Midterm Exam Notes

Coverage: Linguistic Knowledge / Representations & Algorithms, e.g.,

- Normalization / Regular Expressions
- Language Modeling / N-Grams
- Part of Speech / Tagsets & HMM Tagging
- Constituency/ (P)CFGs & Parsing
- Evaluation methods

Types of questions:

True/False (probably 10, 20%)

- The Penn Treebank part of speech tagset is the only tagset for English.
- The chain rule is used to move from $P(A \mid B)$ and $P(B \mid A)$ and back.
- Subcategorization deals with the subpart of words.
- Languages generally have a relatively large set of closed class words.

Short Answer or similar (conceptual)

- Explain and compare smoothing and backoff.
- Why do we usually make a Markov assumption and deal with N-grams?
- What do people use the Penn Treebank for? What are its limitations?
- What is the difference between a prior and a conditional probability?
- How is syntactic parsing different than recognition? How does the computation that you would use change?

Problem Solving (like hw) (most points)

- Suppose you wanted to compute the probability of the sentence "I love exams" and that the only training data you have consists of the following two sentences: "I love computer science. I love tests." Solve this problem using bigrams (without smoothing). You do not actually need to do the math to come up with a single probability. For example, you can leave the probabilities in fractional form, show equations rather than solve them, etc.
- Consider the following probabilistic context-free grammar (PCFG): (figure)
 - Convert to CNF
 - o Show all possible parses of the following sentence.
 - o Compute the probability of each of the trees (you can just write an equation).
 - o Give one example motivating why and showing how you might want to do parent annotation.
 - o Evaluate the precision and recall of the most likely parse compared to the gold standard.