
ar
X

iv
:1

90
2.

06
00

6v
2 

 [
cs

.C
L

] 
 1

9 
Fe

b 
20

19

Contextual Word Representations: A Contextual Introduction

Noah A. Smith

February 2019

Abstract

This introduction aims to tell the story of how we put words into computers. It is part of the story

of the field of natural language processing (NLP), a branch of artificial intelligence.1 It targets a wide

audience with a basic understanding of computer programming, but avoids a detailed mathematical treat-

ment, and it does not present any algorithms. It also does not focus on any particular application of NLP

such as translation, question answering, or information extraction. The ideas presented here were devel-

oped by many researchers over many decades, so the citations are not exhaustive but rather direct the

reader to a handful of papers that are, in the author’s view, seminal. After reading this document, you

should have a general understanding of word vectors (also known as word embeddings): why they exist,

what problems they solve, where they come from, how they have changed over time, and what some of

the open questions about them are. Readers already familiar with word vectors are advised to skip to

Section 5 for the discussion of the most recent advance, contextual word vectors.

1 Preliminaries

There are two ways to talk about words.

• A word token is a word observed in a piece of text. In some languages, identifying the boundaries

of the word tokens is a complicated procedure (and speakers of the language may not agree on the

“correct” rules), but in English we tend to use whitespace and punctuation to delimit words, and in

this document we will assume this is “solved.”2

• A word type is the word in the abstract. Every word token is said to “belong” to its type. When

we count the occurences of a word in a piece of text (known as a corpus, plural corpora), we are

counting the tokens that belong to the same word type.

2 Discrete Words

In a computer, the simplest representation of a piece of text is a sequence of characters (depending on the

encoding, a character might be a single byte or several). A word type can be represented as a string (ordered

list of characters), but comparing whether two strings are identical is costly.

Not long ago, words were usually integerized, so that each word type was given a unique (and more or

less arbitrary) nonnegative integer value. This had the advantages that (1) every word type was stored in the

same amount of memory, and (2) array-based data structures could be used to index other information by

word types (like the string for the word, or a count of its tokens). The vocabulary could be continuously

1For those seeking a textbook about NLP, I recommend Jurafsky and Martin (forthcoming) and Eisenstein (2018).
2The technical term for this problem is tokenization.

1

http://arxiv.org/abs/1902.06006v2


expanded as new word types were encountered (up to the range of the integer data type, over 4 billion for

4-byte unsigned integers). And, of course, testing whether two integers are identical is very fast.

The integers themselves didn’t mean anything; the assignment might be arbitrary, alphabetical, or in the

order word tokens were observed in a reference text corpus from which the vocabulary was derived (i.e.,

the type of the first word token observed would get 0, the type of the second word token would get 1 if it

was different from the first, and so on). Two word types with related meanings might be assigned distant

integers, and two “adjacent” word types in the assignment might have nothing to do with each other. The use

of integers is only a convenience following from the data types available in the fashionable programming

languages of the day; in Lisp (for example), “gensym” would have served the same purpose, although

perhaps less efficiently. For this reason, we refer to integer-based representations of word types as discrete

representations.

3 Words as Vectors

To see why we no longer treat word types as discrete, it’s useful to consider how words get used in NLP

programs. Here are some examples:

• Observing a word token in a given document, use it as evidence to help predict a category for the

document. For example, the word delightful appearing in a review of a movie is a cue that the reviewer

might have enjoyed the film and given it a positive rating.3

• Observing a word token in a given sentence, use it as evidence to predict a word token in the translation

of the sentence. For example, the appearance of the word cucumber in an English sentence is a cue

that the word concombre might appear in the French translation.

• Conversely, given the full weight of evidence, choose a word type to write as an output token, in a

given context.

In each of the above cases, there is a severe shortcoming to discrete word types: information about how to

use a particular word as evidence, or whether to generate a word as an output token, cannot be easily shared

across words with similar properties. As a simple example, consider filling in the blank in the following

sentence:

The papers will be signed Tuesday night, and we’ll be able to move in to the new house on

Given your knowledge of the world, you are likely inclined to fill in the blank with high confidence as a

token of Wednesday. But Thursday or Friday would probably not be too surprising, if one of them was

revealed to come next. These three word types share something (together with the other names of days of

the week), and we’d like for a model that uses words to be able to use that information.4 To put it another

way, our earlier interest in testing whether two words are identical was perhaps too strict. Two non-identical

words may be more or less simlar.

