Language
Modeling with
N-grams

Chapter 3
(3.1-3.4)

Rule-based vs. Probabilistic

“But it must be recognized that the notion of “probability of a
sentence” is an entirely useless one, under any known
interpretation of this term.” Noam Chomsky (1969)

“Anytime a linguist leaves the group the recognition rate goes
up.” Fred Jelinek (1988, alleged)

Intuition

Predict the next word...
* ... I noticed three guys standing on the ???

There are many sources of knowledge that can be used to
inform this task, including arbitrary world knowledge.

But it turns out that you can do pretty well by simply looking at
the preceding words and keeping track of some fairly simple
counts.

Word Prediction

We can formalize this task using what are called N-gram models.
N-grams are token sequences of length N.

This example contains what 2-grams (aka bigrams)?
* | notice three guys standing on the

Given knowledge of counts of N-grams such as these, we can
guess likely next words in a sequence.

N-Gram Models

* More formally, we can use knowledge of the counts of N-grams
to assess the conditional probability of candidate words as the
next word in a sequence.

* Or, we can use them to assess the probability of an entire
sequence of words.
* Pretty much the same thing as we’ll see...

Probability

Quick Review

Different Kinds of Statistics

descriptive: mean Pitt SAT (or median)

confirmatory: statistically significant?

predictive: wanna bet?

* N-grams

Notation

model

probabilit}.l

p(Paul Revere wins | weather’s clear) = 0.9

8

p is a function on sets of “outcomes”

p(win | clear) = p(win, clear) / p(clear)

Paul Revereg

All Outcomes (races)

p is a function on sets of “outcomes”

p(wini clear) = p(yvin,ycleay) / p(clear)

syntactic sugar logical conjunction predicate selecting
of predicates races where
weather’s clear

‘gﬂk p measures total
208 | probability of a set of

wihs

optcomes

All Outcomes (races)

most of the

Required Properties of p (axioms)

p(©D)=0 p(all outcomes) = 1
p(X) <p(Y) forany X Y
p(X) +p(Y)=p(XUY) provided X " Y=0

e.g., p(win & clear) + p(win & —clear) = p(win)

1

Commas denote conjunction

p(Paul Revere wins | weather’s clear, ground is dry, jockey
getting over sprain, Epitaph also in race, Epitaph was recently
bought by Gonzalez, race is on May 17, ...)

12

Simplifying Right Side: Backing Off

p(Paul Revere wins | weather’s clear, groundis dry _jockey
getting over sprain, Epltaph also in race, Epitaph-was recently

* not exactly what we want but at least we can get a
reasonable estimate of it!

« try to keep the conditions that we suspect will have
the most influence on1\?{vhether Paul Revere wins

Language
Modeling

Introduction to N-grams

Probabilistic Language Models

* Goal: assign a probability to a sentence
* Machine Translation:
* P(high winds tonite) > P(large winds tonite)

 Spell Correction
* The office is about fifteen minuets from my house

Why?

* P(about fifteen minutes from) > P(about fifteen minuets from)

» Speech Recognition

* P(l saw a van) >> P(eyes awe of an)

* + many more applications

Probabilistic Language Modeling

* Compute the probability of a sentence or word sequence
P(W) = P(w,,w,,w3,wW,,W....W,)

» Related task: probability of an upcoming word
P(W, | Wy, Wy,)

* A model that computes either is a language model
What kind of probabilities are these?

How to compute P(W)

* How to compute this joint probability:

* P(its, water, is, so, transparent, that)

* Intuition: let’s rely on the Chain Rule of Probability

Reminder: The Chain Rule

* Recall the definition of conditional probabilities
p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)
* Independent p(B|A) = P(B)
e More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)
e The Chain Rule in General
P(X1,X5,X3,..,X) = P(X{)P(X; | X{)P(X3]X%1,%;) ... P(X, | Xq,00 X, 1)

The Chain Rule applied to compute
joint probability of words in sentence

Pww,0 w,) =]]Pw, [ww,[w,,)

P(“its water is so transparent”) =
P(its) X P(water]its) X P(is|its water)
X P(so|its water is) X P(transparent]|its water is
S0)

How to estimate these probabilities

* Could we just count and divide?

