Text Normalization

Chapter 2 (2.1 - 2.4)

Basic Text Processing

Regular Expressions

Regular expressions

- A formal language for specifying text strings
- How can we search for any of these?
 - woodchuck
 - woodchucks
 - Woodchuck
 - Woodchucks
 - Ill vs. illness
 - color vs. colour

Example

 Does \$> grep "elect" news.txt return every line in a file called news.txt that contains the word "elect"

```
elect
```

Misses capitalized examples

[eE]lect

Incorrectly returns select or electives

[^a-zA-Z] [eE] lect [^a-zA-Z]

Errors

- The process we just went through was based on fixing two kinds of errors
 - Matching strings that we should not have matched (there, then, other)
 - False positives (Type I)
 - Not matching things that we should have matched (The)
 - False negatives (Type II)

Errors cont.

- In NLP we are always dealing with these kinds of errors.
- Reducing the error rate for an application often involves two antagonistic efforts:
 - Increasing accuracy or precision (minimizing false positives)
 - Increasing coverage or recall (minimizing false negatives).

Summary

- Regular expressions play a surprisingly large role
 - Sophisticated sequences of regular expressions are often the first model for any text processing text
 - I am assuming you know, or will learn, in a language of your choice
- For many hard tasks, we use machine learning classifiers
 - But regular expressions are used as features in the classifiers
 - Can be very useful in capturing generalizations

7

Basic Text Processing

Word tokenization

Text Normalization

- Every NLP task needs to do text normalization:
 - 1. Segmenting/tokenizing words in running text
 - 2. Normalizing word formats
 - 3. Segmenting sentences in running text

How many words?

- · I do uh main- mainly business data processing
 - Fragments, filled pauses
- Terminology
 - Lemma: same stem, part of speech, rough word sense
 - cat and cats = same lemma
 - Wordform: the full inflected surface form
 - cat and cats = different wordforms

How many words?

they lay back on the San Francisco grass and looked at the stars and their

- **Type**: an element of the vocabulary.
- **Token**: an instance of that type in running text.
- How many?
 - 15 tokens (or 14)
 - 13 types (or 12) (or 11?)

How many words?

N = number of tokens

V = vocabulary = set of types

|V| is the size of the vocabulary

	Tokens = N	Types = V
Switchboard phone conversations	2.4 million	20 thousand
Shakespeare	884,000	31 thousand
Google N-grams	1 trillion	13 million

Issues in Tokenization

```
Finland's capital →
what're, I'm, isn't →
state-of-the-art →
```

San Francisco \rightarrow

Issues in Tokenization

```
    Finland's capital → Finland Finlands Finland's ?
    what're, I'm, isn't → What are, I am, is not
    state-of-the-art → state of the art ?
    San Francisco → one token or two?
```

Tokenization: language issues

- Chinese and Japanese no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
 - Sharapova now lives in US southeastern Florida

Basic Text Processing

Word Normalization and Stemming

Normalization

- Need to "normalize" terms
 - Information Retrieval: indexed text & query terms must have same form.
 - We want to match U.S.A. and USA
- We implicitly define equivalence classes of terms
 - e.g., deleting periods in a term
- Alternative: asymmetric expansion:
 - Enter: windows Search: Windows, windows, window
- Potentially more powerful, but less efficient

Case folding

- Applications like IR: reduce all letters to lower case
 - Since users tend to use lower case
 - Possible exception: upper case in mid-sentence?
 - e.g., General Motors
 - Fed vs. fed
 - SAIL vs. sail
- For sentiment analysis, MT, Information extraction
 - Case is helpful (*US* versus *us* is important)

Lemmatization

- Reduce inflections or variant forms to base form
 - am, are, is \rightarrow be
 - car, cars, car's, cars' \rightarrow car
- the boy's cars are different colors \rightarrow the boy car be different color
- Lemmatization: have to find correct dictionary headword form

Morphology

- Morphemes:
 - The small meaningful units that make up words
 - Stems: The core meaning-bearing units
 - Affixes: Bits and pieces that adhere to stems
 - Often with grammatical functions

Stemming

- Reduce terms to their stems in information retrieval.
- Stemming is crude chopping of affixes
 - language dependent
 - e.g., automate(s), automatic, automation all reduced to automat.

for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress

Sentence Segmentation

- !, ? are relatively unambiguous
- Period "." is quite ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Build a binary classifier
 - Looks at a "."
 - Decides EndOfSentence/NotEndOfSentence
 - Classifiers: hand-written rules, regular expressions, or machine-learning

Minimum Edit Distance

- Not assigned, but fyi, quantifies similarity of two strings
 - Word similarity is useful for spelling correction

23