The idea that words can be more or less similar is critical when we consider that NLP programs, by and

large, are built using supervised machine learning, that is, a combination of examples demonstrating the

inputs and outputs to a task (at least one of which consists of words) and a mechanism for generalizing from

3See Pang and Lee (2008) for a detailed treatment of the problems of sentiment and opinion analysis.
4One situation where this lack of sharing is sorely noticed is in the case of new words, sometimes called “unknown” or “out of

vocabulary” (OOV) words. When an NLP program encounters an OOV word token, say blicket, what should it do? By moving

away from discrete words (as we will do in a moment), we’ve managed to reduce the occurrence of truly OOV word types, by

collecting information about an increasingly large set of words in advance of building the NLP program.

2



those input-output pairings. Such a mechanism should ideally exploit similarity: anything it discovers about

one word should transfer to similar words.

Where might this information about similarity come from? There are two strands of thought about

how to bring such information into programs. We might trace them back to the rationalist and empiricist

traditions in philosophy, though I would argue it’s unwise to think of them in opposition to each other.

One strand suggests that humans, especially those trained in the science of human language, know

this information, and we might design data structures that encode it explicitly, allowing our programs to

access it as needed. An example of such an effort is WordNet (Fellbaum, 1998), a lexical database that

stores words and relationships among them such as synonymy (when two words can mean the same thing)

and hyponymy (when one word’s meaning is a more specific case of another’s). WordNet also explicitly

captures the different senses of words that take multiple meanings, such as fan (a machine for blowing air, or

someone who is supportive of a sports team or celebrity). Linguistic theories of sentence structure (syntax)

offer another way to think about word similarity in the form of categories like “noun” and “verb.”

The other strand suggests that the information resides in artifacts such as text corpora, and we can use

a separate set of programs to collect and suitably organize the information for use in NLP. With the rise

of ever-larger text collections on the web, this strand came to dominate, and the programs used to draw

information from corpora have progressed through several stages, from count-based statistics, to modeling

using more advanced statistical methods, to increasingly powerful tools from machine learning.

From either of these strands (or, more commonly in practice, by intertwining them), we can derive a

notion of a word type as a vector instead of an integer.5 In doing so, we can choose the dimensionality of

the vector and allocate different dimensions for different purposes. For example:

• Each word type may be given its own dimension, and assigned 1 in that dimension (while all other

words get 0 in that dimension). Using dimensions only in this way, and no other, is essentially

equivalent to integerizing the words; it is known as a “one hot” representation, because each word

type’s vector has a single 1 (“hot”) and is otherwise 0.

• For a collection of word types that belong to a known class (e.g., days of the week), we can use a

dimension that is given binary values. Word types that are members of the class get assigned 1 in this

dimension, and other words get 0.

• For word types that are variants of the same underlying root, we can similarly use a dimension to

place them in a class. For example, in this dimension, know, known, knew, and knows would all get

assigned 1, and words that are not forms of know get 0.

• More loosely, we can use surface attributes to “tie together” word types that look similar; examples

include capitalization patterns, lengths, and the presence of a digit.

• If word types’ meanings can be mapped to magnitudes, we might allocate dimensions to try to capture

these. For example, in a dimension we choose to associate with “typical weight” elephant might get

12,000 while cat might get 9. Of course, it’s not entirely clear what value to give purple or throw in

this dimension.

Examples abound in NLP of the allocation of dimensions to vectors representing word types (either

syntactic, like “verb,” or semantic, like “animate”), or to multiword sequences (e.g., White House and hot

dog). The technical term used for these dimensions is features. Features can be designed by experts, or they

can be derived using automated algorithms. Note that some features can be calculated even on OOV word

types. For example, noting the capitalization pattern of characters in an OOV word might help a system

guess whether it should be treated like a person’s name.

5A vector is a list, usually a list of numbers, with a known length, which we call its dimensionality. It is often interpreted and

visualized as a direction in a Euclidean space.

3



4 Words as Distributional Vectors: Context as Meaning

An important idea in linguistics is that words (or expressions) that can be used in similar ways are likely to

have related meanings (Firth, 1957; consider our day of the week example above). In a large corpus, we can

collect information about the ways a word type w is used, for example, by counting the number of times it

appears near every other word. When we begin looking at the full distribution of contexts in a corpus where

w is found, we are taking a distributional view of word meaning.

One highly successful approach to automatically deriving features based on this idea is clustering; for

example, the Brown et al. (1992) clustering algorithm automatically organized words into clusters based

on the contexts they appear in, in a corpus. Words that tended to occur in the same neighboring contexts

(other words) were grouped together into a cluster. These clusters could then be merged into larger clusters.

