experiments
showing that users greatly prefer rapid reprompting as &lével error prompt.
Instead of rejecting or confirming entire utterances, it ddee nice to be
able to clarify only the parts of the utterance that the sydeln’t understand. If a
system can assign confidence at a more fine-grained levettibartterance, it can
clarify such individual elements vigarification subdialogues SUBDIACOGUES

22.6 MARKOV DECISIONPROCESSARCHITECTURE

One of the fundamental insights of the information-statpragch to dialogue ar-
chitecture is that the choice of conversational actionymadically dependent on
the current information state. The previous section dsed$ow dialogue systems
could change confirmation and rejection strategies basedwext. For example
if the ASR or NLU confidence is low, we might choose to do exptionfirmation.

If confidence is high, we might chose implicit confirmatiom,even decide not to
confirm at all. Using a dynamic strategy lets us choose theragthich maxi-
mizes dialogue success, while minimizing costs. This idednanging the actions
of a dialogue system based on optimizing some kinds of resvarctosts is the
fundamental intuition behind modeling dialogue aslarkov decision process NAKUPECISION
This model extends the information-state model by addingohabilistic way of
deciding on the proper actions given the current state.

A Markov decision process &WIDP is characterized by a set sfatesSan wop
agent can be in, a set attions A the agent can take, ande@ward r(a,s) that the
agent receives for taking an action in a state. Given theserls we can compute a
policy rtwhich specifies which actioathe agent should take when in a given state
S, SO as to receive the best reward. To understand each ofdbeg®nents, we'll
need to look at a tutorial example in which the state spacatismely reduced.
Thus we'll return to the simple frame-and-slot world, loogiat a pedagogical
MDP implementation taken from Levin et al. (2000). Theirongl example is a
“Day-and-Month” dialogue system, whose goal is to get adrvalues of day and
month for a two-slot frame via the shortest possible intéwaowith the user.

In principle, a state of an MDP could include any possibleinfation about
the dialogue, such as the complete dialogue history so &ndsuch a rich model
of state would make the number of possible states extraamityiiarge. So a model
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of state is usually chosen which encodes a much more lim@edfdgnformation,
such as the values of the slots in the current frame, the raosht question asked
to the user, the users most recent answer, the ASR confidendeso on. For the
Day-and-Month example let's represent the state of theesysis the values of the
two slotsday andmonth If we assume a special initial stateand final states;,
there are atotal of 411 states (366 states with a day and rfamihting leap year),
12 states with a month but no day (d=0, m=1,2,...12), and&&stvith a day but
no month (m=0, d=1,2,...31)).

Actions of a MDP dialogue system might include generating@alar speech
acts, or performing a database query to find out informatibar the Day-and-
Month example, Levin et al. (2000) propose the followingats:

e 34 a question asking for the day

e an,: a question asking for the month

e agm: a question asking for both the day and the month

e a;: afinal action submitting the form and terminating the digie

Since the goal of the system is to get the correct answer iélshortest in-
teraction, one possible reward function for the system dioukegrate three terms:

R = —(W;nj + Weghne + W;Ny¢) (22.29)

The termn; is the number of interactions with the useg,is the number of
errors,n; is the number of slots which are filled (0, 1, or 2), andwiseare weights.

Finally, a dialogue policyt specifies which actions to apply in which state.
Consider two possible policies: (1) asking for day and masegparately, and
(2) asking for them together. These might generate the taloglies shown in
Fig. 22.26.

In policy 1, the action specified for the no-date/no-mon#iesis to ask for a
day, while the action specified for any of the 31 states wherdave a day but not
a month is to ask for a month. In policy 2, the action specifedlie no-date/no-
month state is to ask an open-ended questihi¢h dat¢ to get both a day and
a month. The two policies have different advantages; an gpempt can leads
to shorter dialogues but is likely to cause more errors, evhitlirective prompt is
slower but less error-prone. Thus the optimal policy depesrdthe values of the
weightsw, and also on the error rates of the ASR component. Let'sgathe
probability of the recognizer making an error interpretanghonth or a day value
after a directive prompt. The (presumably higher) prolighdf error interpreting
a month or day value after an open prompt we’ll ggJl The reward for the first
dialog in Fig. 22.26 is thus-3x w;i + 2 x pg X We. The reward for the second dialog
in Fig. 22.26 is—2 x W; + 2 X pg X We. The directive prompt policy, policy 2, is thus
better than policy 1 when the improved error rate justifieslinger interaction,
i.e., whenp, — pg > %‘e
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Strategy 2:

Which datood Bye

C,=2-W,+2-K-W,

Strategy 3:
Which day ? Which month? Geod Bye.

