Speech and Language Processing

Chapter 11
Syntactic Parsing

Today

- Parsing with CFGs
 - Bottom-up, top-down
 - Ambiguity
 - CKY parsing
 - (Earley)
 - Shallow

9/27/2018

Speech and Language Processing - Jurafsky and Martin

Parsing

- Parsing with CFGs refers to the task of assigning proper trees to input strings
- Proper here means a tree that covers all and only the elements of the input and has an S at the top
- It doesn't actually mean that the system can select the correct tree from among all the possible trees

9/27/2018

Speech and Language Processing - Jurafsky and Martin

:

Parsing

- As with everything of interest, parsing involves a search which involves the making of choices
- We'll start with some basic (meaning bad) methods before moving on to the one that you need to know

9/27/2018

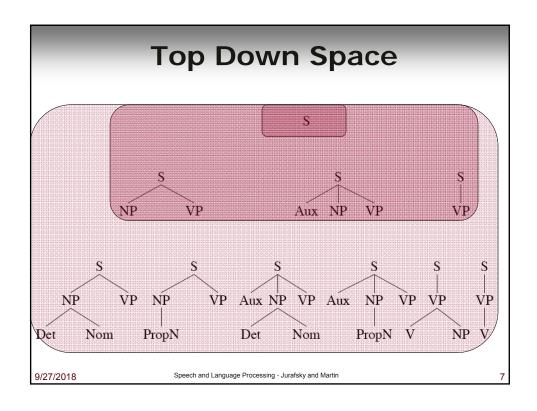
Speech and Language Processing - Jurafsky and Martin

For Now

- Assume...
 - You have all the words already in some buffer
 - The input isn't POS tagged
 - We won't worry about morphological analysis
 - All the words are known
 - These are all problematic in various ways, and would have to be addressed in real applications.

9/27/2018

Speech and Language Processing - Jurafsky and Martin


.

Top-Down Search

- Since we're trying to find trees rooted with an S (Sentences), why not start with the rules that give us an S.
- Then we can work our way down from there to the words.

9/27/2018

Speech and Language Processing - Jurafsky and Martin

Bottom-Up Parsing

- Of course, we also want trees that cover the input words. So we might also start with trees that link up with the words in the right way.
- Then work your way up from there to larger and larger trees.

9/27/2018

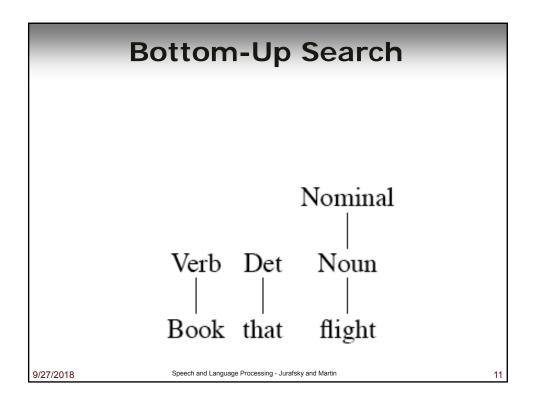
Speech and Language Processing - Jurafsky and Martin