The resulting hierarchy, while by no means identical to the expert-crafted data structure in WordNet, was

surprisingly interpretable and useful. It also had the advantage that it could be reconstructed on any given

corpus, and every word observed would be included. Hence suitable word clusters could be built separately

for news text, or biomedical articles, or tweets.

Another line of approaches started by creating word vectors in which each dimension corresponded to

the frequency the word type occurred in some context (Deerwester et al., 1990). For instance, one dimension

might correspond to the , and contain the number of times the word occurred immediately following the.

Contextual patterns on the left or the right, and of varying distances and lengths, might be included. The

result is a vector perhaps many times longer than the size of the vocabulary, in which each dimension

contains a tiny bit of information that may or may not be useful. Using methods from linear algebra,

aptly named dimensionality reduction, these vectors could be compressed into shorter vectors in which

redundancies across dimensions were collapsed.

These reduced-dimensionality vectors had several advantages. First, the dimensionality could be chosen

by the NLP programmer to suit the needs of the program. More compact vectors might be more efficient to

compute with, and might also benefit from the lossiness of the compression, since corpus-specific “noise”

might fall away. There’s a tradeoff, though; longer, less heavily compressed vectors retain more of the

original information in the distributional vectors. While the individual dimensions of the compressed vectors

are not easily interpreted, we can use well-known algorithms to find a word’s nearest neighbors in the vector

space, and these were often found to be semantically related words, as one might hope.

(Indeed, these observations gave rise to the idea of vector space semantics (see Turney and Pantel, 2010,

for a survey), in which arithmetic operations were applied to word vectors to probe what kind of “meanings”

had been learned. One famous example were analogies like “man is to woman as king is to queen” led to

testing whether v(man) − v(woman) = v(king) − v(queen). Efforts to design word vector algorithms to

adhere to such properties followed.)

The notable disadvantage of reduced-dimensionality vectors is that the individual dimensions are no

longer interpretable features that can be mapped back to intuitive building blocks that contribute to the

word’s meaning. The word’s meaning is distributed across the whole vector; for this reason, these vectors

are sometimes called distributed represenatations.6

As corpora grew, scalability became a challenge, because the number of observable contexts grew as

well. Underlying all word vector algorithms is the notion that the value placed in each dimension of each

word type’s vector is a parameter that will be optimized, alongside all the other parameters, to best fit

the observed patterns of word in the data. Since we view these parameters as continuous values, and the

notion of “fitting the data” can be operationalized as a smooth, continuous objective function, selecting the

parameter values is done using iterative algorithms based on gradient descent. Using tools that had become

6Though distributional information is typically used to build distributed vector representations for word types, the two terms

are not to be confused and have orthogonal meanings!

4



popular in machine learning, faster methods based on stochastic optimization were developed. One widely

known collection of algorithms is available as the word2vec package (Mikolov et al., 2013). A common

pattern arose in which industry researchers with large corpora and powerful computing infrastructure would

construct word vectors using an established (often expensive) iterative method, and publish the vectors for

anyone to use.

There followed a great deal of exploration of methods for obtaining distributional word vectors. Some

interesting ideas worth noting include:

• When we wish to apply neural networks7 to problems in NLP, it’s useful to first map each input word

token to its vector, and then “feed” the word vectors into the neural network model, which performs

a task like translation. The vectors can be fixed in advance (or pretrained from a corpus, using

methods like those above, often executed by someone else), or they can be treated as parameters of the

neural network model, and adapted to the task specifically (e.g., Collobert et al., 2011). Finetuning

refers to initializing the word vectors by pretraining, then adapting them through task-specific learning

algorithms. The word vectors can also be initialized to random values, then estimated solely through

task learning, which we might call “learning from scratch.”8

• Using expert-built data structures like WordNet as additional input to creating word vectors. One

approach, retrofitting, starts with word vectors extracted from a corpus, then seeks to automatically

adjust them so that word types that are related in WordNet are closer to each other in vector space

(Faruqui et al., 2015).

• Using bilingual dictionaries to “align” the vectors for words in two languages into a single vector

space, so that, for example, the vectors for the English word type cucumber and the French word type

concombre have a small Euclidean distance (Faruqui and Dyer, 2014). By constructing a function that

reorients all the English vectors into the French space (or vice versa), researchers hoped to align all

the English and French words, not just the ones in the bilingual dictionary.