C,=3-W,+2-P,-W,

Figure 22.26 REDRAW FIG 2 WITH JUST 2 POLICIES, IN REVERSE OR
DER, after Levin et al. (2000).PLACEHOLDER FIGURE.

In the example we've seen so far, there were only two possittiens, and
hence only a tiny number of possible policies. In genera,rtmber of possible
actions, states, and policies is quite large, and so thdgobf finding the optimal
policy T is much harder.

Markov decision theory together with classical reinforegnlearning gives
us a way to think about this problem. First, generalizingrfrigig. 22.26, we can
think of any particular dialogue as a trajectory in statecepa

S1 —alrl 2 —a2r2 S8 —a3r3 e (22.30)

The best policyt is the one with the greatest expected reward over all trajec-
tories. What is the expected reward for a given state seg@enhe most common
way to assign utilities or rewards to sequences is tadismunted rewards Here 3Si0WTED
we compute the expected cumulative rew@rdf a sequence as a discounted sum
of the utilities of the individual states:

Q([s0,0,51,81,%,8-]) = R(So,80) + YR(S1,&1) + Y’R(S2, @) + - - ,(22.31)
The discount factoy is a number between 0 and 1. This makes the agent
care more about current rewards than future rewards; the foture a reward, the
more discounted its value.
Given this model, it is possible to show that the expectedutative reward
Q(s,a) for taking a particular action from a particular state is fiblowing recur-
sive equation called thBellman equation BELLMAN EQUATION

Q(s,a) =R(s,a) +y§ P(s|s,a) mang(d ,a) (22.32)

What the Bellman equation says is that the expected cumellegivard for
a given state/action pair is the immediate reward for theetirstate plus the ex-
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pected discounted utility of all possible next statesveighted by the probability
of moving to that statg/, and assuming once there we take the optimal aetion

Equation (22.32) makes use of two parameters. We need a rabtielv
likely a given state/action pa(s,a) is to lead to a new stat&. And we also need
a good estimate dR(s,a). If we had lots of labeled training data, we could simply
compute both of these from labeled counts. For example, lafitbled dialogues,
we could simply count how many times we were in a given ssadaed out of that
how many times we took acticmto get to states, to estimatd®(s|s,a). Similarly,
if we had a hand-labeled reward for each dialogue, we couild lBumodel of
R(s a).

Given these parameters, it turns out that there is an weralgorithm for

VALUE ITERATION solving the Bellman equation and determining proper Q \sltievalue iteration
algorithm (?). We won't present this here, but see Chaptef Russell and Norvig
(2002) for the details of the algorithm as well as furtheoimfation on Markov
Decision Processes.

How do we get enough labeled training data to set these p#esfie This
is especially worrisome in any real problem, where the nunolbetatess is ex-
tremely large. Two methods have been applied in the pastfifidés to carefully
hand-tune the states and policies so that there are a vety reimaber of states
and policies that need to be set automatically. In this caseam build a dialogue
system which explore the state space by generating randowersations. Proba-
bilities can then be set from this corpus of conversatiorse Jecond is to build a
simulated user. The user interacts with the system millidrisnes, and the system
learns the state transition and reward probabilities frioisi¢orpus.

