Chapter 6: Vector Semantics, continued

Tf-idf and PPMI are sparse representations

tf-idf and PPMI vectors are

- olong (length |V| = 20,000 to 50,000)
- °sparse (most elements are zero)

Alternative: dense vectors

vectors which are

- ° short (length 50-1000)
- odense (most elements are non-zero)

Sparse versus dense vectors

Why dense vectors?

- Short vectors may be easier to use as **features** in machine learning (less weights to tune)
- Dense vectors may generalize better than storing explicit counts
- They may do better at capturing synonymy:
 - car and automobile are synonyms; but are distinct dimensions
 - a word with *car* as a neighbor and a word with *automobile* as a neighbor should be similar, but aren't
- o In practice, they work better

Dense embeddings you can download!

Word2vec (Mikolov et al.)

https://code.google.com/archive/p/word2vec/

Fasttext http://www.fasttext.cc/

Glove (Pennington, Socher, Manning) http://nlp.stanford.edu/projects/glove/

Word2vec

Popular embedding method
Very fast to train
Code available on the web

Idea: predict rather than count

Word2vec

- °Instead of **counting** how often each word *w* occurs near "*apricot*"
- •Train a classifier on a binary prediction task:
 - ° Is w likely to show up near "apricot"?
- •We don't actually care about this task
 - But we'll take the learned classifier weights as the word embeddings

Insight: Use running text as implicitly supervised training data!

- A word s near apricot
 - Acts as gold 'correct answer' to the question
 - "Is word w likely to show up near apricot?"
- No need for hand-labeled supervision
- The idea comes from neural language modeling

Word2Vec: **Skip-Gram** Task

Word2vec provides a variety of options. Let's do "skip-gram with negative sampling" (SGNS)

Skip-gram algorithm

- 1. Treat the target word and a neighboring context word as positive examples.
- Randomly sample other words in the lexicon to get negative samples
- 3. Use logistic regression to train a classifier to distinguish those two cases
- 4. Use the weights as the embeddings

Skip-Gram Training Data

Training sentence:

```
... lemon, a tablespoon of apricot jam a pinch ... c1 c2 target c3 c4
```

Asssume context words are those in +/- 2 word window

Skip-Gram Goal

```
Given a tuple (t,c) = target, context (apricot, jam) (apricot, aardvark)
```

Return probability that c is a real context word:

$$P(+|t,c)$$

 $P(-|t,c) = 1-P(+|t,c)$

How to compute p(+| t,c)?

Intuition:

- Words are likely to appear near similar words
- Model similarity with dot-product!
- ° Similarity(t,c) ∝ t · c

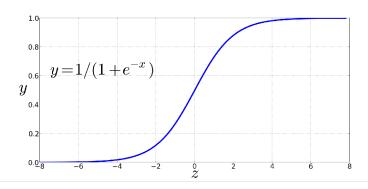
Problem:

- Dot product is not a probability!
 - ° (Neither is cosine)

Turning dot product into a probability

The sigmoid lies between 0 and 1:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



Turning dot product into a probability

$$P(+|t,c) = \frac{1}{1+e^{-t\cdot c}}$$

$$P(-|t,c) = 1 - P(+|t,c)$$
$$= \frac{e^{-t \cdot c}}{1 + e^{-t \cdot c}}$$

For all the context words:

Assume all context words are independent

$$P(+|t,c_{1:k}) = \prod_{i=1}^{\kappa} \frac{1}{1+e^{-t\cdot c_i}}$$

$$\log P(+|t,c_{1:k}) = \sum_{i=1}^{k} \log \frac{1}{1 + e^{-t \cdot c_i}}$$

Skip-Gram Training Data

Training sentence:

... lemon, a tablespoon of apricot jam a pinch ... c1 c2 t c3 c4

Training data: input/output pairs centering on *apricot*

Asssume a +/- 2 word window

Skip-Gram Training

Training sentence:

... lemon, a tablespoon of apricot jam a pinch ... c1 c2 t c3 c4

positive examples +

t c
apricot tablespoon
apricot of
apricot preserves
apricot or

- •For each positive example, we'll create *k* negative examples.
- Using noise words
- •Any random word that isn't t

Skip-Gram Training

Training sentence:

... lemon, a tablespoon of apricot jam a pinch ...

c1 c2 c3 c4

positive examples +		negative examples - k=2			
t	c	t	c	t	c
apricot	preserves	apricot apricot	aardvark puddle where coaxial	apricot apricot	hello

Choosing noise words

Could pick w according to their unigram frequency P(w)