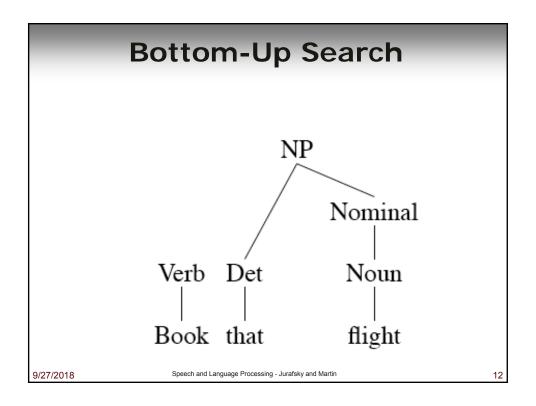
Bottom-Up Search

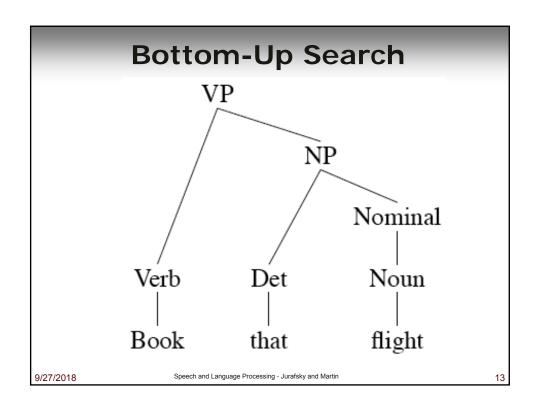
Book that flight

9/27/2018

Speech and Language Processing - Jurafsky and Martin


Bottom-Up Search


Verb Det Noun


| | |
Book that flight

9/27/2018

Speech and Language Processing - Jurafsky and Martin

"The old dog the footsteps of the young."				
S → NP VP	VP → V			
S → Aux NP VP	VP -> V PP			
S -> VP	PP -> Prep NP			
NP → Det Nom	N → old dog footsteps young			
NP →PropN	V → dog eat sleep bark meow			
Nom -> Adj N	Aux → does can			
Nom → N	Prep →from to on of			
Nom → N Nom	PropN → Fido Felix			
Nom → Nom PP	Det → that this a the			
VP → V NP	Adj -> old happy young			

Top-Down and Bottom-Up

- Top-down
 - Only searches for trees that can be answers (i.e. S's)
 - But also suggests trees that are not consistent with any of the words
- Bottom-up
 - Only forms trees consistent with the words
 - But suggests trees that make no sense globally

9/27/2018

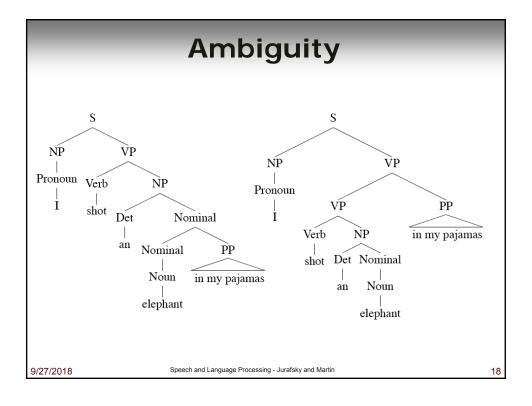
Speech and Language Processing - Jurafsky and Martin

15

Control

- Of course, in both cases we left out how to keep track of the search space and how to make choices
 - Which node to try to expand next
 - Which grammar rule to use to expand a node
- One approach is called backtracking.
 - Make a choice, if it works out then fine
 - If not then back up and make a different choice

9/27/2018


Speech and Language Processing - Jurafsky and Martin

Problems

- Even with the best filtering, backtracking methods are doomed because of two inter-related problems
 - Ambiguity
 - Shared subproblems

9/27/2018

Speech and Language Processing - Jurafsky and Martin

Example types of ambiguity

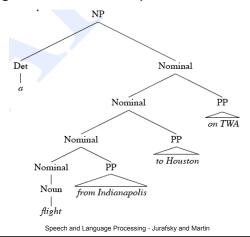
- POS
- Attachment
 - PP
 - Coordination (old dogs and cats)

9/27/2018

Speech and Language Processing - Jurafsky and Martin

19

Shared Sub-Problems


- No matter what kind of search (top-down or bottom-up or mixed) that we choose.
 - We don't want to redo work we've already done.
 - Unfortunately, naïve backtracking will lead to duplicated work.

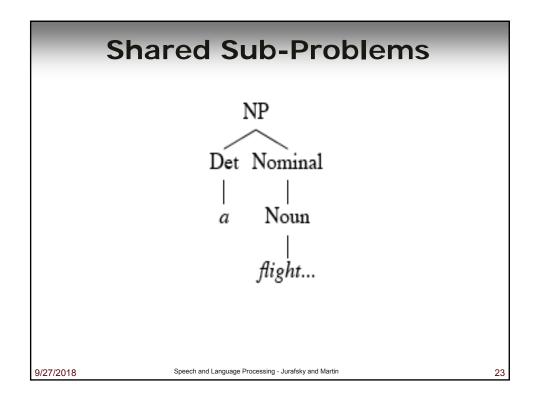
9/27/2018

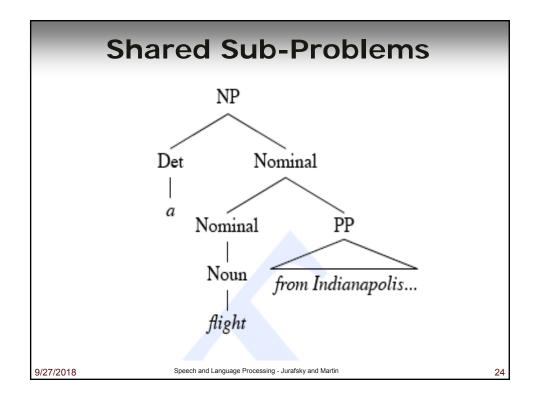
Speech and Language Processing - Jurafsky and Martin