The random conversation approach was taken by Singh etQfl2)2 They
used reinforcement learning to make a small set of optimlédypdecisions. Their
NJFun system learned to choose actions which varied thatini (system, user,
or mixed) and the confirmation strategy (explicit or nong)e Btate of the system
was specified by values of 7 features including which slothm frame is being
worked on (1-4), the ASR confidence value (0-5), how many simeurrent slot
question had been asked, whether a restrictive or nonetastrgrammar was used,
and so on. The result of using only 7 features with a small rerrobattributes re-
sulted in a small state space (62 states). Each state had grigsible actions
(system versus user initiative when asking questionsj@kpérsus no confirma-
tion when receiving answers). They ran the system with reatg) creating 311
conversations. Each conversation had a very simple bireavard function; 1 if
the user completed the task (finding specified museumsgth@ahetasting in the
New Jersey area), 0 if the user did not. The system succdeafuled a good di-
alogue policy (roughly, start with user initiative, thenckaof to either mixed or
system initiative when reasking for an attribute; confirntyaat lower confidence
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values; both initiative and confirmation policies, howeae different for differ-
ent attributes). They showed that their policy actually wase successful based
on various objective measures than many hand-designecigmlieported in the
literature.

The simulated user strategy was taken by Levin et al. (206Gheir MDP
model with reinforcement learning in the ATIS task. Themaslated user was a
generative stochastic model that given the system'’s custate and actions, pro-
duces a frame-slot representation of a user response. Tamekers of the simu-
lated user were estimated from a corpus of ATIS dialogues.sithulated user was
then used to interact with the system for tens of thousandsmifersations, lead-
ing to an optimal dialogue policy. Simulation can also beirureverse; (Williams
and Young, 2003) used a Wizard-of-Oz simulation of an MDRodjae system to
help determine the state space and action set and learntiakgalicy.

While the MDP architecture offers a powerful new way of maugHialogue
behavior, it relies on the problematic assumption that tfstesn actually knows
what state it is in. This is of course not true in a number of sydlye system never
knows the true internal state of the user, and even the stateeidialogue may
be obscured by speech recognition errors. Recent attempsaix this assump-
tion have relied on Partially Observable Markov Decisiondesses, or POMDPs
(sometimes pronounced ‘pom-deepeez’). Ina POMPDB, we htivdeiser output
as an observed signal generated from yet another hiddesbl@riSee Roy et al.
(2000), Young (2002), and Russell and Norvig (2002).

22.7 ADVANCED: PLAN-BASED DIALOGUE AGENTS

One of the earliest models of conversational agent behaaiat also one of the
most sophisticated, is based on the use of Al planning tgdesi For example,
the Rochester TRIPS agent (Allen et al., 2001) simulatgsitngith emergency
management, planning where and how to supply ambulancesrsonqmel in a
simulated emergency situation. The same planning algosittihat reason how to
get an ambulance from point A to point B can be applied to omaten as well.
Since communication and conversation are just speciakazs@tional action in
the world, these actions can be planned like any other. Sgamt @eeking to find
out some information can come up with the plan of asking tkerliocutor for the
information. An agent hearing an utterance can interpretegch act by running
the planner ‘in reverse’, using inference rules to infer iyblan the interlocutor
might have had to cause them to say what they said.

Using plans to generate and interpret sentences in this aqyire that the
planner have good models of teliefs desires andintentions (BDI), as well as
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BDI

those of the interlocutor. Plan-based models of dialogadtars often referred to
asBDI models. BDI models of dialogue were first introduced by All€@ohen,
Perrault, and their colleagues and students in a numbefloémtial papers show-
ing how speech acts could be generated (Cohen and Per@ifi, hnd interpreted
(Perrault and Allen, 1980; Allen and Perrault, 1980). At $laene time, Wilensky
(1983) introduced plan-based models of understanding raepihe task of inter-
preting stories. In another related line of research, Gavgzher colleagues and
students showed how using similar notions of intention dadgallowed ideas of
discourse structure and coherence to be applied to dialogue

22.7.1 Plan-Inferential Interpretation and Production

Let’s first sketch out the ideas of plan-based compreheraidnproduction. How
might a plan-based agent act as the human travel agent tostesae sentence.C
in the dialogue repeated below?

Ci: I need to travel in May.
A1: And, what day in May did you want to travel?
C,: OK uh | need to be there for a meeting that's from the 12th ¢olthith.