P(the |its water is so transparent that) =

Count(its water 1s so transparent that the)
Count(its water is so transparent that)

* No! Too many possible sentences!
* We'll never see enough data for estimating these

10

Markov Assumption

* Simplifying assumption:

Andrei Markov

P(the |its water 1s so transparent that) = P(the |that)

* Or maybe

P(the |its water is so transparent that) ~ P(the | transparent that)

Markov Assumption
P(ww,l w,) zl_IF)(Wi wi_ O w;)
i

* |In other words, we approximate each
component in the product

P(w; lww,l w_)~P(w; |w_[w_,)

11

P(w; [w,w,l] w,_)=P(w; [w,_ [w_,)

* Bigram model (k=1, e.g., context of one so model two words)

Simplest case: Unigram model

Pww,0 w)~]]Pw)

Some automatically generated sentences from a unigram model

fifth, an, of, futures, the, an, incorporated, a,
a, the, inflation, most, dollars, quarter, in, is,
mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

12

Bigram model

Condition on the previous word:
P(w; [ww,[] w;_)~ P(w; |w,_,)

texaco, rose, one, in, this, issue, is, pursuing, growth, in,
a, boiler, house, said, mr., gurria, mexico, 's, motion,
control, proposal, without, permission, from, five, hundred,
fifty, five, ven

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

N-gram models

* We can extend to trigrams, 4-grams, 5-grams

* In general this is an insufficient model of language
* because language has long-distance dependencies:

“The computer(s) which | had just put into the machine room
on the fifth floor is (are) crashing.”

e But we can often get away with N-gram models

13

Language
Modeling

Estimating N-gram
Probabilities

Estimating bigram probabilities

* The Maximum Likelihood Estimate

count(w,_,,w.)
count(w._,)

P(Wi |Wi—1) —

C(W, ;,W;)
C(W;_,)

P(Wi |Wi—1) —

14

An example

) _ C(Wi—lﬂwi)
T c(wyy)

<s>|am Sam </s>
<s>Sam|lam </s>
<s> | do not like green eggs and ham </s>

X
wn
4}
=
A
0]

v
I

(| bt
I
%)
(o

]
v}
=
H

e
I
|

(o))

-]

was beginning to get wvery tired of

sitting by her on the bank, of
having nothing to do: once or twice she
had peeped into the book her =: was
reading, but it had no pictures or
conversations in it, ' what is the use
of a book,' thought 'without

pictures or conversation?'’

P(of) = 3/66 P(her) = 2/66

P() = 2/66 P() =2/66
P(was) = 2/66 P(,) =4/66

P(to) = 2/66 P(') = 4/66

30

Example from Julia Hockenmaier

15

Conditional on the previous word

was beginning to get very tired of

sitting by her on the bank, of
having nothing to do: once or twice she
had peeped into the book her was
reading, but it had no pictures or
conversations in it, ' what is the use
of a book,' thought 'without

pictures or conversation?'

P(Wis1= bank | wi=the) =
P(wisi= book | wi=the) =
P(Wi;zi= use | wi=the) =

P(Wis1= of | wi=tired) =
P(wisi= of | wi=use) =
P(wisi= | wizher) =
P(wi+i= beginning | wizwas) =
P(Wjs1= reading | wi=was) =

31
Conditional on the previous word
Eng”s h - Word Salad
Pamins Sy
Now, P(English) > P(word salad)

P(wisi= of | Wi=tired) =1 P(Wi+i= bank | wi=the)=1/3
P(Wiszi= of I wi=use) =1 P(wis1i=book | wi=the)=1/3
P(wi+1= | wi=her) = 1 P(wi+i= use | wi=the) =1/3
P(Wi;1= beginning | Wi=was) =1/2
P(wWj;1= reading | wi=was) =1/2

32

16

More examples:

Berkeley Restaurant Project sentences

* canyou tell me about any good cantonese restaurants close by

* mid priced thai food is what i’'m looking for
* tell me about chez panisse

* canyou give me a listing of the kinds of food that are available

* i'm looking for a good place to eat breakfast

* when is caffe venezia open during the day

Raw bigram counts

 Qut of 9222 sentences

1 want | to eat chinese food | lunch spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 | 0 0 0 0 0

