Ethics, Social Good, and NLP

(slides sampled from CMU/LTI Computational Ethics for NLP course)

Human Subjects

- We are trying to model a human function
- Labels are certainly noisy
- How to use humans to find better labels/know if they are right
- Let's put it on Amazon Mechanical Turk (Crowdsourcing) and get the answer

History of using Human Subjects

- WWII Nazi and Japanese prisoners in concentration camps
 - · Medical science did learn things
 - But even at the time this was not considered acceptable
- Tuskegee Syphilis Experiments (US Public Health System, 1932-1972)
 - Understand how untreated syphilis develops
 - African-American sharecroppers given free healthcare, meals...
 - Not provided with penicillin when it would have helped
- Milgram Obedience Experiment (Yale, 1962)
 - Experimenters asked subjects/teachers to give electric shocks after wrong answers
- Others...

Ethics in Human Subject Use

- These experiments led to the National Research Act 1974
 - Requiring "Informed Consent" from participants
 - · Requiring external review of experiments
- For all federal funded experiments
 - Covers my dialogue work at Pitt, but not when I was at AT&T!

IRB (Ethical Review Board)

- Institutional Review Board
 - Internal to institution
 - Independent of researcher
- Reviews all human experimentation
 - Assesses instructions
 - Compensation
 - · Contribution of research
 - · Value to the participant
 - Protection of privacy

IRB (Ethical Review Board)

- Different standards for different institutions
 - Medical School vs SCI
- Board consists of (primarily) non-expert peers
- At educational institutions also
 - Help educate new researchers (e.g., before Pitt FER starts)
 - Make suggestions to find solutions to ethics problems
 - How to get informed consent on an Android App
 - "click here to accept terms and conditions"

Ethical Questions

- Can you lie to a human subject?
- Can you harm a human subject?
- Can you mislead a human subject?
 - Wizard of Oz experiments?

Using Human Subjects

- But it's not all these extremes
- Your human subjects are biased
- Your selection of them is biased
- Your tests are biased too

Human Subject Selection Example

- For speech synthesis evaluation
 - · Listen to these and say which you prefer
- Who do you get to listen
 - · Experts are biased, non-experts are biased
- Hardware makes a difference
 - Expensive headphones give different result
- Experiment itself makes a difference
 - · Listening in quiet office vs on the bus
- · Hearing ability makes a difference
 - Young vs old

Human Subject Selection

- All subject pools will have bias
 - So identify the biases (as best you can)
 - Does the bias affect your result (maybe not)
- Can you recruit others to reduce bias
 - Can you do this post experiment
- Most Psych experiments use undergrads
 - Undergrads do experiments for course credit
 - SCI researchers typically recruit via \$
 - Real vs. experimental users yield different results

Human Subject Selection

- Most IRB have special requirements for involving
 - Minors, pregnant women, disabled
- So most experiments exclude these
- Protected or hard to access groups are underrepresented

Human Subjects – Summary Part 1

- Unchecked human experiment
- Led to IRB reviews of human experimentation
- All human experimentation includes bias
 - · Admit it, and try to ameliorate it
 - Experimentation vs Actual is different

Consequence: models are biased

Tsvetkov - 11830 Computational Ethics for NLP

Sources of Human Biases in Machine Learning

- Sample selection bias
 - unbalanced training data
 - data and annotations may reflect human cognitive biases and cultural stereotypes
- Optimizing towards a biased objective
 - Labels are biased proxies to the real objective
 - e.g., "who is more likely to be convicted" vs "who is more likely to commit a crime"
- Inductive bias
 - the set of "assumptions" used by the learner, e.g. features in discriminative models are biased

Tsvetkov - 11830 Computational Ethics for NLP

Bolukbasi T., Chang K.-W., Zou J., Saligrama V., Kalai A. (2016) Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. *NIPS*

 $\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$.

Tsvetkov - 11830 Computational Ethics for NLP

Main Ideas

- Demonstrate gender bias in embeddings trained even from Google news
- Show that gender defined words are linearly separable from others that (should be?) gender neutral
- Use the above finding as the basis of a word embedding debiasing algorithm
- Evaluate

$\min \cos(he - she, x - y) \ s.t. \ ||x - y||_2 < \delta$

Extreme she 1. homemaker 2. nurse 3. receptionist 4. librarian 5. socialite 6. hairdresser	Extreme he 1. maestro 2. skipper 3. protege 4. philosopher 5. captain 6. architect	sewing-carpentry nurse-surgeon blond-burly giggle-chuckle sassy-snappy volleyball-football	Gender stereotype she-he are registered nurse-physician interior designer-architect feminism-conservatism vocalist-guitarist diva-superstar cupcakes-pizzas	housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky charming-affable lovely-brilliant
7. nanny 8. bookkeeper 9. stylist 10. housekeeper	7. financier8. warrior9. broadcaster10. magician	queen-king waitress-waiter	Gender appropriate she-he a sister-brother ovarian cancer-prostate cance	mother-father

Figure 1: **Left** The most extreme occupations as projected on to the *she-he* gender direction on w2vNEWS. Occupations such as *businesswoman*, where gender is suggested by the orthography, were excluded. **Right** Automatically generated analogies for the pair *she-he* using the procedure described in text. Each automatically generated analogy is evaluated by 10 crowd-workers to whether or not it reflects gender stereotype.

lon University echnologies Institute

Debiasing

- 1. Identify gender-definitional and gender-neutral words
- 2. Project away the gender subspace from the gender-neutral words
- 3. Normalize vectors

Tsvetkov - 11830 Computational Ethics for NLP