More common to chosen then according to $p_a(w)$

$$P_{\alpha}(w) = \frac{count(w)^{\alpha}}{\sum_{w} count(w)^{\alpha}}$$

 α = $\frac{3}{4}$ works well because it gives rare noise words slightly higher probability

To show this, imagine two events p(a)=.99 and p(b)=.01:

$$P_{\alpha}(a) = \frac{.99^{.75}}{.99^{.75} + .01^{.75}} = .97$$

 $P_{\alpha}(b) = \frac{.01^{.75}}{.99^{.75} + .01^{.75}} = .03$

$$P_{\alpha}(b) = \frac{.01^{.75}}{.99^{.75} + .01^{.75}} = .03$$

Setup

Let's represent words as vectors of some length (say 300), randomly initialized.

So we start with 300 * V random parameters

Over the entire training set, we'd like to adjust those word vectors such that we

- Maximize the similarity of the target word, context word pairs (t,c) drawn from the positive data
- Minimize the similarity of the (t,c) pairs drawn from the negative data.

Learning the classifier

Iterative process.

We'll start with 0 or random weights

Then adjust the word weights to

- make the positive pairs more likely
- and the negative pairs less likely

over the entire training set:

Objective Criteria

We want to maximize...

$$\sum_{(t,c)\in +} log P(+|t,c) + \sum_{(t,c)\in -} log P(-|t,c)$$

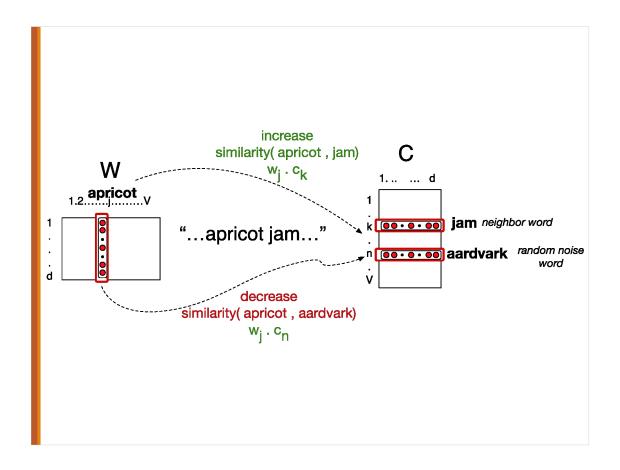
Maximize the + label for the pairs from the positive training data, and the – label for the pairs sample from the negative data.

Focusing on one target word t:

$$L(\theta) = \log P(+|t,c) + \sum_{i=1}^{k} \log P(-|t,n_i)$$

$$= \log \sigma(c \cdot t) + \sum_{i=1}^{k} \log \sigma(-n_i \cdot t)$$

$$= \log \frac{1}{1 + e^{-c \cdot t}} + \sum_{i=1}^{k} \log \frac{1}{1 + e^{n_i \cdot t}}$$



Train using gradient descent

Actually learns two separate embedding matrices $\ensuremath{\mathbf{W}}$ and $\ensuremath{\mathbf{C}}$

Can use W and throw away C, or merge them somehow

Summary: How to learn word2vec (skip-gram) embeddings

Start with V random 300-dimensional vectors as initial embeddings

Use logistic regression, the second most basic classifier used in machine learning after naïve bayes

- Take a corpus and take pairs of words that co-occur as positive examples
- Take pairs of words that don't co-occur as negative examples
- Train the classifier to distinguish these by slowly adjusting all the embeddings to improve the classifier performance
- Throw away the classifier code and keep the embeddings.

Other approaches

See end of chapter in text for pointers

Evaluating embeddings

Compare to human scores on word similarity-type tasks:

- WordSim-353 (Finkelstein et al., 2002)
- SimLex-999 (Hill et al., 2015)
- Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012)
- TOEFL dataset: Levied is closest in meaning to: imposed, believed, requested, correlated

Example Vector

- President: -0.11875 0.6722 0.19444 0.55269 0.53698 0.37237 -0.73494 -0.30575 -0.92601 -0.43276 0.026956 0.66861 -0.79097 -0.015932 0.53918 0.30341 -0.67042 0.0051129 0.62272 -0.55823 -0.10887 0.57305 0.016149 -1.1889 -0.24318 -2.6289 0.41262 -0.12904 1.3238 0.64731 2.3595 0.34048 -1.9889 -0.79084 0.79739 -0.87998 -0.72991 0.011697 0.090612 0.17287 -0.83274 1.1932 -0.75211 -1.1603 -0.10074 0.60224 -1.3739 0.33674 -0.31224 0.097583
- From GloVe 6b 50d on Wikipedia 2014 dataset