The Gricean principle of Relevance can be used to infer bigatlient's meet-
ing is relevant to the flight booking. The system may know tha precondition
for having a meeting (at least before web conferencing) irsgoat the place where
the meeting is in. One way of being at a place is flying therd, @oking a flight
is a precondition for flying there. The system can follow ttligin of inference,
abducing that user wants to fly on a date before the 12th.

Next, consider how our plan-based agent could act as therntnanael agent
to produce sentence;An the dialogue above. The planning agent would reason
that in order to help a client book a flight it must know enougtoimation about
the flight to book it. It reasons that knowing the month (May/)risufficient in-
formation to specify a departure or return date. The simipley to find out the
needed date information is to ask the client.

In the rest of this section, we’ll flesh out the sketchy owetirof planning
for understanding and generation using Perrault and Allerimal definitions of
belief and desire in the predicate calculus. Reasoningtabelief is done with
a number of axiom schemas inspired by Hintikka (1969). Weliresent S be-
lieves the propositio®” as the two-place predicat®(S P), with axioms such as
B(A,P) AB(A,Q) = B(A,PAQ). Knowledge is defined as “true belief§ knows
that Pwill be represented a§NOW(S P), defined as KNOWS,P) = PAB(S P).

The theory of desire relies on the predicate WANT. If an ag&wantsP to
be true, we saWANT(S,P), orW(S P) for short.P can be a state or the execution
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of some action. Thus if ACT is the name of an actidn,S ACT(H)) means that
SwantsH to do ACT. The logic of WANT relies on its own set of axiom sclesm
just like the logic of belief.

The BDI models also require an axiomatization of actions @ladning; the
simplest of these is based on a setagtion schema& based on the simple Alaction scema
planning model STRIPS (Fikes and Nilsson, 1971). Each masittiema has a set
of parameters witlzonstraintsabout the type of each variable, and three parts:

¢ Preconditions:Conditions that must already be true to perform the action.
¢ Effects:Conditions that become true as a result of performing theract

e Body: A set of partially ordered goal states that must be achiaveeiform-
ing the action.

In the travel domain, for example, the action of ag&iwooking flightF 1 for client
C might have the following simplified definition:

BOOK-FLIGHT(A,C,F) :

Constraints:  Agent(A) Flight(F) A Client(C)

Precondition: Know(A,depart-date(F)) A Know(A,depart-time(F))
A Know(Aorigin(F)) A  Know(A,flight-type(F))
A Know(A,destination(F)) A  Has-Seats(F) A
W(C,(BOOK(A,C,F)A ...

Effect: Flight-Booked(A,C,F)

Body: Make-Reservation(A,F,C)

This same kind of STRIPS action specification can be usedpeech acts.
INFORM is the speech act of informing the hearer of some sitipm, based
on Grice’s (1957) idea that a speaker informs the hearermok#ing merely by
causing the hearer to believe that the speaker wants thenow $omething:

INFORM(S,H,P):
Constraints:  Speaker(3)Hearer(H)A Proposition(P)
Precondition: Know(S,P) W(S, INFORM(S, H, P))
Effect: Know(H,P)
Body: B(H,W(S,Know(H,P)))

REQUEST is the directive speech act for requesting the heéangerform
some action:

REQUEST(S,H,ACT):
Constraints:  Speaker(3)Hearer(H)A ACT(A) A H is agent of ACT
Precondition: W(S,ACT(H))
Effect: W(H,ACT(H))
Body: B(H,W(S,ACT(H)))
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Let's now see how a plan-based dialogue system might irgetipe sentence:
C,: I need to be there for a meeting that’s from the 12th to thé.15t

We'll assume the system has the BOOK-FLIGHT plan mentiorimmie. In
addition, we’ll need knowledge about meetings and gettinpém, in the form of
the MEETING, FLY-TO, and TAKE-FLIGHT plans, sketched brbatelow:

MEETING(P,L,T1,T2):
Constraints:  Person(P) Location (L) A Time (T1)A Time (T2) A Time (TA)
Precondition: At (P, L, TA)
Before (TA, T1)
Body:

FLY-TO(P, L, T):
Constraints: Person(P) Location (L) A Time (T)
Effect: At(P, L, T)
Body: TAKE-FLIGHT(P, L, T)

TAKE-FLIGHT(P, L, T):
Constraints:  Person(P) Location (L) A Time (T) A Flight (F) A Agent (A)
Precondition: BOOK-FLIGHT (A, P, F)
Destination-Time(F) =T
Destination-Location(F) = L
Body:

Now let's assume that an NLU module returns a semantics iclient's
utterance which (among other things) includes the follgnsemantic content:

MEETING (P, ?L, T1, T2)
Constraints: P =Client T1 = May 12A T2 = May 15

Our plan-based system now has two plans established, onel NMEEplan
from this utterance, and one BOOK-FLIGHT plan from the poesi utterance.
The system implicitly uses the Gricean Relevance intuitmtry to connect them.
Since BOOK-FLIGHT is a precondition for TAKE-FLIGHT, the stgm may hy-
pothesize (infer) that the user is planning a TAKE-FLIGHihce TAKE-FLIGHT
is in the body of FLY-TO, the system further infers a FLY-TQ@up! Finally, since
the effect of FLY-TO is a precondition of the MEETING, the s&3rm can unify each
of the people, locations, and times of all of these plans. rékalt will be that the
system knows that the client wants to arrive at the destindiefore May 12th.

Let’s turn to the details of our second example:

Ci: I need to travel in May.
A1. And, what day in May did you want to travel?
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How does a plan-based agent know to ask questigh Ahis knowledge
comes from the BOOK-FLIGHT plan, whose preconditions wésa the agent
know a variety of flight parameters including the departusgedand time, origin
and destination cities, and so forth. Utterange@ntains the origin city and partial
information about the departure date; the agent has to sedioe rest. A plan-
based agent would use an action schema like REQUEST-INFéptesent a plan
for asking information questions (simplified from Cohen &wdrault (1979)):

REQUEST-INFO(A,C,I):
Constraints:  Agent(An Client(C)
Precondition: Know(C,)
Effect: Know(A,I)
Body: B(C,W(A,Know(A,I)))

Because the effects of REQUEST-INFO match each precondfi®@ OOK-
FLIGHT, the agent can use REQUEST-INFO to achieve the nggsiimrmation.

22.7.2 Dialogue Structure and Coherence

Sec.?? described an approach to dialogue structure based on a sehefence
relations. In order to determine that a coherence relat@dsh the system must
reason about the constraints that the relation imposesemfttrmation in the
utterances. Thigformational approach to coherence has been applied predomi-
nantly to monologues. The BDI approach to utterance ing¢ation gives rise to
another view of coherence, which we will call thrgentional approach ointen-
tional structure. According to this approach, the hearer must infer the plased NENHIONA
intentions of the speaker underlying each utterance.
The fundamental idea in this model, due to ? (?), is henceattestcourse has

associated with it an underlying purpose that is held by #regn who initiates it,
called thediscourse purpose(DP). Each discourse segment within the discourgganse
has a corresponding purposediacourse segment purposéDSP), which has a 25045 reose
role in achieving the overall DP. Possible DPs/DSPs include

1. Intend that some agent intend to perform some physidal tas

2. Intend that some agent believe some fact.

3. Intend that some agent believe that one fact supporthanot

4. Intend that some agent know some property of an object.

As opposed to the larger sets of coherence relations useddmiational

accounts of coherence, Grosz and Sidner propose only twWorstlations:domi-
nanceandsatisfaction-precedence DSP, dominates DSPif satisfying DSR is

intended to provide part of the satisfaction of DSBSP, satisfaction-precedes
DSPR if DSP; must be satisfied before D&P
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Ci1: I need to travel in May.

Ai1: And, what day in May did you want to travel?

C,: OKuh I need to be there for a meeting that’s from the 12th ¢olibth.

Az And you're flying into what city?

Cs: Seattle.

A3z And what time would you like to leave Pittsburgh?

C4:  Uh hmm | don't think there’s many options for non-stop.

As. Right. There’s three non-stops today.

Cs: What are they?