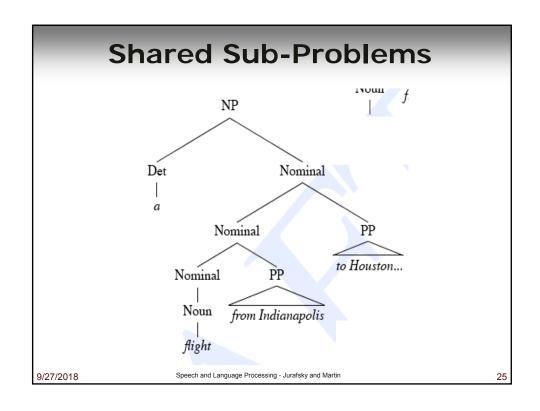
Shared Sub-Problems

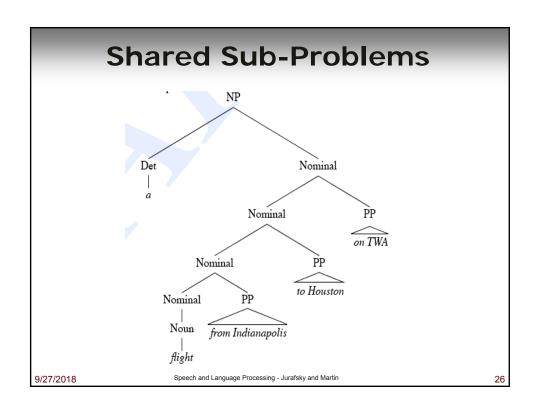
- Consider
 - A flight from Indianapolis to Houston on TWA

9/27/2018


21


Shared Sub-Problems


- Assume a top-down parse making choices among the various Nominal rules.
- In particular, between these two
 - Nominal -> Noun
 - Nominal -> Nominal PP
- Statically choosing the rules in this order leads to the following bad results...


9/27/2018

Speech and Language Processing - Jurafsky and Martin

Dynamic Programming

- DP search methods fill tables with partial results and thereby
 - Avoid doing avoidable repeated work
 - Solve exponential problems in polynomial time
 - Efficiently store ambiguous structures with shared sub-parts.
- Two approaches roughly correspond to bottomup and top-down approaches.
 - CKY
 - Earley

9/27/2018

Speech and Language Processing - Jurafsky and Martin

27

CKY Parsing

- First we'll limit our grammar to epsilonfree, binary rules (more later)
- Consider the rule $A \rightarrow BC$
 - If there is an A somewhere in the input then there must be a B followed by a C in the input.
 - If the A spans from i to j in the input then there must be some k st. i<k<j</p>
 - Ie. The B splits from the C someplace.

9/27/2018

Speech and Language Processing - Jurafsky and Martin

Problem

- What if your grammar isn't binary?
 - As in the case of the TreeBank grammar?
- Convert it to binary... any arbitrary CFG can be rewritten into Chomsky-Normal Form automatically.
- What does this mean?
 - The resulting grammar accepts (and rejects) the same set of strings as the original grammar.
 - But the resulting derivations (trees) are different.

9/27/2018

Speech and Language Processing - Jurafsky and Martin

29

Problem

More specifically, we want our rules to be of the form

```
A \rightarrow B C
```

Or

 $A \rightarrow W$

That is, rules can expand to either 2 nonterminals or to a single terminal.

9/27/2018

Speech and Language Processing - Jurafsky and Martin

Binarization Intuition

- Eliminate chains of unit productions.
- Introduce new intermediate non-terminals into the grammar that distribute rules with length > 2 over several rules.

• So...
$$S \rightarrow A B C turns into$$

$$S \rightarrow X C$$
 and

$$X \rightarrow A B$$

Where X is a symbol that doesn't occur anywhere else in the the grammar.

