CS441 - Discrete Structures for Computer Science

Instructor: Dr.Litman

Problem from Section 3.5

- 10. We must find, by inspection with mental arithmetic, the greatest common divisors of the numbers from 1 to 11 with 12, and list those whose gcd is 1. These are 1, 5, 7, and 11. There are so few since 12 had many factors—in particular, both 2 and 3.
- 12. Since these numbers are small, the easiest approach is to find the prime factorization of each number and look for any common prime factors.
 - a) Since $21 = 3 \cdot 7$, $34 = 2 \cdot 17$, and $55 = 5 \cdot 11$, these are pairwise relatively prime.
 - b) Since $85 = 5 \cdot 17$, these are not pairwise relatively prime.
 - c) Since $25 = 5^2$, 41 is prime, $49 = 7^2$, and $64 = 2^6$, these are pairwise relatively prime.
 - d) Since 17, 19, and 23 are prime and $18 = 2 \cdot 3^2$, these are pairwise relatively prime.
- 20. We form the greatest common divisors by finding the minimum exponent for each prime factor. d) 1
 - a) $2^2 \cdot 3^3 \cdot 5^2$
- b) $2 \cdot 3 \cdot 11$
- c) 17
- e) 5 f) $2 \cdot 3 \cdot 5 \cdot 7$
- 22. We form the least common multiples by finding the maximum exponent for each prime factor.
- b) $2^{11} \cdot 3^9 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17^{14}$ c) 17^{17} d) $2^2 \cdot 5^3 \cdot 7 \cdot 13$

- e) undefined (0 is not a positive integer) f) $2 \cdot 3 \cdot 5 \cdot 7$

Problem from Section 4.1

- 4. a) Plugging in n = 1 we have that P(1) is the statement $1^3 = [1 \cdot (1+1)/2]^2$.
 - b) Both sides of P(1) shown in part (a) equal 1.
 - c) The inductive hypothesis is the statement that

$$1^3 + 2^3 + \dots + k^3 = \left(\frac{k(k+1)}{2}\right)^2$$
.

d) For the inductive step, we want to show for each $k \ge 1$ that P(k) implies P(k+1). In other words, we want to show that assuming the inductive hypothesis (see part (c)) we can prove

$$[1^3 + 2^3 + \dots + k^3] + (k+1)^3 = \left(\frac{(k+1)(k+2)}{2}\right)^2$$
.

e) Replacing the quantity in brackets on the left-hand side of part (d) by what it equals by virtue of the inductive hypothesis, we have

$$\left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3 = (k+1)^2 \left(\frac{k^2}{4} + k + 1\right) = (k+1)^2 \left(\frac{k^2 + 4k + 4}{4}\right) = \left(\frac{(k+1)(k+2)}{2}\right)^2,$$
 as desired.

f) We have completed both the basis step and the inductive step, so by the principle of mathematical induction, the statement is true for every positive integer n.

CS441 - Discrete Structures for Computer Science

Instructor: Dr.Litman

Problem from Section 4.1

18. a) Plugging in n=2, we see that P(2) is the statement $2! < 2^2$.

b) Since 2! = 2, this is the true statement 2 < 4.

c) The inductive hypothesis is the statement that $k! < k^k$.

d) For the inductive step, we want to show for each $k \geq 2$ that P(k) implies P(k+1). In other words, we want to show that assuming the inductive hypothesis (see part (c)) we can prove that $(k+1)! < (k+1)^{k+1}$.

e) $(k+1)! = (k+1)k! < (k+1)k^k < (k+1)(k+1)^k = (k+1)^{k+1}$

f) We have completed both the basis step and the inductive step, so by the principle of mathematical induction, the statement is true for every positive integer n greater than 1.

32. The statement is true for the base case, n = 0, since $3 \mid 0$. Suppose that $3 \mid (k^3 + 2k)$. We must show that $3 \mid ((k+1)^3 + 2(k+1))$. If we expand the expression in question, we obtain $k^3 + 3k^2 + 3k + 1 + 2k + 2 =$ $(k^3+2k)+3(k^2+k+1)$. By the inductive hypothesis, 3 divides k^3+2k , and certainly 3 divides $3(k^2+k+1)$, so 3 divides their sum, and we are done.