
2/11/2010

1

Today’s Topics

Set identities

� Methods of proof

� Relationships to logical equivalences

Functions

� Important definitions

� Relationships to sets, relations

� Special functions

Set identities help us manipulate complex

expressions

Recall from last lecture that set operations bear a

striking resemblance to logical operations

� Disjunction (∨) and set union (∪)
� Conjunction (∧) and set intersection (∩)
� Negation (¬) and complement ()

Just as logical equivalences helped us manipulate

logical expressions, set identities help us simplify and

understand complex set definitions.

2/11/2010

2

Some important set identities

Identity Name

A ∪ ∅ = A

A ∩ U = A

Identity laws

A ∪ U = U

A ∩ ∅ = ∅
Domination laws

A ∪ A = A

A ∩ A = A

Idempotent laws

A = A

Complementation law

A ∪ B = B ∪ A

A ∩ B = B ∩ A

Commutative laws

A ∪ (B ∪ C) = (A ∪ B) ∪ C

A ∩ (B ∩ C) = (A ∩ B) ∩ C

Associative laws

We don’t have commutative or
associative laws for set difference!

Some important set identities

Identity Name

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Distributive laws

A ∪ B = A ∩ B

A ∩ B = A ∪ B

DeMorgan’s laws

A ∪ (A ∩ B) = A

A ∩ (A ∪ B) = A

Absorption laws

A ∪ A = U

A ∩ A = ∅

Complement laws

2/11/2010

3

There are many ways to prove set identities

Today, we’ll discuss four common methods:

1. Membership tables

2. Logical argument

3. Using set builder notation

4. Applying other known set identities

Membership tables allow us to write proofs like

we did using truth tables!

The membership table for an expression has columns

for sub-expressions and rows to indicate the ways in

which an arbitrary element may or may not be

included.

Example: A membership table for set intersection

A B A ∩ B

1 1 1

1 0 0

0 1 0

0 0 0

An element is in A ∩ B iff it is in both A and B

2/11/2010

4

Prove that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Since the appropriate columns of the membership table

are the same, we can conclude that A ∩ (B ∪ C) = (A ∩ B)

∪ (A ∩ C). ❏

A B C B ∪ C A ∩ (B ∪ C) A ∩ B A ∩ C (A ∩ B) ∪ (A ∩ C)

1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 1

1 0 1 1 1 0 1 1

1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0

Sometimes, it’s easier to make a logical

argument about a set identity

Recall: A = B iff A ⊆ B and B ⊆ A

As a result, we can prove a set identity by arguing that

each side of the equality is a subset of the other.

Example: Prove that A ∩ B = A ∪ B

1.First prove that A ∩ B ⊆ A ∪ B

2.Then prove that A ∪ B ⊆ A ∩ B

See Example 10 in book…

2/11/2010

5

We can use set builder notation and logical

definition to make very precise proofs

Example: Prove that A ∩ B = A ∪ B

Proof:

1. A ∩ B = {x | x ∉ A ∩ B} Def’n of complement

2. = {x | ¬(x ∈ (A ∩ B))} Def’n of ∉
3. = {x | ¬(x ∈ A ∧ x ∈ B)} Def’n of ∩

4. = {x | ¬(x ∈ A) ∨ ¬(x ∈ B)} DeMorgan’s law

5. = {x | x ∉ A ∨ x ∉ B} Def’n of ∉
6. = {x | x ∈ A ∨ x ∈ B} Def’n of complement

7. = {x | x ∈ A ∪ B} Def’n of ∪
8. = A ∪ B Set builder notation

❏

We can also construct proofs by repeatedly

applying known set identities

Example: Prove that A ∪ (B ∩ C) = (C ∪ B) ∩ A

Proof:

1. A ∪ (B ∩ C) = A ∩ (B ∩ C) DeMorgan’s law

2. = A ∩ (B ∪ C) DeMorgan’s law

3. = (B ∪ C) ∩ A Commutative law

4. = (C ∪ B) ∩ A Commutative law

❏

Note how similar this process is to that of proving logical
equivalences using known logical equivalences.

2/11/2010

6

Group work!

Problem 1: Prove DeMorgan’s law for complement

over intersection using a membership table.

Problem 2: Prove the complementation law using set

builder notation.

Sets give us a way to formalize the concept of a

function

Definition: Let A and B be nonempty sets. A function,

f, is an assignment of exactly one element of set B to

each element of set A.

Note: We write f : A → B to denote that f is a function

from A to B

Note: We say that f(a) = b if the element a ∈ A is

mapped to the unique element b ∈ B by the function f

A B

f

a ● ● b
f(a) = b

2/11/2010

7

Functions can be defined in a number of ways

1. Explicitly

� f : Z → Z

� f(x) = x2 + 2x + 1

2. Using a programming language

� int min(int x, int y) = { x < y ? return x : return y; }

3. Using a relation

� Let S = {Anna, Brian, Christine}

� Let G = {A, B, C, D, F}

f : S → G

Anna ●
Brian ●

Christine ● ●A● B● C● D● E

More terminology

The domain of a function is the set that the function maps from, while

the codomain is the set that is mapped to

If f(a) = b, b is called the image of a, and a is called the preimage of b

The range of a function f : A → B is the set of all images of elements of A

f : S → G

Anna ●
Brian ●

Christine ● ●A● B● C● D● E

Domain = S = {Anna, Brian, Christine} Codomain = G =

{A, B, C, D, E}

Range = {A, C}

2/11/2010

8

What are the domain, codomain, and range of

the following functions?