9/27/2018

9/27/2018

Speech and Language Processing - Jurafsky and Martin

3

Sample L1 Grammar

Grammar	Lexicon
$S \rightarrow NP VP$	$Det \rightarrow that \mid this \mid a$
$S \rightarrow NI VI$ $S \rightarrow Aux NP VP$	$Noun \rightarrow book \mid flight \mid meal \mid money$
$S \rightarrow Rux NI VI$ $S \rightarrow VP$	Verb → book include prefer
$NP \rightarrow Pronoun$	$Pronoun \rightarrow I \mid she \mid me$
$NP \rightarrow Proper-Noun$	$Proper-Noun \rightarrow Houston \mid NWA$
$NP \rightarrow Det\ Nominal$	$Aux \rightarrow does$
$Nominal \rightarrow Noun$	$Preposition \rightarrow from \mid to \mid on \mid near \mid through$
Nominal → Nominal Noun	
$Nominal \rightarrow Nominal PP$	
$VP \rightarrow Verb$	
$VP \rightarrow Verb NP$	
$VP \rightarrow Verb NP PP$	
$VP \rightarrow Verb PP$	
$VP \rightarrow VP PP$	
$PP \rightarrow Preposition NP$	

Speech and Language Processing - Jurafsky and Martin

CNF Conversion \mathcal{L}_1 Grammar $S \rightarrow NP VP$ $S \rightarrow NP VP$ $S \rightarrow Aux NP VP$ $S \rightarrow XIVP$ $XI \rightarrow Aux NP$ $S \rightarrow book \mid include \mid prefer$ $S \rightarrow VP$ $S \rightarrow Verb NP$ $S \rightarrow X2 PP$ $S \rightarrow Verb PP$ $S \rightarrow VPPP$ $NP \rightarrow Pronoun$ $NP \rightarrow I \mid she \mid me$ NP → Proper-Noun NP → TWA | Houston NP → Det Nominal NP → Det Nominal Nominal → Noun Nominal → book | flight | meal | money Nominal → Nominal Noun Nominal → Nominal Noun $Nominal \rightarrow Nominal PP$ $Nominal \rightarrow Nominal PP$ VP → book | include | prefer $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow Verb NP$ $VP \rightarrow X2 PP$ $VP \rightarrow Verb NP PP$ $X2 \rightarrow Verb NP$ $VP \rightarrow Verb PP$ VP → Verb PP $VP \rightarrow VP PP$ $VP \rightarrow VP PP$ PP → Preposition NP PP → Preposition NP Speech and Language Processing - Jurafsky and Martin 9/27/2018

CKY

- So let's build a table so that an A spanning from i to j in the input is placed in cell [i,j] in the table.
- So a non-terminal spanning an entire string will sit in cell [0, n]
 - Hopefully an S
- If we build the table bottom-up, we'll know that the parts of the A must go from i to k and from k to j, for some k.

9/27/2018 Speech and Language Processing - Jurafsky and Martin

CKY

- Meaning that for a rule like A → B C we should look for a B in [i,k] and a C in [k,j].
- In other words, if we think there might be an A spanning i,j in the input... AND
 A → B C is a rule in the grammar THEN
- There must be a B in [i,k] and a C in [k,j] for some i<k<j</p>

9/27/2018

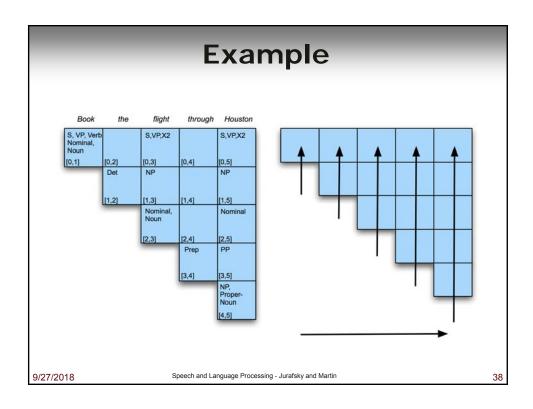
Speech and Language Processing - Jurafsky and Martin

