Logistic Regression

Chapter 5 (5.1-5.2)

1

Classification

- Learn: f:X->Y
 - -X features
 - Y target classes

•2

Generative vs. Discriminative Models

Generative

Discriminative

- Learn a model of the joint probability p(d, c)
- Use Bayes' Rule to calculate p(c|d)
- Build a model of each class; given example, return the model most likely to have generated that example
- Examples: Naive Bayes, HMM

Naive Bayes Review

```
• Features = {I hate love this book}
```

 $P(Y) = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix}$

Training

 $M = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$

I hate this bookLove this book

 $P(X|Y) = \begin{bmatrix} 1/4 & 1/4 & 0 & 1/4 & 1/4 \\ 0 & 0 & 1/3 & 1/3 & 1/3 \end{bmatrix}$

• What is P(Y|X)?

• Prior p(Y)

 $P(Y|X) \propto [1/2 \times 1/4 \times 1/4 \quad 1/2 \times 0 \times 1/3] = [1\ 0]$

Testing

- hate book

 $\mathbf{M} = \begin{bmatrix} 2 & 2 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 & 2 \end{bmatrix}$

Different conditions

a = 0 (no smoothing)a = 1 (smoothing)

 $P(X|Y) = \begin{bmatrix} 2/9 & 2/9 & 1/9 & 2/9 & 2/9 \\ 1/8 & 1/8 & 2/8 & 2/8 & 2/8 \end{bmatrix}$

 $P(Y|X) \propto [1/2 \times 2/9 \times 2/9 \quad 1/2 \times 1/8 \times 2/8] = [0.613 \ 0.387]$

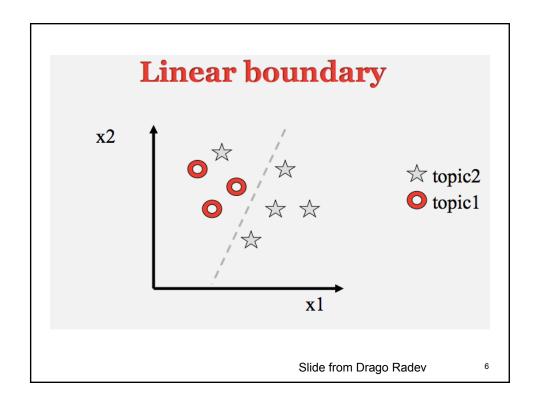
Generative vs. Discriminative Models

Generative

- Learn a model of the joint probability p(d, c)
- Use Bayes' Rule to calculate p(c|d)
- Build a model of each class; given example, return the model most likely to have generated that example
- Examples: Naive Bayes, HMM

Discriminative

- Model p(c|d) directly
- Class is a function of document vector
- Find the exact function that minimizes classification errors on the training data
- Learn boundaries between classes
- · Example: Logistic regression



Discriminative vs. Generative Classifiers

- Discriminative classifiers are generally more effective, since they directly optimize the classification accuracy. But
 - They are sensitive to the choice of features
 - Plus: easy to incorporate linguistic information
 - Minus: until neural networks, features extracted heuristically
 - Also, overfitting can happen if data is sparse
- Generative classifiers are the "opposite"
 - They directly model text, an unnecessarily harder problem than classification

Assumptions of Discriminative Classifiers

- Data examples (documents) are represented as vectors of features (words, phrases, ngrams, etc)
- Looking for a function that maps each vector into a class.
- This function can be found by minimizing the errors on the training data (plus other various criteria)
- Different classifiers vary on what the function looks like, and how they find the function

Linear Separators

```
f(x) = \Theta X + b
where
\Theta is a vector of weights: w_1....w_n
X is the input vector
b is a constant
```

Two dimensional space:

 $w_1x_1+w_2x_2=b$ In n-dimensional spaces:

 $\Theta X = \sum_{i=1}^{n} = w_1 x_1 + w_2 x_2 + + w_n x_n$

One can also add $w_{0=1}$, x_0 =b to account for bias

Pass output of f(x) to the sign function, mapping negative values to -1 and positive values to 1

How to find the weights?

- Logistic regression is one method
- Training using optimization
 - Select values for w
 - Compute f(x)
 - Compare f(x) output to gold labels and compute loss
 - Adjust w

10

Using a loss function

- Training data
 - x₁ x₂ x_n (input)
 - y₁y₂ y_n (labels)
- Algorithm that returns f(x) with predictions ŷ
- Loss function L(ŷ,y)
- Parameters of the learned function (Θ,b) set to minimize L

11

Logistic Regression

- · An example of a discriminative classifier
- Input:
 - Training example pairs of (\vec{x}, y) where \vec{x} is the feature vector and y is the label
- Goal:
 - Build a model that predicts the probability of the label
- Output:
 - Set of weights \vec{w} that maximizes likelihood of correct labels on training examples

Logistic Regression

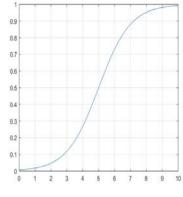
- Similar to Naive Bayes (but discriminative!)
 - Log-linear model
 - Features don't have to be independent
- Examples of features
 - Anything of use
 - Linguistic and non-linguistic
 - Count of "good"
 - Count of "not good"
 - Sentence length

