
Today’s topics

� Applications of predicate logic

� Nested quantifiers

Logic programming enables automated reasoning

Prolog

� Programming in logic

� Developed in the 1970s for 

AI purposes

Datalog

� Logical formalization of 

databases

� Developed in the 1980s

Two main constructs:

� Facts

� instructor(litman, cs441)

� student(smith, cs441)

� Rules

� teaches(P,S) :- instructor(P,C), student(S,C)

For our purposes, we can consider Prolog and Datalog to be the 

same, though in reality they have very important differences.

Lower case = constant

Upper case = variable



Rules and facts define predicates

Facts define predicates by explicitly listing elements that 

satisfy those predicates

� “Prof. Litman is the instructor for CS441” ≡ instructor(litman, cs441)

Rules define predicates by combining previously specified 

predicates

� “Professors teach the students enrolled in the courses for which they 

are the instructor” ≡

teaches(P,S) :- instructor(P,C), student(S,C)

Prolog is an environment that lets us issue queries to 

determine which predicates are true!

A Security Example

Can Bob run the projector?

� Query: ?grant(bob, projector)

� Solution: true

Who is in room 104?

� Query: ?location(X, 104)

� Solution: alice, bob, carol

grant(U, projector) :- located(U, 104), role(U, presenter)

located(U, R) :- owns(U, D), dev_loc(D, R)

role(bob, presenter)

role(carol, presenter)

dev_loc(laptop12, 104)

dev_loc(pda23, 104)

dev_loc(cell42, 104)

owns(alice, laptop12)

owns(bob, pda23)

owns(carol, cell42)

Knowledge base



Write and evaluate the following queries

� Can Alice use the projector?

� ?grant(alice, projector)

� false

� Can Carol use the projector

� ?grant(carol, projector)

� true

grant(U, projector) :- located(U, 104), role(U, presenter)

located(U, R) :- owns(U, D), dev_loc(D, R)

role(bob, presenter)

role(carol, presenter)

dev_loc(laptop12, 104)

dev_loc(pda23, 104)

dev_loc(cell42, 104)

owns(alice, laptop12)

owns(bob, pda23)

owns(carol, cell42)

� Which devices does Alice own?

� ?owns(alice, X)

� laptop12

Logic programming is a useful tool!

Name Age Phone

Alice 19 555-1234

Danielle 33 555-5353

Zach 27 555-3217

Charlie 21 555-2335

Databases

Artificial Intelligence

Route 

planning
Security



Just for grins…

If you are interested in playing around with logic 

programming, download SWI-Prolog

� URL: http://www.swi-prolog.org/

This (free) package is a runtime environment in which 

you can write logic programs and evaluate queries.

Alice Bob

CharlieDave

Elise Becky Frank

Sarah Tommy

Nested quantifiers!?!?

Many times, we need the ability to nest one quantifier 

within the scope of another quantifier

Example: All integers have an additive inverse.  That is, 

for any integer x, we can choose an integer y such that 

the sum of x and y is zero.

There is no way to express this statement using only a 

single quantifier!

∀x ∃y (x + y = 0)



Deciphering nested quantifiers isn’t as scary as 

it looks…

… you just read from left to right!

∀x ∃y ∀z [(x + y) × z = 0]

For all x…

… there exists a y 
such that…

… for all z…

… (x + y) × z = 0

A few more examples…

∀x ∀y (x + y = y + x)

� For all integers x and for all integers y, x + y = y + x

∀x ∀y ∀z [(x+y)+z = x+(y+z)]

� For all integers x, for all integers y, and for all integers z, 

(x+y)+z = x+(y+z)

∃x ∀y (x × y = 0)

� There exists an x such that for all y, x × y = 0

This is the associative law 
for addition!

This is the commutative law 
for addition!



Since we always read from left to right, the 

order of quantifiers matters!

Consider: ∀x ∃y (x + y = 0)

� Every integer has an additive inverse

Transpose: ∃y ∀x (x + y = 0)

� There exists some integer y such that when added to 

any other integer x, the sum of x and y is 0

Clearly true!  Just 

set y = -x

Not true…

Remember: As long as you read from left to right, you 

won’t have any problems!

Many mathematical statements can be translated into 

logical statements with nested quantifiers

Translating mathematical expressions is often easier 

than translating English statements!

Steps:

1. Rewrite statement to make quantification and logical 

operators more explicit

2. Determine the order of in which quantifiers should appear

3. Generate logical expression



Let’s try a translation…

Statement: Every real number except zero has a 

multiplicative inverse

Universal quantifier

x × y = 1 Singular---suggestive of an 

existential quantifier

Rewrite: For every real number x, if x ≠ 0, then there 

exists a real number y such that x × y = 1.

Translation:  ∀x [(x ≠ 0) → ∃y (x × y = 1)]  OR

∀x ∃y [(x ≠ 0) → (x × y = 1)] 

∀∀∀∀x 

(x ≠ 0) → …… ∃y (x × y = 1)

More examples…

Statement: The product of any two negative integers 
is always positive

� For any integer x and any integer y, if x < 0 and y < 0, then 

x × y > 0

� ∀x ∀y [(x < 0 ∧∧∧∧ y < 0) → (x × y > 0)]

Statement: For any real number a, it is possible to 

choose real numbers b and c such that a2 + b2 = c2

� For any real number a, there exist real numbers b and c 

such that a2 + b2 = c2

� ∀a ∃b ∃c (a2 + b2 = c2)



Translating quantified statements to English is 

as easy as reading a sentence!