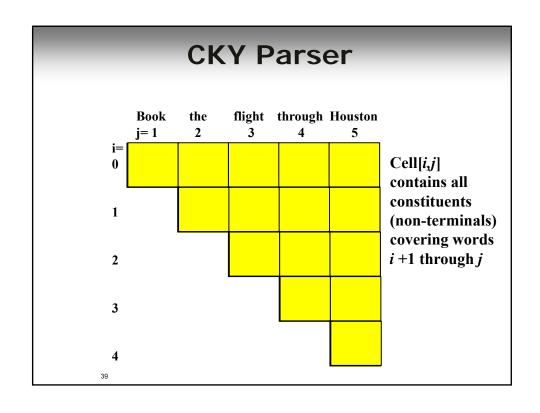
3

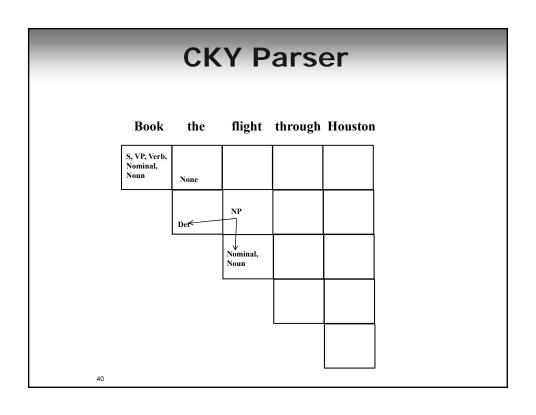
CKY

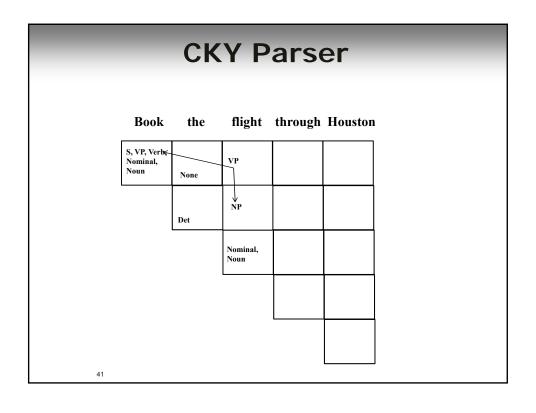
- So to fill the table loop over the cell[i,j] values in some systematic way
 - What constraint should we put on that systematic search?
 - For each cell, loop over the appropriate k values to search for things to add.

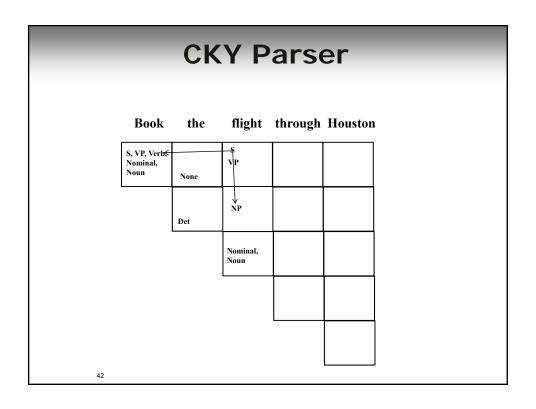
9/27/2018

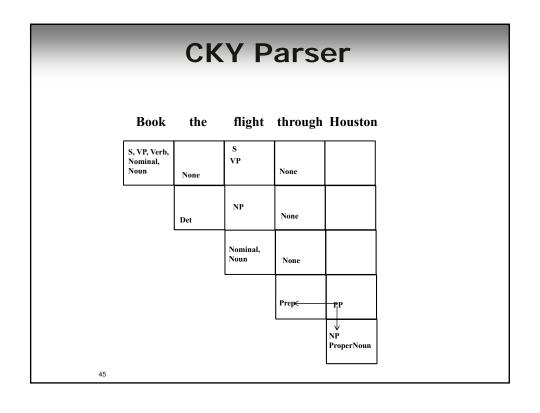

Speech and Language Processing - Jurafsky and Martin

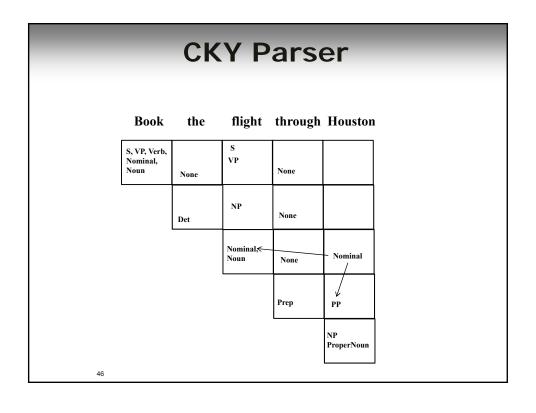

Note

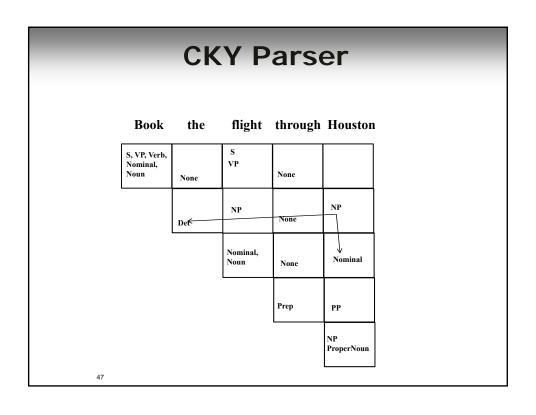

- We arranged the loops to fill the table a column at a time, from left to right, bottom to top.
 - This assures us that whenever we're filling a cell, the parts needed to fill it are already in the table (to the left and below)
 - It's somewhat natural in that it processes the input a left to right a word at a time
 - Known as online