1. f : Z → Z, f(x) = x3

� Domain: Integers

� Codomain: Integers

� Range: Perfect cubes

2. g : R → R, g(x) = x - 2

� Domain: Real numbers

� Codomain: Real numbers

� Range: Real numbers

A one-to-one function never assigns the same

image to two different elements

Definition: A function f : A → B is one-to-one, or

injective, iff ∀x,y∈A [(f(x) = f(y)) → (x = y)]

Are the following functions injections?

� f : R → R, f(x) = x + 1 Yes

� f : Z → Z, f(x) = x2 No

� f : R+ → R+, f(x) = √x Yes

� f : S → G No

f : S → G

Anna ●
Brian ●

Christine ● ●A● B● C● D● E

2/11/2010

9

An onto function “uses” every element of its

codomain

Definition: We call a function f : A → B onto, or

surjective, iff for every element b ∈ B, there is some

element a ∈ A such that f(a) = b.

The following function is a surjection:

Think about an onto function as “covering”

the entirety of its codomain.

f : A → B

a ●
b ●
c ● ● 1● 2● 3
d ●

Are the following functions one-to-one, onto,

both, or neither?

f : A → B

a ●
b ●
c ● ● 1● 2● 3
d ● f : A → B

a ●
b ●
c ● ● 1● 2● 3
d ● ● 4

f : A → B

a ●
b ●
c ● ● 1● 2● 3

d ● ● 4● 5

f : A → B

a ●
b ●
c ● ● 1● 2● 3

d ●
Neither! One-to-one and onto

(Aside: Functions that are both one-to-one

and onto are called bijections)

OntoOne-to-one

2/11/2010

10

Bijections have inverses

Definition: If f : A → B is a bijection, the inverse of f

is the function f-1 : B → A that assigns to each b ∈ B

the unique value a ∈ A such that f(a) = b. That is, f-

1(b) = a iff f(a) = b.

Graphically:

Note: Only a bijection can have an inverse. (Why?)

A B

f

a ● ● b
f(a) = b

f-1(b) = a

Do the following functions have inverses?

1. f : R → R, f(x) = x2

� No, since this function is not onto

2. g : Z → Z, g(x) = x + 1

� Yes, g-1(x) = x – 1

1. h : A → B

� Yes

h : A → B

a ●
b ●
c ● ● 1● 2● 3

d ● ● 4

h-1 : B → A

1 ●
2 ●
3 ● ● a● b● c

4 ● ● d

2/11/2010

11

Functions can be composed with one another

Definition: Given two functions g : A → B and f : B →

C, the composition of f and g, denoted f ° g, is defined
as (f ° g)(x) = f(g(x)).

Note: For f º g to exist, the domain of f must be a

subset of the codomain of g.

A B

g

a ● ● g(a)
g(a) = b

C● c

f

f(g(a)) = c

f º g

Can the following functions be composed? If so,

what is their composition?

Let f : A → A such that f(a) = b, f(b) = c, f(c) = a

g : B → A such that g(1) = b, g(4) = a

1. (f º g)(x)? Yes! f(g(1)) = c, f(g(4)) = b

2. (g º f)(x)? No! A ⊄ B

Let f : Z → Z, f(x) = 2x + 1

g : Z → Z, g(x) = x2

1. (f º g)(x)? Yes! (f º g)(x) = 2x2 + 1

2. (g º f)(x)? Yes! (g º f)(x) = 4x2 + 4x + 1

Note: There is never a guarantee that (f º g)(x) = (g º f)(x).

2/11/2010

12

Important functions

Definition: The floor function maps a real number x

to the largest integer y that is not greater than x. The

floor of x is denoted ⎣x⎦.

Definition: The ceiling function maps a real number x

to the smallest integer y that is not less than x. The

ceiling of x is denoted ⎡x⎤.

Examples:

� ⎣1.2⎦ = 1
� ⎣7.0⎦ = 7
� ⎣-42.24⎦ = -43

� ⎡1.2⎤ = 2
� ⎡7.0⎤ = 7
� ⎡-42.24⎤ = -42

We actually use floor and ceiling quite a bit in

computer science…

Example: A byte, which holds 8 bits, is typically the

smallest amount of memory that can be allocated on

most systems. How many bytes are needed to store

123 bits of data?

Answer: We need ⎡123/8⎤ = ⎡15.375⎤ = 16 bytes

Example: How many 1400 byte packets can be

transmitted over a 14.4 kbps modem in one minute?

Answer: A 14.4 kbps modem can transmit 14,400*60 =

864,000 bits per minute. Therefore, we can transmit

⎣864,000/(1400*8)⎦ = ⎣77.1428571⎦ = 77 packets.

2/11/2010

13

Group work!

Problem 1: Find the domain and range of each of the

following functions.

� The function that maps an English word to its two rightmost

letters

� The function that assigns to an integer the sum of its

individual digits

Problem 2: Compute the following

� ⎣⎣⎣⎣435.5⎦⎦⎦⎦
� ⎡⎡⎡⎡89/90⎤⎤⎤⎤
� ⎡⎡⎡⎡5.5 + ⎣⎣⎣⎣1.22⎦⎤⎦⎤⎦⎤⎦⎤

Final thoughts

� Set identities are useful tools!

� We can prove set identities in a number of

(equivalent) ways

� Sets are the basis of functions, which are used

throughout computer science and mathematics

� Next time:

� Summations (Section 2.4)

