
3/18/2010

1

Prove: For every n ∈ Z+,

P(n) ≡

Base case:

I.H.:

Inductive step:

Conclusion:

� 1 + 2 + … + k = (k + ½)2/2 by I.H.

� 1 + 2 + … + k+1 = (k + ½)2/2 + k + 1

� = (k2 + 3k + 9/4)/2

� = (k + 3/2)2/2

� = [(k+1) + ½]2/2

P(1) clearly holds

Assume that P(k) holds for an arbitrary integer k

We will now show that P(k) → P(k+1)

Since we have proved the base case and the inductive

case, the claim holds by mathematical induction ❏
Prove: For every n ∈ Z+, if x,y ∈ Z+ and max(x,y) = n,

then x=y

P(n) ≡

Base case:

I.H.:

Inductive step:

Conclusion:

� Let max(x,y) = k + 1

� Then, max(x-1,y-1) = k, so by the I.H. x – 1 = y – 1

� It thus follows that x = y

P(1): If max(x,y) = 1, then x=y=1 since x,y ∈ Z+

Assume that P(k) holds for an arbitrary integer k

We will now show that P(k) → P(k+1)

Since we have proved the base case and the inductive

case, the claim holds by mathematical induction ❏

max(x,y) = n → x = y

Problem: Our induction is on the variable k,
so we have no guarantee that x-1 or y-1 are
positive integers, only that k-1 is a positive

integer…

3/18/2010

2

Recall that mathematical induction let us prove

universally quantified statements

Goal: Prove ∀x∈N P(x).

Procedure:

1. Prove P(0)

2. Show that P(k) → P(k+1) for any arbitrary k

3. Conclude that P(x) is true ∀x∈N

Intuition: If P(0) is true, then P(1)

is true. If P(1) is true, then P(2) is

true…

P(0)

P(k) → P(k+1)

∴∀x∈N P(x)

Strong mathematical induction is another flavor

of induction

Goal: Prove ∀x∈N P(x).

Procedure:

1. Prove P(0)

2. Show that [P(0) ∧ P(1) ∧ … ∧ P(k)] → P(k+1) for any

arbitrary k

3. Conclude that P(x) is true ∀x∈N

P(0)

[P(0) ∧ P(1) ∧ … ∧ P(k)] → P(k+1)

∴∀x∈N P(x)

3/18/2010

3

So what’s the big deal?

Recall: In mathematical induction, our inductive

hypothesis allows us to assume that P(k) is true and use

this knowledge to prove P(k+1)

However, in strong induction, we can assume that P(0) ∧

P(1) ∧ … ∧ P(k) is true before trying to prove P(k+1)

For certain types of proofs, this is much easier than

trying to prove P(k+1) from P(k) alone.

For example…

Show that if n is an integer greater than 1, then n can

be written as the product of primes

P(n) ≡

Base case:

I.H.:

Inductive step:

Conclusion:

� Two cases to consider: k+1 prime and k+1 composite

� If k+1 is prime, then we’re done

� If k+1 is composite, then by definition, k+1 = ab

� Since 2 ≤ a < k+1 and 2 ≤ b < k+1, a and b can be written as

products of primes by the I.H.

� Thus, k+1 can be written as a product of primes

✔P(2): 2 = 21

Assume that P(2) ∧ … ∧ P(k) holds for an arbitrary integer k

We will now show that [P(2) ∧ … ∧ P(k)] → P(k+1)

Since we have proved the base case and the inductive

case, the claim holds by strong induction ❏

n can be written as a product of primes

3/18/2010

4

Is strong induction somehow more powerful than

mathematical induction?

The ability to assume P(0) ∧ P(1) ∧ … ∧ P(k) true before

proving P(k+1) seems more powerful than just assuming

P(k) is true

Perhaps surprisingly, mathematical induction and strong

induction are all equivalent!

That is, a proof using one of these methods can always

be written using the other two methods

This may not be easy, though!

So when should we use strong induction?

If it is straightforward to prove P(k+1) from P(k) alone,

use mathematical induction

If it would be easier to prove P(k+1) using one or more

P(j) for 0 ≤ j < k, use strong induction

…P(0) P(1) P(k-1) P(k) P(k+1)

?

P(k+1)P(0) P(1) P(k-1) P(k)…

3/18/2010

5

There are many uses of induction in computer

science!

Proof by induction is often used to reason about:

� Algorithm properties (correctness, etc.)