• A words’ vectors are calculated in part (or in whole) from its character sequence (Ling et al., 2015).

These methods tend to make use of neural networks to map arbitrary-length sequences into a fixed-

length vector. This has two interesting effects: (1) in languages with intricate word formation systems

(morphology),9 variants of the same underlying root may have similar vectors, and (2) differently-

spelled variants of the same word will have similar vectors. This kind of approach was quite successful

for social media texts, where there is rich spelling variation. For example, these variants of the word

would, all attested in social media messages, would have similar character-based word vectors because

they are spelled similarly: would, wud, wld, wuld, wouldd, woud, wudd, whould, woudl, and w0uld.

7A neural network is a function from vectors to vectors. A very simple example is a function from two-dimensional inputs to

two-dimensional outputs, such as:

output [1] = p1 × input [1] + p2 × input [2] + p3 × input [1]× input [2] + p4

output [2] = p5 × tanh(output [1]) + p6 × input [1] + p7 × input [2] + p8 × input [1]× input [2] + p9

Neural networks are almost always defined in terms of parameters, here denoted by p1, . . . , p9, which are automatically chosen

using standard machine learning algorithms. Typically, they include at least one transformation that is not linear (e.g., the hyperbolic

tangent above).
8The result of vectors learned from scratch for an NLP task is a collection of distributed representations that were learned from

something other than distributional contexts (the task data).
9E.g., the present tense form of the French verb manger is mange, manges, mangeons, mangez, or mangent, depending on

whether the subject is singular or plural, and first, second, or third person.

5



5 Contextual Word Vectors

We started this discussion by differentiating between word tokens and word types. All along, we’ve assumed

that each word type was going to be represented using a fixed data object (first an integer, then a vector)

in our NLP program. This is convenient, but it makes some assumptions about language that do not fit

with reality. Most importantly, words have different meanings in different contexts. At a coarse-grained

level, this was captured by experts in crafting WordNet, in which, for example, get is mapped to over thirty

different meanings (or senses). It is difficult to obtain widespread agreement on how many senses should

be allocated to different words, or on the boundaries between one sense and another; word senses may be

fluid.10 Indeed, in many NLP programs based on neural networks, the very first thing that happens is that

each word token’s type vector is passed into a function that transforms it based on the words in its nearby

context, giving a new version of the word vector, now specific to the token in its particular context. In our

example sentence earlier, the two instances of be will therefore have different vectors, because one occurs

between will and signed and the other occurs between we’ll and able.

With hindsight, we can now see that by representing word types independent of context, we were solving

a problem that was harder than it needed to be. Because words mean different things in different contexts,

we were requiring that type representations capture all of the possibilities (e.g., the thirty meanings of get).

Moving to word token vectors simplifies things, asking the word token representation to capture only what

a word means in this context. For the same reasons that the collection of contexts a word type is found in

provide clues about its meaning(s), a particular token’s context provides clues about its specific meaning.

For instance, you may not know what the word blicket means, but if I tell you that I ate a strawberry blicket

for dessert, you likely have a good guess.11

Returning to the fundamental notion of similarity, we would expect words that are similar to each other

to be good substitutes for each other. For example, what are some good substitutes for the word gin? This

question is hard to answer about the word type (WordNet tells us that gin can refer to a liquor for drinking,

a trap for hunting, a machine for separating seeds from cotton fibers, or a card game), but easy in a given

context (e.g., “I use two parts gin to one part vermouth.”). Indeed, vodka might even be expected to have a

similar contextual word vector if substituted for gin.12

ELMo, which stands for “embeddings from language models” (Peters et al., 2018a), brought a powerful

advance in the form of word token vectors—i.e., vectors for words in context, or contextual word vectors—

that are pretrained on large corpora. There are two important insights behind ELMo:

• If every word token is going to have its own vector, then the vector should depend on an arbitrarily

long context of nearby words. To obtain a “context vector,” we start with word type vectors, and pass

them through a neural network that can transform arbitrary-length sequences of left- and/or right-

context word vectors into a single fixed-length vector. Unlike word type vectors, which are essentially

lookup tables, contextual word vectors include both type-level vectors and neural network parameters

that “contextualize” each word. ELMo trains one neural network for left contexts (going back to the

beginning of the sentence a token appears in) and another neural network for right contexts (up to the

end of the sentence). Longer contexts, beyond sentence boundaries, are in principle possible as well.

