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Logistic Regression

Chapter 5 

(5.1-5.2)
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Classification

• Learn: f:X->Y
– X – features

– Y – target classes
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Generative vs. Discriminative Models

• Learn a model of the joint probability p(d, c)

• Use Bayes’ Rule to calculate p(c|d) 

• Build a model of each class; given example, return 
the model most likely to have generated that 
example

• Examples: Naive Bayes, HMM

Generative Discriminative

Naive Bayes Review

• Features = {I hate love this book}
• Training

– I hate this book
– Love this book

• What is P(Y|X)?
• Prior p(Y) 
• Testing

– hate book
• Different conditions

– a = 0 (no smoothing)
– a = 1 (smoothing)
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Generative vs. Discriminative Models

• Learn a model of the joint probability p(d, c)

• Use Bayes’ Rule to calculate p(c|d) 

• Build a model of each class; given example, return 
the model most likely to have generated that 
example

• Examples: Naive Bayes, HMM

Generative Discriminative

• Model p(c|d) directly

• Class is a function of document vector

• Find the exact function that minimizes 
classification errors on the training data 

• Learn boundaries between classes

• Example: Logistic regression

6Slide from Drago Radev
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Discriminative vs. Generative Classifiers

• Discriminative classifiers are generally more effective, 
since they directly optimize the classification accuracy. 
But
– They are sensitive to the choice of features

• Plus: easy to incorporate linguistic information
• Minus: until neural networks, features extracted heuristically

– Also, overfitting can happen if data is sparse

• Generative classifiers are the “opposite”
– They directly model text, an unnecessarily harder problem 

than classification

Assumptions of Discriminative 
Classifiers

• Data examples (documents) are represented as vectors of 
features (words, phrases, ngrams, etc)

• Looking for a function that maps each vector into a class. 

• This function can be found by minimizing the errors on the 
training data (plus other various criteria)

• Different classifiers vary on what the function looks like, and 
how they find the function



10/18/2018

5

9

How to find the weights?

• Logistic regression is one method

• Training using optimization
– Select values for w

– Compute f(x)

– Compare f(x) output to gold labels and compute 
loss

– Adjust w

10
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Logistic Regression

•
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Logistic Regression

• Similar to Naive Bayes (but discriminative!)
– Log-linear model
– Features don’t have to be independent

• Examples of features
– Anything of use
– Linguistic and non-linguistic
– Count of “good”
– Count of “not good”
– Sentence length

Classification using LR

• Compute the feature 
vector x

• Multiply with weight 
vector w

• Compute the logistic 
sigmoid function
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Examples

• Example 1
x = (2,1,1,1)
w = (1,-1,-2,3)
z = 2-1-2+3=2
f(z) = 1/(1+e-2)

• Example 2
x = (2,1,0,1)
w = (0,0,-3,0)
z = 0
f(z) = 1/(1+e0) = 1/2

Why Sigmoid?  
First, Linear Regression

• Regression used to fit a linear model to data where 
the dependent variable is continuous:

• Given a set of points (Xi,Yi), we wish to find a 
linear function (or line in 2 dimensions) that “goes 
through” these points.

• In general, the points are not exactly aligned:
– Find line that best fits the points

Y  0  1X1  2X2 �  n Xn 
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Error

• Error:
– Observed value - Predicted value

Chart Title
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Observed
Linear (Observed)

Logistic Regression

• Regression used to fit a curve to data in 
which the dependent variable is binary, or 
dichotomous

• Example application: Medicine
– We might want to predict response to treatment, 

where we might code survivors as 1 and those 
who don’t survive as 0
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Example

Observations:
For each value of 
SurvRate, the 
number of dots is the 
number of patients 
with that value of 
NewOut

Regression:
Standard linear 
regression

Problem: extending the regression line a few units left or right along 
the X axis produces predicted probabilities that fall outside of [0,1]

A Better Solution

Regression Curve:
Sigmoid function!

(bounded by 
asymptotes y=0 and 
y=1)
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Logistic Regression

x

σ

w
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Constructing a Learning Algorithm

• The conditional data likelihood is the probability 
of the observed Y values in the training data, 
conditioned on their corresponding X values. We 
choose parameters w that satisfy

• where w = <w0,w1 ,…,wn> is the vector of 
parameters to be estimated, yl denotes the 
observed value of Y in the l th training example, 
and xl denotes the observed value of X in the l th
training example

arg max ( | , )l l

l

P y
w

w = x w
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Constructing a Learning Algorithm

• Equivalently, we can work with the log of the 
conditional likelihood:

• This conditional data log likelihood, which we will 
denote l(W) can be written as

• Note here we are utilizing the fact that Y can take 
only values 0 or 1, so only one of the two terms in 
the expression will be non-zero for any given yl

arg max ln ( | , )l l

l

P y
w

w = x w

( ) ln ( 1| , ) (1 ) ln ( 0 | , )l l l l l l

l

l y P y y P y    w x w x w
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Fitting LR by Gradient Descent

• Unfortunately, there is no closed form 
solution to maximizing l(w) with respect to 
w. Therefore, one common approach is to 
use gradient descent
– Beginning with initial weights of zero, we 

repeatedly update the weights

– Details optional, see text
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Summary of Logistic Regression

• Learns the Conditional Probability 
Distribution P(y|x)

• Local Search.  
– Begins with initial weight vector.  
– Modifies it iteratively to maximize an objective 

function.  
– The objective function is the conditional log 

likelihood of the data – so the algorithm seeks 
the probability distribution P(y|x) that is most 
likely given the data.

•26

Final Comments

• In general, NB and LR make different 
assumptions
– NB: Features independent given class -> 

assumption on P(X|Y)

– LR: Functional form of P(Y|X), no assumption 
on P(X|Y)

• LR is optimized
– no closed-form solution