17

Raw bigram probabilities

Normalize by unigrams:

Result:

i want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
| H 1 ‘ want | to | eat ‘ chinese ‘ food | lunch | spend ‘
1 0.002 03310 0.0036 | 0 0 0 0.00079
want 0.0022 |0 0.66 [0.0011| 0.0065 | 0.0065|0.0054 | 0.0011
to 0.00083 | 0 0.0017 [0.28 | 0.00083 | O 0.0025 | 0.087
eat 0 0 0.0027 | 0 0.021 0.0027 [0.056 |0
chinese | 0.0063 | 0 0 0 0 0.52 [0.0063|0
food 0014 |0 0.014 |0 0.00092 | 0.0037 | O 0
lunch || 0.0059 |0 0 0 0 0.0029 | 0 0
spend || 0.0036 |0 0.0036 | 0 0 0 0 0

P(<s> | want english food </s>) =

P(l
X

X
X
X

Bigram estimates of sentence probabilities

| <s>)

P(want|l)
P(english |want)
P(food|english)
P(</s>|food)
= .000031

18

What kinds of knowledge?

* P(english|want) =.0011
* P(chinese|want) = .0065
* P(to|want) =.66

* P(eat | to) =.28
 P(food | to)=0

* P(want | spend) =0

e P(i]|<s>)=.25

Practical Issues

 We do everything in log space
* Avoid underflow
* (also adding is faster than multiplying)

log(p, x P, x p3 X Py)=log p; +log p, +1log p; +log p,

19

Language Modeling Toolkits

e SRILM

e KenLM
Google N-Gram Release, August 2006
AUG All Our N-gram are Belong to You

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

That's why we decided to sh:are fhis enormous dataset :with everyone. We prbcess_ed 1.024.908.26?.229_w0rds
of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40
times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.

20

serve
serve
serve
serve
serve
serve
serve
serve
serve
serve

Google N-Gram Release

as the incoming 92

as the incubator 99

as the independent 794
as the index 223

as the indication 72

as the indicator 120

as the indicators 45

as the indispensable 111
as the indispensible 40
as the individual 234

Google Books N-gram Viewer

21

43

Google Caveat

We will talk more about test sets and training sets... Test sets
should be similar to the training set (drawn from the same
distribution) for the probabilities to be meaningful.

So... The Google corpus is fine if your application deals with
arbitrary English text on the Web.

If not then a smaller domain specific corpus is likely to yield
better results.

Language
Modeling

Evaluation and
Perplexity

22

Evaluation: How good is our model?

* Does our language model prefer good sentences to bad ones?
* Assign higher probability to “real” or “frequently observed” sentences
e Than “ungrammatical” or “rarely observed” sentences?
* Recall word salad example
* We train parameters of our model on a training set.

* We test the model’s performance on data we haven’t seen.

* Atest setis an unseen dataset that is different from our training set,
totally unused.

* An evaluation metric tells us how well our model does on the test set.

Training on the test set

 We can’t allow test sentences into the training set

* We will assign it an artificially high probability when we set it in
the test set

e “Training on the test set”

* Bad science!

e And violates the honor code
* More later!

46

23

Extrinsic evaluation of N-gram models

Best evaluation for comparing models A and B
e Put each model in a task
* spelling corrector, speech recognizer, MT system
* Run the task, get an accuracy for A and for B
* How many misspelled words corrected properly
* How many words translated correctly
e Compare accuracy for Aand B

Difficulty of extrinsic (in-vivo) evaluation
of N-gram models

Extrinsic evaluation
* Time-consuming; can take days or weeks

So

* Sometimes use intrinsic evaluation: perplexity
* Bad approximation
* unless the test data looks just like the training data
* So generally only useful in pilot experiments
 But is helpful to think about.

24

Intuition of Perplexity

« The Shannon Game: (~ mushrooms 0.1
« How well can we predict the next word? pepperoni 0.1

< anchovies 0.01
| always order pizza with cheese and

rd H
The 33" President of the US was fried rice 0.0001
| saw a
* Unigrams are terrible at this game. (Why?)
* A better model of a text

* is one which assigns a higher probability to the word that actually occurs

_ and 1e-100

Perplexity

The best language model is one that best predicts an unseen test set

* Gives the highest P(sentence) .