• Recall that estimating word vectors required “fitting the data” (here, a corpus) by solving an opti-

mization problem. A longstanding data-fitting problem in NLP is language modeling, which refers

to predicting the next word given a sequence of “history” words (briefly alluded to in our filling-in-

the-blank example earlier). Many of the word (type) vector algorithms already in use were based on

10For example, the word bank can refer to the side of a river or to a financial institution. When used to refer to a blood bank, we

can debate whether the second sense is evoked or a third, distinct one.
11Though such examples abound in linguistics, this one is due to Chris Dyer.
12The author does not endorse this substitution in actual cocktails.

6



a notion fixed-size contexts, collected across all instances of the word type in a corpus. ELMo went

farther, using arbitrary-length histories and directly incorporating the language models known at the

time to be most effective (based on recurrent neural networks; Sundermeyer et al., 2012). Although

recurrent networks were already widely used in NLP, training them as language models then using the

context vectors they provide for each word token as pretrained word (token) vectors was novel.

It’s interesting to see how the ideas around getting words into computers have come full circle. The

powerful idea that text data can shed light on a word’s meaning, by observing the contexts in which a

word appears, has led us to try to capture a word token’s meaning primarily through the specific context it

appears in. This means that every instance of plant will have a different word vector; those with a context

that look like a context for references to vegetation are expected to be close to each other, while those that

are likely contexts for references to manufacturing centers will cluster elsewhere in vector space. Whether

this development completely solves the challenge of words with different meanings remains to be seen, but

ELMo was shown to be extremely beneficial in NLP programs that

• answer questions (9% relative error reduction on the SQuAD benchmark),

• label the semantic arguments of verbs (16% relative error reduction on the Ontonotes semantic role

labeling benchmark),

• labeling expressions in text that refer to people, organizations, and other named entities (4% relative

error reduction on the CoNLL 2003 benchmark), and

• resolve which referring expressions refer to the same entities (10% relative error reduction on the

Ontonotes coreference resolution benchmark).

Gains on additional tasks were reported by Peters et al. (2018a) and later by other researchers. Howard and Ruder

(2018) introduced a similar approach, ULMFiT, showing a benefit for text classification methods. A suc-

cessor approach, bidirectional encoder representations from transformers (BERT; Devlin et al., 2018) that

introduced several innovations to the learning method and learned from more data, achieved a further 45%

error reduction (relative to ELMo) on the first task and 7% on the second. On the SWAG benchmark, re-

cently introduced to test grounded commonsense reasoning (Zellers et al., 2018), Devlin et al. (2018) found

that ELMo gave 5% relative error reduction compared to non-contextual word vectors, and BERT gave

another 66% relative to ELMo.

At this writing, there are many open questions about the relative performance of the different methods. A

full explanation of the differences in the learning algorithms, particularly the neural network architectures,

is out of scope for this introduction, but it’s fair to say that the space of possible learners for contextual

word vectors has not yet been fully explored; see Peters et al. (2018b) for some exploration. Some of the

findings on BERT suggest that the role of finetuning may be critical. While ELMo is derived from language

modeling, the modeling problem solved by BERT (i.e., the objective function minimized during estimation)

is rather different.13 The effects of the dataset used to learn the language model have not been fully assessed,

except for the unsurprising pattern that larger datasets tend to offer more benefit.

6 Cautionary Notes

Word vectors are biased. Like any engineered artifact, a computer program is likely to reflect the per-

spective of its builders. Computer programs that are built from data will reflect what’s in the data—in this

13BERT pretraining focuses on two tasks: (i) prediction of words given contexts on both sides (rather than one or the other) and

(ii) predicting the words in a sentence given its preceding sentence.

7



case, a text corpus. If the text corpus signals associations between concepts that capture cultural biases, these

associations should be expected to persist in the word vectors and any system that uses them. Hence it is

not surprising that NLP programs that use corpus-derived word vectors associate, for example, doctor with

male pronouns and nurse with female ones. Methods for detecting and correcting unwanted associations

is an active area of research (Bolukbasi et al., 2016; Caliskan et al., 2017). The advent of contextual word

vectors offers some possibility of new ways to avoid unwanted generalization from distributional patterns.

Language is a lot more than words. Effective understanding and production of language is about more

than knowing word meanings; it requires knowing how words are put together to form more complicated

concepts, propositions, and more. The above is not nearly the whole story of NLP; there is much more to

be said about approaches to dealing with natural language syntax and semantics, and how we operationalize

tasks of understanding and production that humans perform into tasks for which we can attempt to design

algorithms. One of the surprising observations about contextual word vectors is that, when trained on very

large corpora, they make it easier to disambiguate sentences through various kinds of syntactic and semantic

parsing; it is an open and exciting question how much of the work of understanding can be done at the level

of words.