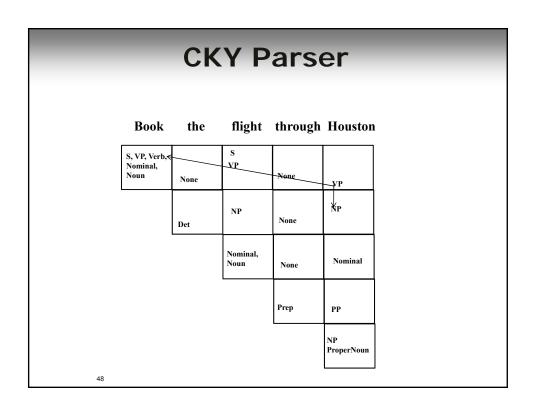

9/27/2018

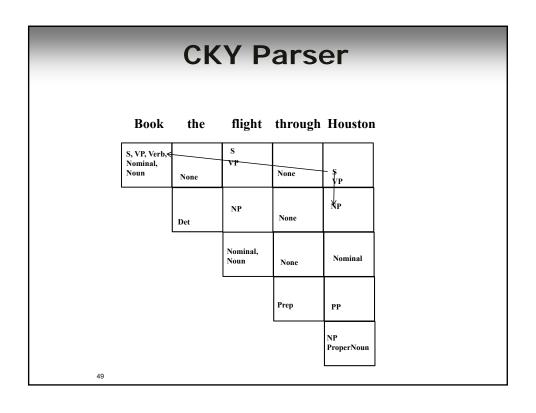

Speech and Language Processing - Jurafsky and Martin

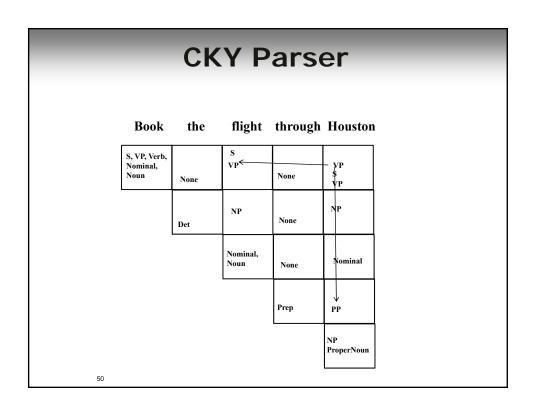


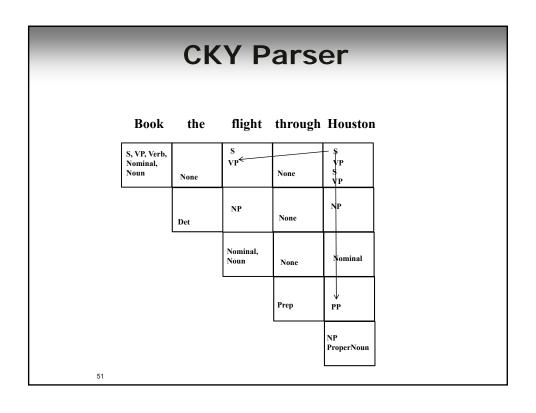


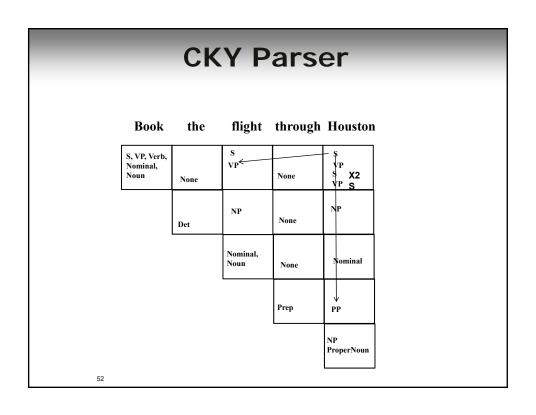


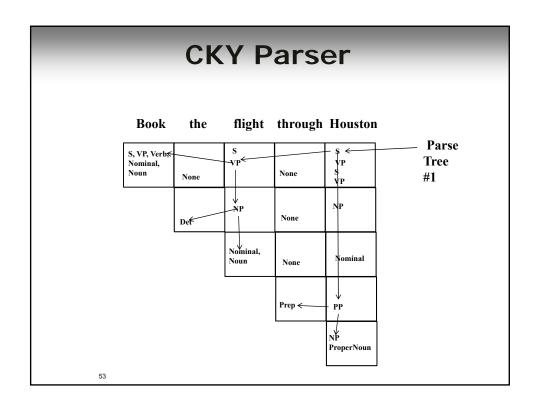

CKY Parser					
	Book	the	flight	through	Houston
	S, VP, Verb, Nominal, Noun	None	S VP, X2		
·		Det	NP		
			Nominal, Noun		
43					

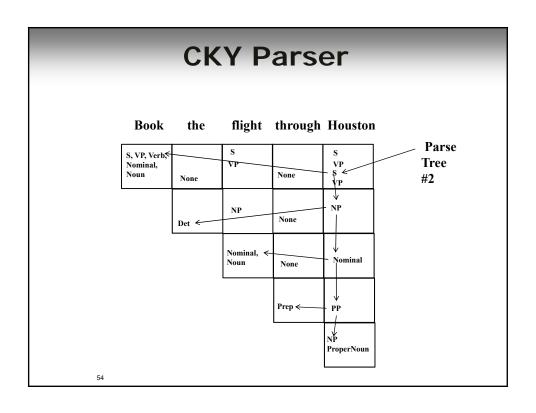

CKY Parser					-	
	Book	the	flight	through	Houston	
1	S, VP, Verb, Nominal, Noun	None	S VP	None		
		Det	NP	None		
	·		Nominal, Noun	None		
				Prep		
44						