_ N
Perplexity is the inverse probability of PPOV) = Pwiw...Wy)
the test set, normalized by the number

1
of words: = N,/m

i=

N
Chain rule: PP(W) = \Jl‘[ﬁ
1 (] 1e..¥Wji—]

For bigrams:
PP(W) =

Minimizing perplexity is the same as maximizing probability

25

Lower perplexity = better model

* Training 38 million words, test 1.5 million words, WSJ

N-gram Bigram Trigram
Order

Perplexity 962

Language
Modeling

Generalization and
Zeros

26

The Shannon Visualization Method

Choose a random bigram

(<s>, w) according to its probability
Now choose a random bigram

(w, x) according to its probability
And so on until we choose </s>
Then string the words together

<s> 1
I want
want to
to eat
eat Chinese
Chinese food
food
I want to eat Chinese food

</s>

Approximating Shakespeare

gram

gram

gram

gram

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
—Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
—What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.
—This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;
—It cannot be but so.

27

Shakespeare as corpus

 N=884,647 tokens, V=29,066
e Shakespeare produced 300,000 bigram types
out of V2= 844 million possible bigrams.

* S0 99.96% of the possible bigrams were never seen
(have zero entries in the table)

e Quadrigrams worse: What's coming out looks
like Shakespeare because it is Shakespeare

The Wall Street Journal is not Shakespeare

1 Months the my and issue of year foreign new exchange’s september

were recession exchange new endorsed a acquire to six executives
gram

Last December through the way to preserve the Hudson corporation N.
2 B. E. C. Taylor would seem to complete the major central planners one
gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
3 four oh six three percent of the rates of interest stores as Mexico and
gram Brazil on market conditions

28

Can you guess the author of these random
3-gram sentences?

* They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores
as Mexico and gram Brazil on market conditions

* This shall forbid it should be branded, if renown made it empty.

57

The perils of overfitting

* N-grams only work well for word prediction if the test
corpus looks like the training corpus

* In real life, it often doesn’t
* We need to train robust models that generalize!
* One kind of generalization: Zeros!
* Things that don’t ever occur in the training set
* But occur in the test set

29

Zeros

* Training set: e Test set
... denied the allegations ... denied the offer
... denied the reports ... denied the loan

... denied the claims
... denied the request

P(“offer” | denied the) =0

Zero probability bigrams

* Bigrams with zero probability
* mean that we will assign 0 probability to the test set!

* And hence we cannot compute perplexity (can’t divide by 0)!

30

Language
Modeling

Smoothing: Add-one
(Laplace) smoothing

The intuition of smoothing (from Dan Kilein)

When we have sparse statistics:
P(w | denied the)
3 allegations
o
2 reports o =
1 claims 8 < 3
£ © 5
1 request S E 3
7 total
Steal probability mass to generalize better
P(w | denied the)
2.5 allegations
1.5 reports e
0.5 claims 2 8
0.5 request 2| & s § £
2 other S|l |l £ g 5 € 3
7 total < .

31

Add-one estimation

Also called Laplace smoothing
Pretend we saw each word one more time than we did
Just add one to all the counts!

Puce (W; | W)= CW 1, W)
MILE estimate: c(wi_,)
c(w,w)+1
Add-1 estimate: Paca-1 (W [Wi_p) = C(Wl)+V
i—1

Maximum Likelihood Estimates

The maximum likelihood estimate

» of some parameter of a model M from a training set T

* maximizes the likelihood of the training set T given the model M
Suppose the word “bagel” occurs 400 times in a corpus of a million words
What is the probability that a random word from some other text will be
“bagel”?
MLE estimate is 400/1,000,000 = .0004
This may be a bad estimate for some other corpus

* But it is the estimate that makes it most likely that “bagel” will occur 400 times in
a million word corpus.