As. The first one departs PGH at 10:00am arrives Seattle at 1Bédbtime.
The second flight departs PGH at 5:55pm, arrives Seattlerat &md the
last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

Cs: OK 'l take the 5ish flight on the night before on the 11th.

Ag. On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pi8, Air
flight 115.

Cs: OK.

Figure 22.27 A fragment from a telephone conversation between a clienaf@d
atravel agent (A) (repeated from Fig. 22.4).

Consider the dialogue between a client (C) and a travel géetihat we saw
earlier, repeated here in Fig. 22.27. Collaboratively,dher and agent success-
fully identify a flight that suits the caller’'s needs. Achiiey this joint goal requires
that a top-level discourse intention be satisfied, listedilaselow, in addition to
several intermediate intentions that contributed to thisfsation of I1, listed as
12-15:

I1: (Intend C (Intend A (A find a flight for C)))

12: (Intend A (Intend C (Tell C A departure date)))

I3: (Intend A (Intend C (Tell C A destination city)))

14: (Intend A (Intend C (Tell C A departure time)))

I5: (Intend C (Intend A (A find a nonstop flight for C)))

Intentions 12—15 are all subordinate to intention 11, asyteere all adopted to
meet preconditions for achieving intention 11. This is retiéel in the dominance
relationships below:

|1 dominates I2\ 11 dominates 13\ 11 dominates 14A |1 dominates 15

Furthermore, intentions 12 and I3 needed to be satisfied®éftention 15, since
the agent needed to know the departure date and destinatimder to start listing
nonstop flights. This is reflected in the satisfaction-pdecee relationships below:

12 satisfaction-precedes 1513 satisfaction-precedes 15
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The dominance relations give rise to the discourse streictapicted in Fig-
ure 22.28. Each discourse segment is numbered in correspomdvith the inten-
tion number that serves as its DP/DSP.

DS1

C, DS, DS DS, DSs
| b

A1—-C Ax-CG Az Cp—CG

Figure 22.28 Discourse Structure of the Flight Reservation Dialogue

Intentions and their relationships give rise to a coheréstalirse based on
their role in the overalplan that the caller is inferred to have. We assume that
the caller and agent have the plan BOOK-FLIGHT described age®3. This
plan requires that the agent know the departure time andahateso on. As we
discussed above, the agent can use the REQUEST-INFO actiems from page
55 to ask the user for this information.

Discourse segments DS2 and DS3 are cases in which perfoREQYJEST-
INFO succeeds for identifying the values of the departurie dad destination
city parameters respectively. Segment DS4 is also a refprestparameter value
(departure time), but is unsuccessful in that the calleesake initiative instead,
by (implicitly) asking about nonstop flights. Segment DS&dke to the satisfaction
of the top-level DP from the caller’s selection of a nonstoghtl from a short list
that the agent produced.

Subsidiary discourse segments like DS2 and DS3 are alsedcalbdia-
logues DS2 and DS3 ar&nowledge precondition subdialogues (Lochbaumviaocues
et al., 1990; Lochbaum, 1998), since they are initiated leyagent to help sat-
isfy preconditions of a higher-level goal (in this case addng the client’s re-
quest for travel in May). They are also calledormation-sharing subdialogues NoRATIORHARING
(Chu-Carroll and Carberry, 1998).

Algorithms for inferring intentional structure in dialoguwork similarly to
algorithms for inferring dialogue acts. Many algorithmgpbpvariants of the BDI
model (e.g., Litman, 1985; ?; Litman and Allen, 1987; Canpe¥990; Passonneau
and Litman, 1993; Chu-Carroll and Carberry, 1998). Mact@zening algorithms
rely on features like cue words and phrases (Reichman, 1883jrschberg and
Litman, 1993) or prosody (Grosz and Hirschberg, 1992; Hioscg and Pierre-
humbert, 1986; Hirschberg and Nakatani, 1996), and othes.clFor example
boundary tones may be used to suggest a dominance relatisadretwo intona-
tional phrases (Pierrehumbert and Hirschberg, 1990)
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What is the relationship between informational and interdal coherence?
The key to intentional coherence lies in the ability of theerfocutors to recognize
each other’s intentions and plans. As we saw in the previbapter, informational
coherence lies in the ability to establish content-bear@igtionships between ut-
terances. Moore and Pollack (1992), among others, haveaithat both levels of
analysis must co-exist; for example a speaker can have emtiion to motivate her
hearer to do something by giving an explanation. The resuiti® intention is two
sentences which may be linked by an Explanation relation.

