CS441 - Discrete Structures for Computer Science

Instructor: Dr.Litman

Problems from Section 1.5

- 18. We know that some s exists that makes S(s, Max) true, but we cannot conclude that Max is one such s. Therefore this first step is invalid.
- 24. Steps 3 and 5 are incorrect; simplification applies to conjunctions, not disjunctions.

Problems from Section 1.6

- **6.** An odd number is one of the form 2n+1, where n is an integer. We are given two odd numbers, say 2a+1 and 2b+1. Their product is (2a+1)(2b+1)=4ab+2a+2b+1=2(2ab+a+b)+1. This last expression shows that the product is odd, since it is of the form 2n+1, with n=2ab+a+b.
- 18. a) We must prove the contrapositive: If n is odd, then 3n + 2 is odd. Assume that n is odd. Then we can write n = 2k + 1 for some integer k. Then 3n + 2 = 3(2k + 1) + 2 = 6k + 5 = 2(3k + 2) + 1. Thus 3n + 2 is two times some integer plus 1, so it is odd.
 - b) Suppose that 3n + 2 is even and that n is odd. Since 3n + 2 is even, so is 3n. If we add subtract an odd number from an even number, we get an odd number, so 3n n = 2n is odd. But this is obviously not true. Therefore our supposition was wrong, and the proof by contradiction is complete.