Classification using LR

- Compute the feature vector x
- Multiply with weight vector w

$$z = \sum w_i x_i$$

• Compute the logistic sigmoid function $f(z) = \frac{1}{1 + e^{-z}}$



Examples

• Example 1

$$x = (2,1,1,1)$$

$$w = (1,-1,-2,3)$$

$$z = 2-1-2+3=2$$

$$f(z) = 1/(1+e^{-2})$$

• Example 2

$$x = (2,1,0,1)$$

$$w = (0,0,-3,0)$$

$$z = 0$$

$$f(z) = 1/(1+e^{0}) = 1/2$$

Why Sigmoid? First, Linear Regression

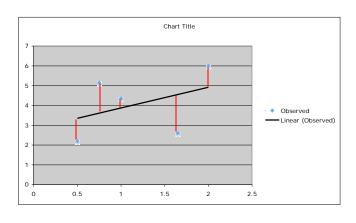
• Regression used to fit a linear model to data where the dependent variable is continuous:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \Box + \beta_n X_n + \varepsilon$$

- Given a set of points (Xi,Yi), we wish to find a linear function (or line in 2 dimensions) that "goes through" these points.
- In general, the points are not exactly aligned:
 - Find line that best fits the points

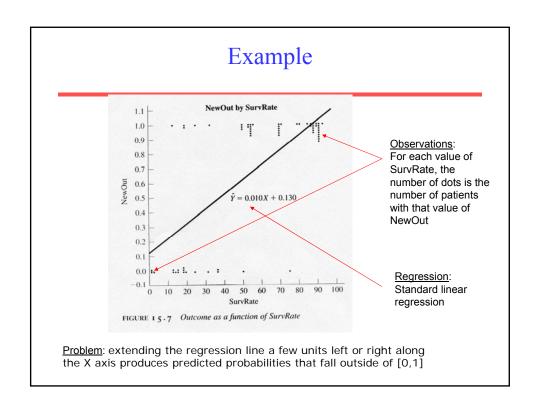
Error

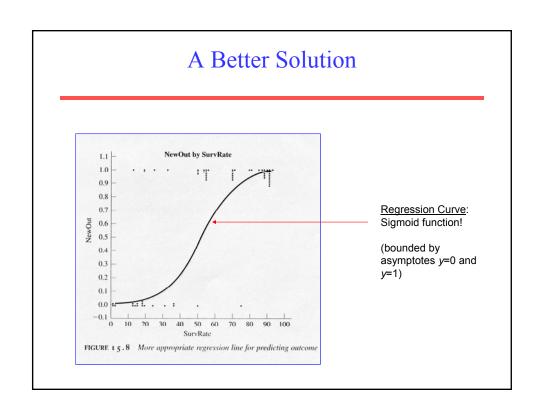
- Error:
 - Observed value Predicted value

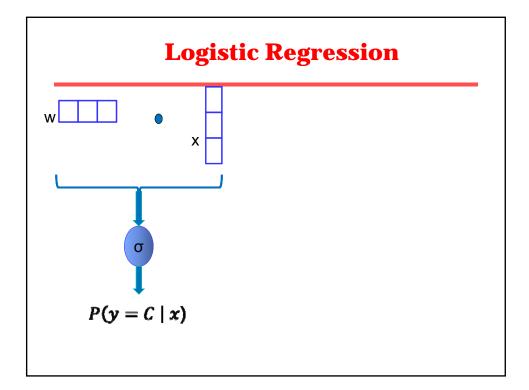


Logistic Regression

- Regression used to fit a curve to data in which the dependent variable is binary, or dichotomous
- Example application: Medicine
 - We might want to predict response to treatment,
 where we might code survivors as 1 and those
 who don't survive as 0







Constructing a Learning Algorithm

• The conditional data likelihood is the probability of the observed Y values in the training data, conditioned on their corresponding X values. We choose parameters w that satisfy

$$\mathbf{w} = \arg\max_{\mathbf{w}} \prod_{l} P(y^{l} \mid \mathbf{x}^{l}, \mathbf{w})$$

• where $\mathbf{w} = \langle \mathbf{w}_0, \mathbf{w}_1, ..., \mathbf{w}_n \rangle$ is the vector of parameters to be estimated, \mathbf{y}^l denotes the observed value of Y in the l th training example, and \mathbf{x}^l denotes the observed value of \mathbf{X} in the l th training example

•22

Constructing a Learning Algorithm

• Equivalently, we can work with the log of the conditional likelihood:

$$\mathbf{w} = \arg\max_{\mathbf{w}} \sum_{l} \ln P(y^{l} \mid \mathbf{x}^{l}, \mathbf{w})$$

• This conditional data log likelihood, which we will denote l(W) can be written as

$$l(\mathbf{w}) = \sum_{l} y^{l} \ln P(y^{l} = 1 \mid \mathbf{x}^{l}, \mathbf{w}) + (1 - y^{l}) \ln P(y^{l} = 0 \mid \mathbf{x}^{l}, \mathbf{w})$$

• Note here we are utilizing the fact that Y can take only values 0 or 1, so only one of the two terms in the expression will be non-zero for any given y^l

•23

Fitting LR by Gradient Descent

- Unfortunately, there is no closed form solution to maximizing l(w) with respect to w. Therefore, one common approach is to use gradient descent
 - Beginning with initial weights of zero, we repeatedly update the weights
 - Details optional, see text

Summary of Logistic Regression

- Learns the Conditional Probability Distribution P(y|x)
- · Local Search.
 - Begins with initial weight vector.
 - Modifies it iteratively to maximize an objective function.
 - The objective function is the conditional log likelihood of the data so the algorithm seeks the probability distribution P(y|x) that is most likely given the data.

•25

Final Comments

- In general, NB and LR make different assumptions
 - NB: Features independent given class -> assumption on P(X|Y)
 - LR: Functional form of P(Y|X), no assumption on P(X|Y)
- LR is optimized
 - no closed-form solution

•26