22.8 ADVANCED: PROCESSINGHUMAN-HUMAN DIALOG

In addition to work on building conversational agents, catapional dialogue
work also focuses on human-human dialogue. We need to mrdessan-human
dialogue in order to automatically transcribe or summabizsiness meetings, to
close-caption TV shows, or to building personal telephassstants that can take
notes on telephone conversations.
A key task in human-human conversation is utterance boyrgEgmenta-
SEGMENTATION tion, the task of separating out utterances from each other. iRlais important
task since many computational dialogue models are basedtrating an utter-
ance as a primitive unit. The segmentation problem is difficacause a single
utterance may be spread over several turns (as in (22.333),sogle turn may
include several utterances (as in (22.34)).

(22.33)

A: Yeah um let me see here we've got you on American flight niiriyt eight

C:. Yep.

A: leaving on the twentieth of June out of Orange County JolayWg Airport
at seven thirty p.m.

C: Seven thirty.

A: and into uh San Francisco at eight fifty seven.

(22.34)
A: Three two three and seven five one. OK and then does he kree th

is a nonstop that goes from Dulles to San Francisco? Insteeohe
nection through St. Louis.

Segmentation algorithms use boundamngssuch as:

CUE WORDS e cue words: Cue words likewell, and so, that tend to occur at beginnings
and ends of utterances (Reichman, 1985; Hirschberg andahit993).

e N-gram word or POS sequences:Specific word or POS sequences that
often indicate boundarie®-gram grammars can be trained on a training set
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labeled with special utterance-boundary tags. (Mast £1896; Meteer and
lyer, 1996; Stolcke and Shriberg, 1996; Heeman and AlleB9).9

e prosody: Utterance-final prosodic features like boundary tonesag#final
lengthening and pause duration

e gaze:In face-to-face dialogugyazeis an important cue. GAZE

A related task in human-human dialogdgrization: assigning each utter-oiizarion
ance to the talker who produced it; this can be quite hard iti+speaker meetings.

22.9 SUMMARY

Conversational agentsare a crucial speech and language processing application
that are already widely used commercially. Research orethgents relies cru-
cially on an understanding of human dialogue or convensatipractices.

¢ Dialogue systems generally have 5 components: speechniéoog natural
language understanding, dialogue management, natugaldge generation,
and speech synthesis. They may also have a task managdicsjoeitie task
domain.

e Dialogue architectures for conversational agents incfindie-state systems,
frame-basedproduction systems, and advanced systems such as informati
state, Markov Decision Processes, @&idl (belief-desire-intention) mod-
els.

e Turn-taking, grounding, conversational structure, imgllure, and initiative
are crucial human dialogue phenomena that must also bewialin con-
versational agents.

e Speaking in dialogue is a kind of action; these acts arensldp as speech
acts ordialogue acts Models exist for generating and interpreting these acts.

e Human-human dialogue is another important area of dialoglevant espe-
cially for such computational tasks agtomatic meeting summarization

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Early work on speech and language processing had very dittiphasis on the
study of dialogue. The dialogue manager for the simulatiotme® paranoid agent
PARRY (Colby et al., 1971), was a little more complex. LikelEA, it was based
on a production system, but where ELIZA's rules were baségl @amthe words in
the user’s previous sentence, PARRY’s rules also rely doegieariables indicating
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its emotional state. Furthermore, PARRY’s output sometimeakes use of script-
like sequences of statements when the conversation turits tielusions. For
example, if PARRY’saanger variable is high, he will choose from a set of “hostile”
outputs. If the input mentions his delusion topic, he witiiease the value of his
fear variable and then begin to express the sequence of statemsdated to his
delusion.