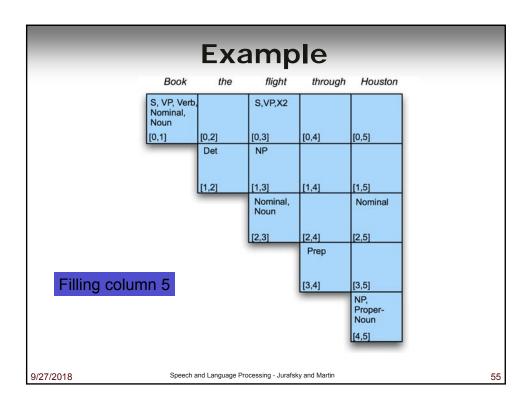


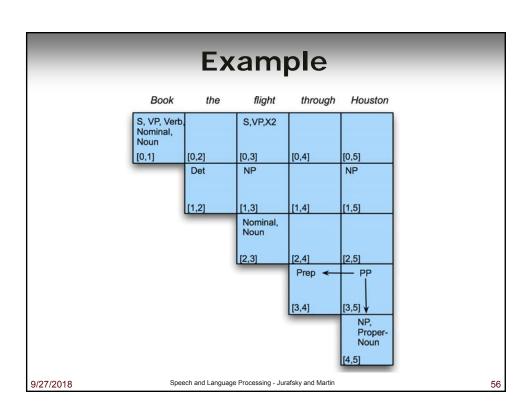


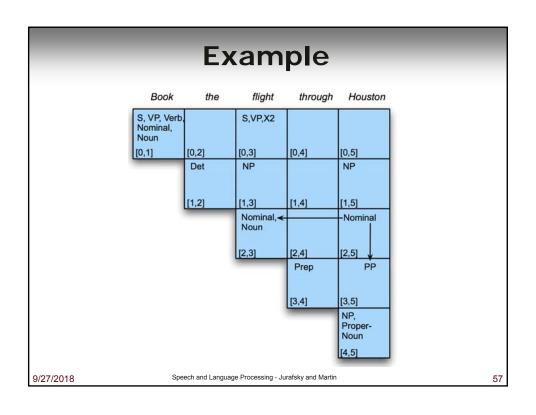


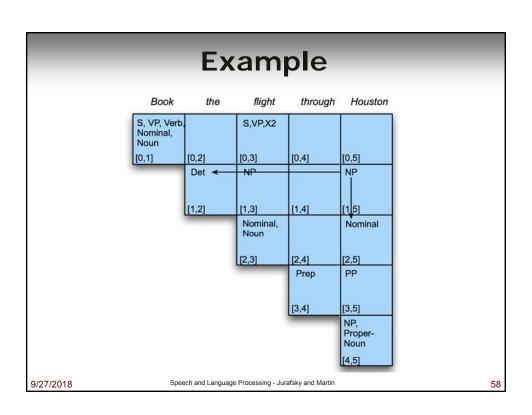


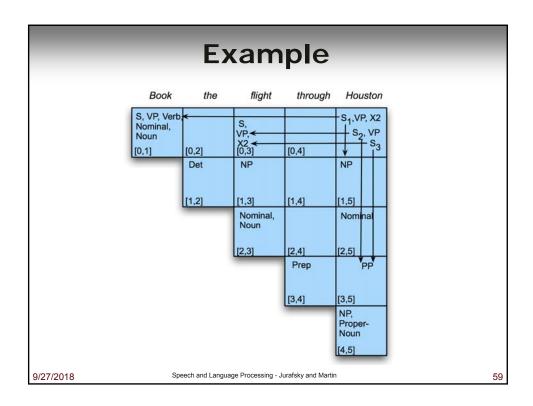












CKY Notes

- Since it's bottom up, CKY populates the table with a lot of phantom constituents.
 - Segments that by themselves are constituents but cannot really occur in the context in which they are being suggested.
 - To avoid this we can switch to a top-down control strategy
 - Or we can add some kind of filtering that blocks constituents where they can not happen in a final analysis.

9/27/2018

Speech and Language Processing - Jurafsky and Martin

Earley Parsing

- Allows arbitrary CFGs
- Top-down control
- Fills a table in a single sweep over the input
 - Table is length N+1; N is number of words
 - Table entries represent
 - Completed constituents and their locations
 - In-progress constituents
 - Predicted constituents

9/27/2018

Speech and Language Processing - Jurafsky and Martin

6

Back to Ambiguity

■ Did we solve it?

9/27/2018

Speech and Language Processing - Jurafsky and Martin

Ambiguity

- No...
 - Both CKY and Earley will result in multiple S structures for the [0,N] table entry.
 - They both efficiently store the sub-parts that are shared between multiple parses.
 - And they obviously avoid re-deriving those sub-parts.
 - But neither can tell us which one is right.

9/27/2018

Speech and Language Processing - Jurafsky and Martin

63

Ambiguity

- In most cases, humans don't notice incidental ambiguity (lexical or syntactic).
 It is resolved on the fly and never noticed.
 - I ate the spaghetti with chopsticks
 - I ate the spaghetti with meatballs
- We'll try to model that with probabilities.

9/27/2018