Properties of embeddings

Similarity depends on window size C

 $C = \pm 2$ The nearest words to *Hogwarts:*

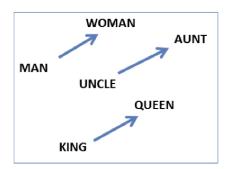
- Sunnydale
- Evernight

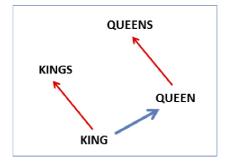
 $C = \pm 5$ The nearest words to *Hogwarts:*

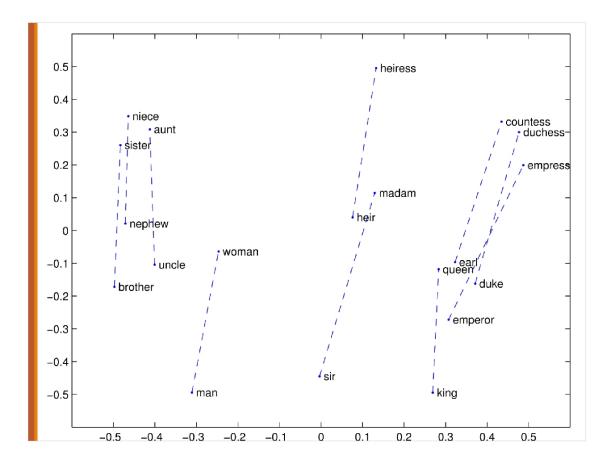
- Dumbledore
- Malfoy
- halfblood

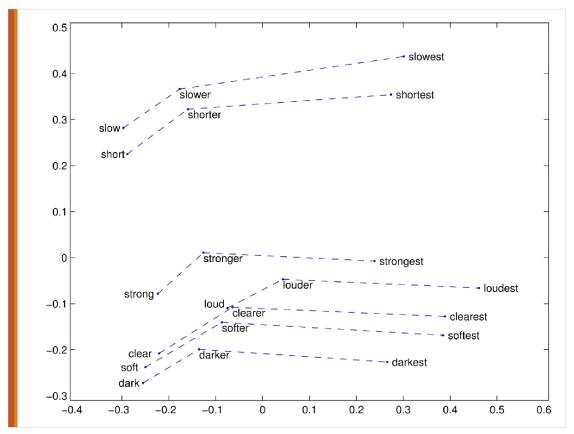
Analogy: Embeddings capture relational meaning!

vector('king') - vector('man') + vector('woman') vector('queen')
vector('Paris') - vector('France') + vector('Italy') vector('Rome')



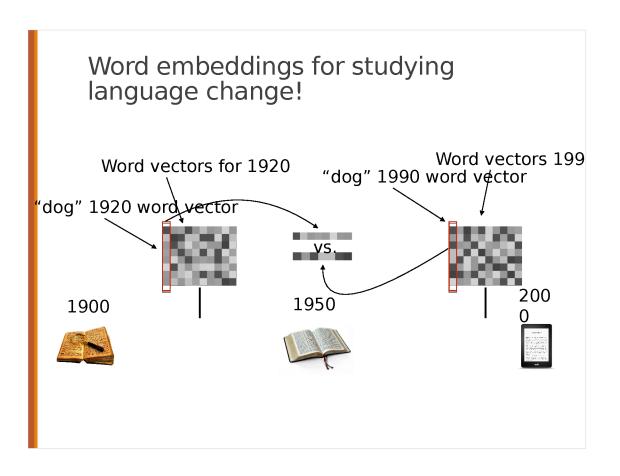






Embeddings can help study word history!

Train embeddings on old books to study changes in word meaning!!



Visualizing changes Project 300 dimensions down into 2 solemn "awful (1850s) a daft gay (1900s) spread sweet cheerful flaunting majestic awe tasteful broadcast (1850s) Seed pleasant frolicson gay (1950s) broadcast (1900s) horrible appalling terrible awful (1900s) television homosexual ▲awful (1990s) gay (1990s) radio awfullweird bbc broadcast (1990s) lesbian ~30 million books, 1850-1990, Google Books data

Embeddings and bias

Embeddings reflect cultural bias

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings." In *Advances in Neural Information Processing Systems*, pp. 4349-4357. 2016.