Natural language processing is not a single problem. While the gains above are quite impressive, it’s

important to remember that they reflect only a handful of benchmarks that have emerged in the research

community. These benchmarks are, to varying degrees, controversial, and are always subject to debate. No

one who has spent any serious amount of time studying NLP believes they are “complete” in any interesting

sense. NLP can only make progress if we have ways of objectively measuring progress, but we also need

continued progress on the benchmarks. This aspect of NLP research is known as evaluation, and includes

both human-judgment-based and automatic methods. Anyone who is an enthusiast of NLP (or AI more

generally) should take the time to learn how progress is measured and understand the shortcomings of

evaluations currently in use.

7 What’s Next

Over the next year or two, I expect to see new findings that apply variations on contextual word vectors

to new problems and that explore variations on the learning methods. For example, when is it helpful to

finetune the parameters of the neural networks in ELMo and BERT? Personally, I’m particularly excited

about the potential for these approaches to improve NLP performance in settings where relatively little

supervision. Perhaps, for example, ELMo-like methods can improve NLP for low-resource genres and

languages. I also expect there will be many attempts to characterize the generalizations that these methods

are learning (and those that they are not learning) in linguistic terms; see for example Goldberg (2019).

Acknowledgments

Errors and oversights are the author’s alone. The exposition benefited from feedback from Oren Etzioni and

Chris Dyer, which is acknowledged with gratitude.

8



References

Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. Man is to

computer programmer as woman is to homemaker? debiasing word embeddings. In Advances in Neural

Information Processing Systems, pages 4349–4357, 2016.

Peter F. Brown, Peter V. Desouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai. Class-based

n-gram models of natural language. Computational Linguistics, 18(4):467–479, 1992.

Aylin Caliskan, Joanna J. Bryson, and Arvind Narayanan. Semantics derived automatically from language

corpora contain human biases. Science, 356(6334):183–186, 2017.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Nat-

ural language processing (almost) from scratch. Journal of Machine Learning Research, 12:2493–2537,

2011.

Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A. Harshman.

Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):

391–407, 1990.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirec-

tional transformers for language understanding, 2018. arXiv:1810.04805.

Jacob Eisenstein. Natural Language Processing. 2018.

Manaal Faruqui and Chris Dyer. Improving vector space word representations using multilingual correlation.

In Proc. of EACL, 2014.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris Dyer, Eduard Hovy, and Noah A. Smith.

Retrofitting word vectors to semantic lexicons. In Proc. of NAACL, 2015.

Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.

J. R. Firth. A synopsis of linguistic theory 1930–1955. In Studies in Linguistic Analysis, pages 1–32.

Blackwell, 1957.

Yoav Goldberg. Assessing BERT’s syntactic abilities, 2019. arXiv:1901.05287.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification, 2018.

arXiv:1801.06146.

Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to Natural Lan-

guage Processing, Computational Linguistics, and Speech Recognition. Prentice Hall, third edition, forth-

coming. URL https://web.stanford.edu/˜jurafsky/slp3/.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernandez Astudillo, Silvio Amir, Chris Dyer, Alan W. Black,

and Isabel Trancoso. Finding function in form: Compositional character models for open vocabulary

word representation. In Proc. of EMNLP, 2015.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in

vector space. In Proceedings of ICLR, 2013.

Bo Pang and Lillian Lee. Opinion Mining and Sentiment Analysis, volume 2 of Foundations and Trends R©

in Information Retrieval. Now Publishers, Inc., 2008.

9

https://web.stanford.edu/~jurafsky/slp3/


Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. Deep contextualized word representations. In Proceedings of NAACL, 2018a.

Matthew E. Peters, Mark Neumann, Luke Zettlemoyer, and Wen tau Yih. Dissecting contextual word em-

beddings: Architecture and representation. In Proc. of EMNLP, 2018b.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for language modeling. In

Proc. of Interspeech, 2012.

Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space models of semantics. Journal

of Artificial Intelligence Research, 37(1):141–188, 2010.

Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. SWAG: A large-scale adversarial dataset for

grounded commonsense inference. In Proc. of EMNLP, 2018.

10


	1 Preliminaries
	2 Discrete Words
	3 Words as Vectors
	4 Words as Distributional Vectors: Context as Meaning
	5 Contextual Word Vectors
	6 Cautionary Notes
	7 What's Next