Speech and Language Processing - Jurafsky and Martin

Shallow or Partial Parsing

- Sometimes we don't need a complete parse tree
 - Information extraction
 - Question answering
- But we would like more than simple POS sequences

65

Chunking

- Find major but unembedded constituents like NPs, VPs, AdjPs, PPs
 - Most common task: NP chunking of base NPs
 - [NP I] saw [NP the man] on [NP the hill] with [NP a telescope]
 - No attempt to identify full NPs no recursion, no post-head words
 - No overlapping constituents
 - E.g., if we add PPs or VPs, they may consist only of their heads, e.g. [PP on]

Approaches: RE Chunking

- Use regexps to identify constituents, e.g.
 - NP \rightarrow (DT) NN* NN
 - Find longest matching chunk
 - Hand-built rules
 - No recursion but can cascade to approximate true CF parser, aggregating larger and larger constituents

Approaches: Tagging for Chunking

- Require annotated corpus
- Train classifier to classify each element of input in sequence (e.g. IOB Tagging)
 - B (beginning of sequence)
 - I (internal to sequence)
 - O (outside of any sequence)
 - No end-of-chunk coding it's implicit
 - Easier to detect the beginning than the end Book/B_VP that/B_NP flight/I_NP quickly/O

Summary and Limitations

- Sometimes shallow parsing is enough for task
- Performance quite accurate

Distribution of Chunks in CONLL Shared Task

Label	Category	Proportion (%)	Example
NP	Noun Phrase	51	The most frequently cancelled flight
VP	Verb Phrase	20	may not arrive
PP	Prepositional Phrase	20	to Houston
ADVP	Adverbial Phrase	4	earlier
SBAR	Subordinate Clause	2	that
ADJP	Adjective Phrase	2	late

Summing Up

- Parsing as search: what search strategies to use?
 - Top down
 - Bottom up
 - How to combine?
- How to parse as little as possible
 - Dynamic Programming
- Shallow Parsing