� Properties of data structures

� Membership in certain sets

� Determining whether certain expressions are well-formed

� …

To begin looking at how we can use induction to prove

the above types of statements, we first need to

learn about recursion

Sometimes, it is difficult or messy to define

some object explicitly

Recursive objects are defined in terms of themselves

We often see the recursive versions of the following

types of objects:

� Functions

� Sequences

� Sets

� Data structures

Let’s look at some examples…

3/18/2010

6

Recursive functions are useful

When defining a recursive function whose domain is

the set of natural numbers, we have two steps:

1. Basis step: Define the behavior of f(0)

2. Recursive step: Compute f(n+1) using f(0), …, f(n)

Example: Let f(0) = 3, f(n+1) = 2f(n) + 3

� f(1) = 2f(0) + 3 = 2(3) + 3 = 9

� f(2) = 2f(1) + 3 = 2(9) + 3 = 21

� f(3) = 2f(2) + 3 = 2(21) + 3 = 45

� f(4) = 2f(3) + 3 = 2(45) + 3 = 93

� …

Doesn’t this look a little bit like strong induction?

Some functions can be defined more precisely

using recursion

Example: Define the factorial function F(n) recursively

1. Basis step: F(0) = 1

2. Recursive step: F(n+1) = (n+1) × F(n)

Note: F(4) = 4 × F(3)

= 4 × 3 × F(2)

= 4 × 3 × 2 × F(1)

= 4 × 3 × 2 × 1 × F(0)

= 4 × 3 × 2 × 1 × 1 = 24

Compare the above definition our old definition:

� F(n) = n × (n-1) × … × 2 × 1

The recursive definition
avoids using the “…”

shorthand!

3/18/2010

7

It should be no surprise that we can also define

recursive sequences

Example: The Fibonacci numbers, {fn}, are defined as follows:

� f0 = 1

� f1 = 1

� fn = fn-1 + fn-2

Calculate: f2, f3, f4, and f5
� f2 = f1 + f0 = 1 + 1 = 2

� f3 = f2 + f1 = 2 + 1 = 3

� f4 = f3 + f2 = 3 + 2 = 5

� f5 = f4 + f3 = 5 + 3 = 8

This gives us the sequence {fn} = 1, 1, 2, 3, 5, 8, 13, 21, 34, …

This is like strong induction, since
we need more than fn-1 to compute

fn.

Recursively defined sets are also used frequently

in computer science

Simple example: Consider the following set S

1. Basis step: 3 ∈ S

2. Recursive step: if x ∈ S and y ∈ S, then x + y ∈ S

Claim: The set S thus contains every multiple of 3.

Intuition: 3 ∈ S, 6 ∈ S (since 3 and 3 are in S), 9 ∈ S

(since 3 and 6 are in S), …

We’ll show how we can prove this claim during the

next lecture…

3/18/2010

8

Recursion is used heavily in the study of strings

Let: ∑ be defined as an alphabet

� Binary strings: ∑ = {0, 1}

� Lower case letters: ∑ = {a, b, c, …, z}

We can define the set ∑* containing all strings over the

alphabet ∑ as follows:

1. Basis step: λ ∈ ∑*

2. Recursive step: If w ∈ ∑* and x ∈ ∑, then wx ∈ ∑*

Example: If ∑ = {0, 1}, then ∑ = {λ, 0, 1, 01, 11, …}

λ is the empty string

containing no characters

This recursive definition allows us to easily

define important string operations

Definition: The length l(w) of a string can be defined

as follows:

1. Basis step: l(λ) = 0

2. Recursive step: l(wx) = l(w) + 1 if w ∈ ∑* and x ∈ ∑

Example: l(1001) = l(100) + 1

= l(10) + 1 + 1

= l(1) + 1 + 1 + 1

= l(λ) + 1 + 1 + 1 + 1

= 0 + 1 + 1 + 1 + 1

= 4

3/18/2010

9

We can define sets of well-formed formulae

recursively

This is often used to specify the operations permissible in

a given formal language (e.g., a programming language)

Example: Defining propositional logic

1. Basis step: T, F, and s are well-formed propositional logic

statements (where s is a propositional variable)

2. Recursive step: If E and F are well-formed statements, so are

� (¬E)

� (E ∧ F)

� (E ∨ F)

� (E → F)

� (E ↔ F)

Example

Question: Is ((p ∧ q) → (((¬r) ∨ q) ∧ t)) well-formed?

� Basis tells us that p, q, r, t are well-formed

� 1st application: (p ∧ q), (¬r) are well-formed

� 2nd application: ((¬r) ∧ q) is well-formed

� 3rd application: (((¬r) ∨ q) ∧ t)

� 4th application: ((p ∧ q) → (((¬r) ∨ q) ∧ t)) is well-formed

✔

3/18/2010

10

Final Thoughts

� Strong induction lets us prove universally quantified

statements using this inference rule:

� We can construct recursive

� Sets

� Sequences

� Grammars

P(0)

[P(0) ∧ P(1) ∧ … ∧ P(k)] → P(k+1)

∴∀x∈N P(x)

