CS441 - Discrete Structures for Computer Science

Instructor: Dr.Litman

Problems from Section 1.5

b) Let r(x) be "r is one of the five roommates listed," let d(x) be "x has taken a course in discrete mathematics," and let a(x) be "x can take a course in algorithms." We are given premises $\forall x(r(x) \to d(x))$ and $\forall x(d(x) \to a(x))$, and we want to conclude $\forall x(r(x) \to a(x))$. In what follows y represents an arbitrary person.

Step	Reason
1. $\forall x (r(x) \rightarrow d(x))$	Hypothesis
2. $r(y) \rightarrow d(y)$	Universal instantiation using (1)
3. $\forall x(d(x) \rightarrow a(x))$	Hypothesis
4. $d(y) \rightarrow a(y)$	Universal instantiation using (3)
5. $r(y) \rightarrow a(y)$	Hypothetical syllogism using (2) and (4)
6. $\forall x(r(x) \rightarrow a(x))$	Universal generalization using (5)

c) Let s(x) be "x is a movie produced by Sayles." let c(x) be "x is a movie about coal miners," and let

w(x) be "movie x is wonderful." We are given premises $\forall x(s(x) \to w(x))$ and $\exists x(s(x) \land c(x))$, and we want to conclude $\exists x(c(x) \land w(x))$. In our proof, y represents an unspecified particular movie.

Step	Reason
1. $\exists x (s(x) \land c(x))$	Hypothesis
2. $s(y) \wedge c(y)$	Existential instantiation using (1)
$3. \ s(y)$	Simplification using (2)
4. $\forall x(s(x) \to w(x))$	Hypothesis
5. $s(y) \rightarrow w(y)$	Universal instantiation using (4)
6. $w(y)$	Modus ponens using (3) and (5)
7. $c(y)$	Simplification using (2)
8. $w(y) \wedge c(y)$	Conjunction using (6) and (7)
9. $\exists x (c(x) \land w(x))$	Existential generalization using (8)

d) Let c(x) be "x is in this class," let f(x) be "x has been to France," and let l(x) be "x has visited the Louvre." We are given premises $\exists x(c(x) \land f(x)), \ \forall x(f(x) \rightarrow l(x)), \$ and we want to conclude $\exists x(c(x) \land l(x)).$ In our proof, y represents an unspecified particular person.

Step	Reason
1. $\exists x (c(x) \land f(x))$	Hypothesis
2. $c(y) \wedge f(y)$	Existential instantiation using (1)
3. f(y)	Simplification using (2)
4. $c(y)$	Simplification using (2)
5. $\forall x (f(x) \rightarrow l(x))$	Hypothesis
6. $f(y) \rightarrow l(y)$	Universal instantiation using (5)
7. $l(y)$	Modus ponens using (3) and (6)
8. $c(y) \wedge l(y)$	Conjunction using (4) and (7)
9. $\exists x (c(x) \land l(x))$	Existential generalization using (8)