Speech and Language Processing

Chapter 12 Syntactic Parsing

Today

- Parsing with CFGs
 - Bottom-up, top-down
 - Ambiguity
 - CKY parsing
 - (Earley)
 - Shallow

Parsing

- Parsing with CFGs refers to the task of assigning proper trees to input strings
- Proper here means a tree that covers all and only the elements of the input and has an S at the top
- It doesn't actually mean that the system can select the correct tree from among all the possible trees

01/29/20

Speech and Language Processing - Jurafsky and Martin

3

Parsing

- As with everything of interest, parsing involves a search which involves the making of choices
- We'll start with some basic (meaning bad) methods before moving on to the one that you need to know

01/29/20

Speech and Language Processing - Jurafsky and Martin

For Now

- Assume...
 - You have all the words already in some buffer
 - The input isn't POS tagged
 - We won't worry about morphological analysis
 - All the words are known
 - These are all problematic in various ways, and would have to be addressed in real applications.

01/29/20

Speech and Language Processing - Jurafsky and Martin

5

Top-Down Search

- Since we're trying to find trees rooted with an S (Sentences), why not start with the rules that give us an S.
- Then we can work our way down from there to the words.
- "Book that flight"

01/29/20

Speech and Language Processing - Jurafsky and Martin

Bottom-Up Parsing

- Of course, we also want trees that cover the input words. So we might also start with trees that link up with the words in the right way.
- Then work your way up from there to larger and larger trees.

01/29/20

Speech and Language Processing - Jurafsky and Martin

8

"The old dog the footsteps of the young."

S → NP VP	$VP \rightarrow V$	
S → Aux NP VP	VP -> V PP	
S -> VP	PP -> Prep NP	
NP → Det Nom	N → old dog footsteps young	
NP →PropN	V → dog eat sleep bark meow	
Nom -> Adj N	Aux → does can	
Nom → N	Prep →from to on of	
Nom → N Nom	PropN → Fido Felix	
Nom → Nom PP	Det → that this a the	
VP → V NP	Adj -> old happy young	

Top-Down and Bottom-Up

- Top-down
 - Only searches for trees that can be answers (i.e. S's)
 - But also suggests trees that are not consistent with any of the words
- Bottom-up
 - Only forms trees consistent with the words
 - But suggests trees that make no sense globally

01/29/20

Speech and Language Processing - Jurafsky and Martin

15

Control

- Of course, in both cases we left out how to keep track of the search space and how to make choices
 - Which node to try to expand next
 - Which grammar rule to use to expand a node
- One approach is called backtracking.
 - Make a choice, if it works out then fine
 - If not then back up and make a different choice

01/29/20

Speech and Language Processing - Jurafsky and Martin

Problems

- Even with the best filtering, backtracking methods are doomed because of two inter-related problems
 - Ambiguity
 - Shared subproblems

01/29/20

Speech and Language Processing - Jurafsky and Martin

17

Ambiguity

01/29/20

Speech and Language Processing - Jurafsky and Martin

Example types of ambiguity

- POS
- Attachment
 - PP
 - Coordination (old dogs and cats)

01/29/20

Speech and Language Processing - Jurafsky and Martin

19

Shared Sub-Problems

- No matter what kind of search (topdown or bottom-up or mixed) that we choose.
 - We don't want to redo work we've already done.
 - Unfortunately, naïve backtracking will lead to duplicated work.

01/29/20

Speech and Language Processing - Jurafsky and Martin

Shared Sub-Problems

- Consider
 - A flight from Indianapolis to Houston on TWA

01/29/20

Shared Sub-Problems

- Assume a top-down parse making choices among the various Nominal rules.
- In particular, between these two
 - Nominal -> Noun
 - Nominal -> Nominal PP
- Statically choosing the rules in this order leads to the following bad results...

01/29/20

Dynamic Programming

- DP search methods fill tables with partial results and thereby
 - Avoid doing avoidable repeated work
 - Solve exponential problems in polynomial time
 - Efficiently store ambiguous structures with shared sub-parts.
- Two approaches roughly correspond to bottom-up and top-down approaches.
 - CKY
 - Earley

01/29/20

Speech and Language Processing - Jurafsky and Martin

27

CKY Parsing

- First we'll limit our grammar to epsilon-free, binary rules (more later)
- Consider the rule $A \rightarrow BC$
 - If there is an A somewhere in the input then there must be a B followed by a C in the input.
 - If the A spans from i to j in the input then there must be some k st. i<k<j</p>
 - le. The B splits from the C someplace.