32

Add-One Smoothing

Xya 100| 100/300 101|101/326
Xyb 0| 0/300 1| 1/326
XycC 0| 0/300 1| 1/326
xyd 200 200/300 201|201/326
Xye 0| 0/300 1| 1/326
Xyz 0| 0/300 1| 1/326
Total xy 300 | 300/300 326 | 326/326

Following examples from Kai-Wei Chang

Problem with Add-One Smoothing

We've been considering ju

st 26 letter types ...

Xya 1 1/3 2 2/29
xyb 0 0/3 1 1/29
XycC 0 0/3 1 1/29
xyd 2 2/3 3 3/29
xye 0 0/3 1 1/29
Xyz 0 0/3 1 1/29
Total xy 3 3/3 29| 29/29

33

Problem with Add-One Smoothing

Suppose we’re considering 20000 word types

see the abacus 1 1/3 21 2/20003

see the abbot 0 0/3 1(1/20003

see the abduct 0 0/3 1(1/20003

see the above 2 2/3 31 3/20003

see the Abram 0 0/3 1|1/20003

see the zygote 0 0/3 1(1/20003

Total 3 3/3 20003 | 20003720003

Problem with Add-One Smoothing

Suppose we’re considering 20000 word types
see the abacusj 1 1/3 ‘ 2 ‘ 2/20003

“Novel event” = event never happened in training data.

Here: 19998 novel events, with total estimated
probability 19998/20003.

Add-one smoothing thinks we are extremely likely to see
novel events, rather than words we've seen.

see the zygote ‘ 0 ‘ 0/3 ‘ 1 ‘ 1/20003
Totl | 3| 3/3] 20003] 2o00w000s

68

34

Add-Lambda Smoothing

* Alarge dictionary makes novel events too probable.

To fix: Instead of adding 1 to all counts, add A = 0.01?
e This gives much less probability to novel events.

* But how to pick best value for A?
¢ That is, how much should we smooth?

Add-0.001 Smoothing

Doesn’t smooth much

Xya 1 1/3 1.001| 0.331
Xyb 0 0/3| 0.001| 0.0003
XyC 0 0/3| 0.001| 0.0003
xyd 2 2/3 2.001| 0.661
Xye 0 0/3| 0.001| 0.0003
Xyz 0 0/3| 0.001| 0.0003
Total xy 3 3/3 3.026 1

Add-1000 Smoothing

Smooths too much

xya 1 1/3| 1001| 1/26
xyb 0 0/3| 1000| 1/26
XyC 0 0/3| 1000| 1/26
xyd 2 2/3| 1002 1/26
xye 0 0/3| 1000 1/26
Xyz 0 0/3| 1000| 1/26
Total xy 3 3/3| 26003 1

Add-Lambda Smoothing

* Alarge dictionary makes novel events too probable.

To fix: Instead of adding 1 to all counts, add A = 0.01?

e This gives much less probability to novel events.

* But how to pick best value for A?

¢ That is, how much should we smooth?

* E.g., how much probability to “set aside” for novel events?
* Depends on how likely novel events really are!

* Which may depend on the type of text, size of training corpus, ...

e Can we figure it out from the data? (advanced topics)

36

Setting Smoothing Parameters

How to pick best value for A? (in add- A smoothing)
Try many A values & report the one that gets best results?

How to measure whether a particular A gets good results?
Is it fair to measure that on test data (for setting A)?

* Moral: Selective reporting on test data can make a method look artificially good.
So it is unethical.

* Rule: Test data cannot influence system development. No peeking! Use it only to
evaluate the final system(s). Report all results on it.

Setting Smoothing Parameters

How to pick best value for A? (in add- A smoothing)
Try many A values & report the one that gets best results?

How to measure whether a particular A gets good results?
Is it fair to measure that on test data (for setting A)?

* Moral: Selective reporting on test data can make a method look artificially good.
So it is unethical.

* Rule: Test data cannot influence system development. No peeking! Use it only to
evaluate the final system(s). Report all results on it.

37

Setting Smoothing Parameters

* How to pick best value for A?
* Try many A values & report the one that gets best results?

e
oo INEEEEE)

... and

Pick A that ... when we collect counts Now use that | | report
gets best from this 80% and smooth A to get results of
results on them using add-A smoothing. | | smoothed that final
this 20% counts from model on
all 100% ... test data.