Ask "Paris: France:: Tokyo: x"

° x = Japan

Ask "father: doctor:: mother: x"

• x = nurse

Ask "man: computer programmer:: woman: x"

• x = homemaker

Embeddings reflect cultural bias

Caliskan, Aylin, Joanna J. Bruson and Arvind Narayanan. 2017. Semantics derived automatically from language corpora contain human-like biases. Science 356:6334, 183-186.

Implicit Association test (Greenwald et al 1998): How associated are

- ° concepts (flowers, insects) & attributes (pleasantness, unpleasantness)?
- ° Studied by measuring timing latencies for categorization.

Psychological findings on US participants:

- African-American names are associated with unpleasant words (more than European-American names)
- Male names associated more with math, female names with arts
- Old people's names with unpleasant words, young people with pleasant words.

Caliskan et al. replication with embeddings:

- African-American names (Leroy, Shaniqua) had a higher GloVe cosine with unpleasant words (abuse, stink, ugly)
- European American names (*Brad, Greg, Courtney*) had a higher cosine with pleasant words (*love, peace, miracle*)

Embeddings reflect and replicate all sorts of pernicious biases.

Directions

Debiasing algorithms for embeddings

 Bolukbasi, Tolga, Chang, Kai-Wei, Zou, James Y., Saligrama, Venkatesh, and Kalai, Adam T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In *Advances in Neural Information Processing Systems*, pp. 4349–4357.

Use embeddings as a historical tool to study bias

Embeddings as a window onto history

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. *Proceedings of the National Academy of Sciences*, 115(16), E3635–E3644

The cosine similarity of embeddings for decade X for occupations (like teacher) to male vs female names

 Is correlated with the actual percentage of women teachers in decade X

History of biased framings of women

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. *Proceedings of the National Academy of Sciences*, 115(16), E3635–E3644

Embeddings for competence adjectives are biased toward men

Smart, wise, brilliant, intelligent, resourceful, thoughtful, logical, etc.

This bias is slowly decreasing

Embeddings reflect ethnic stereotypes over time

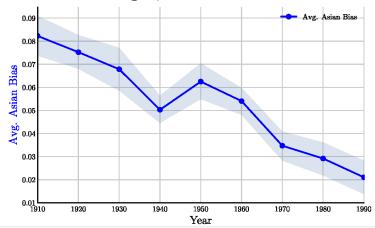
Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. *Proceedings of the National Academy of Sciences*, 115(16), E3635–E3644

- Princeton trilogy experiments
- Attitudes toward ethnic groups (1933, 1951, 1969) scores for adjectives
 - industrious, superstitious, nationalistic, etc
- Cosine of Chinese name embeddings with those adjective embeddings correlates with human ratings.

Change in linguistic framing 1910-1990

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. *Proceedings of the National Academy of Sciences*, 115(16), E3635–E3644

Change in association of Chinese names with adjectives framed as "othering" (barbaric, monstrous, bizarre)



Changes in framing: adjectives associated with Chinese

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. *Proceedings of the National Academy of Sciences*, 115(16), E3635–E3644

1910	1950	1990
Irresponsible	Disorganized	Inhibited
Envious	Outrageous	Passive
Barbaric	Pompous	Dissolute
Aggressive	Unstable	Haughty
Transparent	Effeminate	Complacent
Monstrous	Unprincipled	Forceful
Hateful	Venomous	Fixed
Cruel	Disobedient	Active
Greedy	Predatory	Sensitive
Bizarre	Boisterous	Hearty

Changes in framing: adjectives associated with Chinese

Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. *Proceedings of the National Academy of Sciences*, 115(16), E3635–E3644

1910	1950	1990
Irresponsible	Disorganized	Inhibited
Envious	Outrageous	Passive
Barbaric	Pompous	Dissolute
Aggressive	Unstable	Haughty
Transparent	Effeminate	Complacent
Monstrous	Unprincipled	Forceful
Hateful	Venomous	Fixed
Cruel	Disobedient	Active
Greedy	Predatory	Sensitive
Bizarre	Boisterous	Hearty

Conclusion

Concepts or word senses

- Have a complex many-to-many association with words (homonymy, multiple senses)
- Have relations with each other
 - Synonymy, Antonymy, Superordinate
- But are hard to define formally (necessary & sufficient conditions)

Embeddings = vector models of meaning

- More fine-grained than just a string or index
- Especially good at modeling similarity/analogy
 - Just download them and use cosines!!
- Can use sparse models (tf-idf) or dense models (word2vec, GLoVE)
- Useful in practice but know they encode cultural stereotypes