01/29/20

Speech and Language Processing - Jurafsky and Martin

Problem

- What if your grammar isn't binary?
 - As in the case of the TreeBank grammar?
- Convert it to binary... any arbitrary CFG can be rewritten into Chomsky-Normal Form automatically.
- What does this mean?
 - The resulting grammar accepts (and rejects) the same set of strings as the original grammar.
 - But the resulting derivations (trees) are different.

01/29/20

Speech and Language Processing - Jurafsky and Martin

29

Problem

 More specifically, we want our rules to be of the form

 $A \rightarrow B C$

Or

 $A \rightarrow W$

That is, rules can expand to either 2 nonterminals or to a single terminal.

01/29/20

Speech and Language Processing - Jurafsky and Martin

Binarization Intuition

- Eliminate chains of unit productions.
- Introduce new intermediate nonterminals into the grammar that distribute rules with length > 2 over several rules.
 - So... $S \rightarrow A B C turns into$

 $S \rightarrow X C$ and

 $X \rightarrow A B$

Where X is a symbol that doesn't occur anywhere else in the the grammar special Language Processing - Jurafsky and Martin

01/29/20

31

Sample L1 Grammar

Grammar	Lexicon
$S \rightarrow NP VP$	Det ightarrow that this a
$S \rightarrow Aux NP VP$	$Noun \rightarrow book \mid flight \mid meal \mid money$
$S \rightarrow VP$	$Verb ightarrow book \mid include \mid prefer$
$NP \rightarrow Pronoun$	$Pronoun \rightarrow I \mid she \mid me$
$NP \rightarrow Proper-Noun$	Proper-Noun → Houston NWA
$NP \rightarrow Det Nominal$	$Aux \rightarrow does$
$Nominal \rightarrow Noun$	$Preposition ightarrow from \mid to \mid on \mid near \mid through$
$Nominal \rightarrow Nominal Noun$	
$Nominal \rightarrow Nominal PP$	
$VP \rightarrow Verb$	
$VP \rightarrow Verb NP$	
$\mathit{VP} o \mathit{Verb} \mathit{NP} \mathit{PP}$	
$VP \rightarrow Verb PP$	
$VP \rightarrow VP PP$	
PP → Preposition NP	

01/29/20

CNF Conversion

	\mathscr{L}_1 Grammar	\mathscr{L}_1 in CNF
	$S \rightarrow NP VP$	$S \rightarrow NP VP$
	$S \rightarrow Aux NP VP$	$S \rightarrow X1 VP$
		$XI \rightarrow Aux NP$
	$S \rightarrow VP$	$S \rightarrow book \mid include \mid prefer$
		$S \rightarrow Verb NP$
		$S \rightarrow X2 PP$
		$S \rightarrow Verb PP$
		$S \rightarrow VPPP$
	$NP \rightarrow Pronoun$	$NP \rightarrow I \mid she \mid me$
	NP → Proper-Noun	NP → TWA Houston
	$NP \rightarrow Det Nominal$	NP → Det Nominal
	$Nominal \rightarrow Noun$	$Nominal \rightarrow book \mid flight \mid meal \mid money$
	$Nominal \rightarrow Nominal Noun$	Nominal → Nominal Noun
	$Nominal \rightarrow Nominal PP$	$Nominal \rightarrow Nominal PP$
	$VP \rightarrow Verb$	$VP \rightarrow book \mid include \mid prefer$
	$VP \rightarrow Verb NP$	$VP \rightarrow Verb NP$
	$VP \rightarrow Verb NP PP$	$VP \rightarrow X2 PP$
		$X2 \rightarrow Verb NP$
	$VP \rightarrow Verb PP$	$VP \rightarrow Verb PP$
	$VP \rightarrow VP PP$	$VP \rightarrow VP PP$
	$PP \rightarrow Preposition NP$	PP → Preposition NP
01/29/20	Speech and Language Process	ing - Jurafsky and Martin

CKY

- So let's build a table so that an A spanning from i to j in the input is placed in cell [i,j] in the table.
- So a non-terminal spanning an entire string will sit in cell [0, n]
 - Hopefully an S
- If we build the table bottom-up, we'll know that the parts of the A must go from i to k and from k to j, for some k.

01/29/20