75

Large or small Dev set?

* Here we held out 20% of our training set (yellow) for
development.
* Would like to use > 20% yellow:
« 20% not enough to reliably assess A
* Would like to use > 80% blue:
* Best A for smoothing 80% = best A for smoothing 100%

76

Cross-Validation

e Try 5 training/dev splits as below
* Pick A that gets best average performance

| —
[[
[Dev. 1
[1[Dev.|
[—

e © Tests on all 100% as yellow, so we can more reliably assess A
« @ Still picks a A that’s good at smoothing the 80% size, not 100%.
* But now we can grow that 80% without trouble

77

N-fold Cross-Validation (“Leave One Out”)

Test each sentence with smoothed model from other
N-1 sentences

© Still tests on all 100% as yellow, so we can reliably
assess A

© Trains on nearly 100% blue data ((N-1)/N) to
measure whether A is good for smoothing that

78

39

Berkeley Restaurant Corpus: Laplace
smoothed bigram counts

1 want | to eat chinese | food | lunch | spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 | 1 1 83 2 1
tood 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1
Laplace-smoothed bigrams
T L] L]
o1 — COc) 4 1
‘niWn-1) —)
C (W”_l) +V
| i | want | to | eat | chinese | food | lunch | spend |
i 0.0015 | 0.21 0.00025] 0.0025 | 0.00025[0.00025] 0.00025] 0.00075
want 0.0013 | 0.00042| 0.26 0.00084| 0.0029 | 00029 | 0.0025 | 0.00084
to 0.00078| 0.00026| 0.0013 | 0.18 0.00078 | 0.00026| 0.0018 | 0.055
eat 0.00046| 0.00046| 0.0014 | 0.00046| 0.0078 | 00014 | 0.02 0.00046
chinese | 0.0012 | 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 | 0.00062
food 0.0063 | 0.00039| 0.0063 | 0.00039| 0.00079| 0.002 0.00039| 0.00039
lunch 0.0017 | 0.00056| 0.00056| 0.00056| 0.00056| 0.0011 | 0.00056| 0.00056
spend | 0.0012 | 0.00058| 0.0012 | 0.00058| 0.00058| 0.00058| 0.00058| 0.00058

40

Reconstituted counts

a

C*(Wr.’—lwn) —

Y

—

[C(Wn.—lwn) -+ ” X C(Wn—l)

C(Wn—l) +V

H 1 ‘ want | to eat ‘ Chine-se‘ f00d| lunch‘ spe-nd|
1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 063 44 133
eat 0.34| 0.34 | 0.34 5.8 1 15 0.34
chinese 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16
Compare with raw bigram counts
| | i | want [to | eat | chinese [food | lunch | spend |
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2] 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
| H i want to eat ‘ chinese ‘ food | lunch ‘ spend |
i 3.8 527 0.64 6.4 0.64 0.64 | 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 31 430 1.9 0.63 4.4 133
eat 034 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098| 0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 032 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16

41

Add-1 estimation is a blunt instrument

So add-1 isn’t used for N-grams:
* WEe'll see better methods

But add-1 is used to smooth other NLP models
* In domains where the number of zeros isn’t so huge.

Unigram Smoothing Example

Tiny Corpus, V=4; N=20 P.(w)= |\(|:I\1/
Word True Ct | Unigram | New Ct | Adjusted
Prob Prob
eat 10 5 ? ?
British 4 2 5 21
food 6 3 7 .29
0 .0 ? ?
20 1.0 ~20 1.0

42

Language
Modeling

Interpolation, Backoff,
and Web-Scale LMs

Backoff and Interpolation

Sometimes it helps to use less context
* Condition on less context for contexts you haven’t learned much about

Backoff:

» use trigram if you have good evidence,
» otherwise bigram, otherwise unigram

Interpolation:

* mix unigram, bigram, trigram

Interpolation works better

43

Backoff and interpolation

* p(zombie | see the) vs. p(baby | see the)

* What if count(see the ngram) = count(see the baby) = 0?

* baby beats ngram as a unigram
» the baby beats the ngram as a bigram
.. see the baby beats see the ngram ?