Let:

� C(x) ≡ x is enrolled in CS441

� M(x) ≡ x has an MP3 player

� F(x, y) ≡ x and y are friends

� Domain of x and y is “all students”

Statement: ∀∀∀∀ x [C(x) → M(x) V (∃∃∃∃ y (F(x,y) ∧∧∧∧ M(y))]

For every student x…

… if x is enrolled in CS441, then…

… x has an MP3 player…

… or there exists another student y such that…

… x and y are friends…

… and y has an MP3 player.

Translate the following expressions into English

Let:

� O(x,y) ≡ x is older than y

� F(x,y) ≡ x and y are friends

� The domain for variables x and y is “all students”

Statement: ∃∃∃∃ x ∀∀∀∀ y O(x,y)

� There exists a student x, such that for all students y, x is older 

than y.

� Alternatively: There exists an oldest student.

Statement: ∃∃∃∃ x ∃∃∃∃ y [F(x,y) ∧∧∧∧ ∀∀∀∀ z [(y≠z) → ¬F(x,z)]]

� There exists two students x and y such that x and y are friends 

and for all students z, if z ≠ y, then x and z are not friends.



Group work!

Problem 1: Translate the following mathematical 

statement into predicate logic:  Every even number is a 

multiple of 2.  Assume that the predicate E(x) means “x 

is even.”

� Hint: What does “x is a multiple of 2” mean algebraically?

Translating from English to a logical expression with 

nested quantifiers is a little bit more work…

Steps:

1. If necessary, rewrite the sentence to make quantifiers and 

logical operations more explicit

2. Create propositional functions to express the concepts in 

the sentence

3. State the domains of the variables in each propositional 

function

4. Determine the order of quantifiers

5. Generate logical expression



Let’s try an example…

Statement: Every student has asked at least one 
professor a question.

Rewrite: For every person x, if x is a student, then there 
exists a professor whom x has asked a question.

Let:

� S(x) ≡ x is a student

� P(x) ≡ x is a professor

� Q(x,y) ≡ x has asked y a question

Translation: ∀∀∀∀ x (S(x) → ∃∃∃∃ y [P(y) ∧∧∧∧ Q(x,y)])

Universal quantifier

Existential quantifier

Domains for x and y 
are “all people”

Translate the following from English

Statement: There is a man who has tasted every type of 

beer.

Rewrite: There exists a person x such that x is man and 

for all types of drink y, if y is a beer then x has tasted y.

Let:

� M(x) ≡ x is a man

� B(x) ≡ x is a beer

� T(x,y) ≡ x has tasted y

Translation: ∃∃∃∃ x (M(x) ∧∧∧∧ ∀∀∀∀ y [B(y) → T(x,y)])

Domain: all people

Domain: all drinks

Domains: x = all people, 
y = all drinks



Negating expression with nested quantifiers is 

actually pretty easy…

… you just repeatedly apply DeMorgan’s laws!

¬[∃∃∃∃ x (M(x) ∧∧∧∧ ∀∀∀∀ y [B(y) → T(x,y)])]
≡ ∀x ¬(M(x) ∀ ∀y [B(y) → T(x,y)])
≡ ∀x (¬M(x) ∀ ¬∀y [B(y) → T(x,y)])

≡ ∀x (¬M(x) ∀ ∀y ¬[B(y) → T(x,y)])

≡ ∀x (¬M(x) ∀ ∀y ¬[¬B(y) ∀ T(x,y)])

≡ ∀x (¬M(x) ∀ ∀y [B(y) ∀ ¬T(x,y)])

≡ ∀x (M(x) → ∀y [B(y) ∀ ¬T(x,y)])

a → b ≡ ¬a ∀ b

In English: For all people x, if x is a man, then there 

exists some type beer that x has not tasted.

Negate ∀∀∀∀ x (S(x) → ∃∃∃∃ y [P(y) ∧∧∧∧ Q(x,y)])

¬ ∀∀∀∀ x (S(x) → ∃∃∃∃ y [P(y) ∧∧∧∧ Q(x,y)])

≡ ∀x ¬(S(x) → ∀y [P(y) ∀ Q(x,y)])

≡ ∀x ¬(¬S(x) ∀ ∀y [P(y) ∀ Q(x,y)])

≡ ∀x (S(x) ∀ ¬∀y [P(y) ∀ Q(x,y)])

≡ ∀x (S(x) ∀ ∀y ¬[P(y) ∀ Q(x,y)])

≡ ∀x (S(x) ∀ ∀y [¬P(y) ∀ ¬Q(x,y)])

≡ ∀x (S(x) ∀ ∀y [P(y) → ¬Q(x,y)])

In English: There exists a student x such that for all people 
y, if y is a professor then x has not asked y a question.

Alternatively: There exists a student that has never asked 

any professor a question.



Group Work!

Problem 1: Translate the following English sentences 

into predicate logic.

a) There is a woman has tried every flavor of Ben and Jerry’s 

ice cream.

b) Every student has at least one friend that is dating 

Penguins fan.

c) If a person is a parent and a man, then they are the 

father of some child.

Problem 2: Negate the results from Problem 1 and 

translate the negated expressions back into English.

Final Thoughts

� Logic programming is an interesting application of 
predicate logic that is used throughout computer 
science

� Quantifiers can be nested
� Nested quantifiers are read left to right

� Order is important!

� Translation and negation work the same as they did before!

� Next lecture: 
� Rules of inference and proofs

� Please read section 1.5 and 1.6