The appearance of more sophisticated dialogue managerteawze bet-
ter understanding of human-human dialogue. Studies ofribygepties of human-
human dialogue began to accumulate in the 1970’s and 198A&.Conversation
Analysis community (Sacks et al., 1974; Jefferson, 198#e§loff, 1982) began
to study the interactional properties of conversation. S3s(1977) dissertation
significantly influenced the computational study of dialeguth its introduction
of the study of dialogue structure, with its finding that kawiented dialogues
have a structure that closely parallels the structure oftdakk being performed”
(p. 27), which led to her work on intentional and attentiostalicture with Sidner.
Lochbaum et al. (2000) is a good recent summary of the roletehtional structure
in dialogue. The BDI model integrating earlier Al planningnk (Fikes and Nils-
son, 1971) with speech act theory (Austin, 1962; Gordon atff, 1971; Searle,
1975a) was first worked out by Cohen and Perrault (1979), stgohwow speech
acts could be generated, and Perrault and Allen (1980) afeh And Perrault
(1980), applying the approach to speech-act interpretagimultaneous work on
a plan-based model of understanding was developed by (si§eri983) in the
Schankian tradition.

Models of dialogue as collaborative behavior were intreduin the late
1980’s and 1990’s, including the ideas of common groundré®grence as a col-
laborative process (Clark and Wilkes-Gibbs, 1986), andetsodfjoint intentions
(Levesque et al., 1990), astiared plans(Grosz and Sidner, 1980). Related to this
area is the study ahitiative in dialogue, studying how the dialogue control shifts
between participants (?; Smith and Gordon, 1997; Chu-C@amd Brown, 1997).

Work on dialogue acts and dialogue moves drew from the a nuailseurces,
including HCRC’s Map Task (Carletta et al., 1997b), from @amllen and his
colleagues and students, including Hinkelman and Alle9).9vho showed how
lexical and phrasal cues could be integrated into BDI modiepeech acts, and
Traum (2000), Traum and Hinkelman (1992), and from ? (?)

A wide body of dialogue research came out of AT&T and Bell Lizbories
centered around the 1990’s, including FIX LIST HERE.

To add: Communicator/atis history, VoiceXML, commerciaptbyments.

Good surveys on dialogue systems include Sadek and De Ma@8f1McTear
(2002, 2004), and the dialogue chapter in Allen (1995).
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EXERCISES

22.1 List the dialogue act misinterpretations in #éo’s On Firstroutine at the
beginning of the chapter.

22.2 Write a finite-state automaton for a dialogue manager focking your
bank balance and withdrawing money at an automated tellehima

22.3 Dispreferred responses (for example turning down a rejjaestusually
signaled by surface cues, such as significant silence. Trgttoe the next time you
or someone else utters a dispreferred response, and wwitettle utterance. What
are some other cues in the response that a system might ustetd a dispreferred
response? Consider non-verbal cues like eye-gaze and lestlyres.

22.4 When asked a question to which they aren’t sure they know tisaver,

people display their lack of confidence via cues that reserotiler dispreferred
responses. Try to notice some unsure answers to questiohsit &k some of
the cues? If you have trouble doing this, read Smith and QE®R3) and listen
specifically for the cues they mention.

22.5 Build a VoiceXML dialogue system for giving the current tirmeound the
world. The system should ask the user for a city and a timedo @4 hour, etc)
and should return the current time, properly dealing wittetzones.

22.6 Implement a small air-travel help system based on text ingotir system
should get constraints from the user about a particulartftigdt they want to take,
expressed in natural language, and display possible flayhtsscreen. Make sim-
plifying assumptions. You may build in a simple flight datsbar you may use a
flight information system on the web as your backend.

22.7 Augment your previous system to work with speech input vic&gML.
(or alternatively, describe the user interface changesmemud have to make for it
to work via speech over the phone). What were the major éiffees?

22.8 Design a simple dialogue system for checking your email dkiertele-
phone. Implement in VoiceXML.

22.9 Test your email-reading system on some potential userso$ghsome of
the metrics described in Sec. 22.4 and evaluate your system.
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