(even if both have the same count, such as 0)

87

Class-Based Backoff

 Back off to the class rather than the word
* Particularly useful for proper nouns (e.g., names)
* Use count for the number of names in place of the particular name
* E.g. instead of

44

Linear Interpolation

* Simple interpolation

p(wn|wn—2wn—l) =)«1P(Wn|Wn_2Wn_1)
E Ai=1
]

+ P (W |wy—1)
FA3P(wy)
 Lambdas conditional on context:

p(wr.*‘wn—an—l) = ;"1 (W:::é)P(Wn‘WH-—an—l)
o (W HP(wylwp1)

n—2

+ A3 (W)P(wn)

How to set the lambdas?

Held-Out Test
Data Data

* Choose As to maximize the probability of held-out data:

* Use a held-out corpus

* Fix the N-gram probabilities (on the training data)
* Then search for As that give largest probability to held-out set:

45

Unknown words: Open versus closed
vocabulary tasks

If we know all the words in advanced
* Vocabulary V is fixed
* Closed vocabulary task
Often we don’t know this
* Out Of Vocabulary = OOV words
* Open vocabulary task
Instead: create an unknown word token <UNK>
* Training of <UNK> probabilities
* Create a fixed lexicon L of size V

* At text normalization phase, any training word not in L changed to <UNK>
* Now we train its probabilities like a normal word

* At decoding time
* If text input: Use UNK probabilities for any word not in training

Huge web-scale n-grams

How to deal with, e.g., Google N-gram corpus

Pruning
* E.g., only store N-grams with count > threshold.
* Remove singletons of higher-order n-grams

Efficient data structures, etc.

46

N-gram Smoothing Summary

e Add-1 smoothing:

» OK for some tasks, but not for language modeling
* See text for

* The most commonly used method:

* Extended Interpolated Kneser-Ney
* For very large N-grams like the Web:

* Stupid backoff

93

Other Applications
* N-grams are not only for words

* Characters
e Sentences

94

47

More examples

* YoaV’'s blog post:

* 10-gram character-level LM:

First Citizen: Nay, then, that was hers, It
speaks against your other service: But since the
youth of the circumstance be spoken: Your uncle
and one Baptista“"s daughter.

SEBASTIAN: Do 1 stand till the break off.

BIRON:
Hide thy head.

95 Example from Kai-Wei Chang

Example: Language ID

 “Horses and Lukasiewicz are on the curriculum.”
* Is this English or Polish or ??

* Let’s use n-gram models ...

» Space of outcomes will be character sequences (- ,

>

96

48

Language ID: Problem Formulation

* Let p(X) = probability of text X in English
» Let q(X) = probability of text X in Polish
* Which probability is higher?

+ (we’d also like bias toward English since it’s more likely a priori —
ignore that for now)

“Horses and Lukasiewicz are on the curricullum.”
p(- h, o, r, <, -S, < €,%-S,...)

97

Apply the Chain Rule

p(h, o, r,<-S,x.-€,%-S,...)

=p(h) 4470/ 52108

*p(- o] h) 395/ 4470
*p(r| - h, 0 5/ 395
*p(o.os| - h,o 0,71 3/ 5
*p(x.—e|xh,« -0, T, < 9S) 3/ 3
*p(,~S|x—h, -0, T, -8, «€) 0/ 3

* =0 counts from Brown corpus

98

49

Use Bigrams

~p() 4470/ 52108
%k
p(of+ N 395/ 4470
*p(r| h,o 0 5/ 395
*p(S| 0, %, T) 12/ 919
*p(e I, <, ~S) 12/ 126
*p(S| S, €) 3/ 485
* =7.3e-10 *
99 counts from Brown corpus
English vs. Polish?
English
compute
p(X)
Polish N-gram Model
compute
q(X)
Compare!

100

50

Chapter Summary

N-gram probabilities can be used to estimate the
likelihood

» Of a word occurring in a context (N-1)

* Of a sentence occurring at all
Perplexity can be used to evaluate the goodness
of fit of a LM
Smoothing techniques and backoff models deal
with problems of unseen words in corpus

* Improvement via algorithm versus big data

o1

