
Developing pedagogically effective tutorial dialogue tactics: Experiments and a
testbed

Kurt VanLehn, Pamela Jordan, Diane Litman

Learning Research & Development Center and Intelligent Systems Program
University of Pittsburgh, Pittsburgh PA, USA

vanlehn@cs.pitt.edu

Abstract

Although effective tutorial dialogue strategies are well understood,
tutorial tactics that govern brief episodes of tutoring, such as a sin-
gle step, are not. Because better tactics seem to be crucial for
further improving pedagogical effectiveness, we have begun in-
vestigating the effects of varying tutorial tactics. In this paper we
describe two planned experiments and the testbed we have created
to support this experimentation.

1. Introduction
One-on-one, face-to-face human tutoring is widely considered to
be an extremely effective method of instruction. Compared to
classroom instruction, human tutors have raised students’ learning
gains by two standard deviations, which is a very large effect size
[1]. This has inspired both analyses of human tutorial dialogues
[2, 3] and development of tutoring systems [4] with both standard
form/menu interfaces [5, 6] and natural language (NL) interfaces
[7, 8].

Effective tutorial strategies are now well understood. When
tutors are helping students solve complex, multi-step problems,
such as the physics problem shown in the upper right pane of Fig-
ure 1, both human tutors and recent computer tutors follow the
same two-phase strategy. During phase 1, the tutor and the student
solve the problem together, step by step. In Figure 1, they have
just completed one step (writing an equation) and are starting on a
new step (solving it for v1). During phase 2, the tutor and student
reflect on the problems’ solution. They highlight the solution’s
main steps, review any confusions that the student may have had
during the solution, and consider how the solution varies when the
problem statement is varied in certain ways. In short, the overall
strategy consists of collaborative solution (phase 1) followed by
discussion (phase 2).

Although tutorial strategy is no longer contentious, tutorial
tactics are still not well understood. Tutorial tactics govern brief
episodes of tutoring, such as a single step or a single post-solution
discussion question and seem to be crucial for achieving further
improvements in pedagogical effectiveness. We are focusing on
two tactical decisions: (1) During problem solving, should the tu-
tor simply tell the student the next step orelicit the step from the
student with a prompt or question? (2) When a step has been com-
pleted during problem solving or a question has been answered
during the post-solution discussion, should the tutor ask the stu-
dent to explain it?

This work was funded by NSF grant 0325054.

In both cases, there is theory about the right tactics to use,
but implementing it is nontrivial. For the first tactical decision,
whether to tell or elicit a step, the common wisdom ismodel, scaf-
fold, fade[9]. When a student is completely unfamiliar with a step
(e.g., they have never applied the definition of kinetic energy be-
fore), then the tutor should tell her the step (this is calledmodelling
the stepby Collins et al.) because trying to elicit the step will prob-
ably frustrate most students (but not all). Once a student has some
familiarity, the tutor should have a content-appropriate prompt for
the step, such as “Try applying the definition of kinetic energy.”
This is calledscaffolding(temporary help). A still more compe-
tent student should receive much less help–the scaffoldingfades.
Once a student has mastered a step, then it doesn’t matter who
does it; the tutor can do the step if that makes the problem solv-
ing more efficient. In short, this simple decision of whether to tell
or elicit a step depends in subtle ways on both the students’ com-
petence and on affective factors, such as their self-confidence and
desire for autonomy. If the tutor makes bad decisions, the tutorial
dialogue has the potential to vary between a boring demonstration
and a frustrating “try to read the tutor’s mind” game.

For the second tutorial tactic, whether to ask for a justification
of a step, the common wisdom is that students need to be aware of
the justification. But eliciting one may not always be best. If the
student is already aware of it, then typing in a justification can be
slow and frustrating. And sometimes it may be better to delay dis-
cussion of the justifications to phase 2, after the problem has been
solved [3], especially if the justification is abstract, plan-based or
long.

Given the subtlety of tutorial tactical decision making and the
speed with which such decisions must be made, it is unsurprising
that human tutors are only mediocre at it [10, 8]. Thus, we have
switched from analyzing human tutorial dialogues to doing exper-
iments that vary tutorial tactics and measure the resulting learning
gains. This paper briefly introduces our first two experiments and
Cordillera1, a testbed for conducting such experiments. Our dis-
tant goal is to build tutoring systems whose dialogues are so well
attuned to students that the systems will be even more effective
than human tutors.

2. Learning Dialogue Policies
While prior studies have made progress in identifying desirable tu-
torial tactics, as discussed above, it is still unclear how to design
a computer tutor that can optimally use such tactics. Work in de-
signing spoken dialogue systems has proposed several data-driven

1Cordillera is pronounced ”Core-dee-yare-uh”



Figure 1: The student interface

methodologies for addressing this issue, including the use of Rein-
forcement Learning [11] to automatically learn the best action for
a system to take at any state in a dialogue (e.g., [12, 13, 14]). Data
for reinforcement learning algorithms are typically obtained by al-
lowing an agent to explore an environment, in terms of perceiving
a state and taking an action. The environment, in turn, provides a
reward. Reinforcement learning finds an optimal policy from this
data, by specifying the best action to take in every state such that
the cumulative reward for the agent is maximized.

Past research into using Reinforcement Learning to improve
spoken dialogue systems has commonly used Markov Decision
Processes (MDP’s) [11] to model a dialogue. A MDP is defined
by a set of states{si}i=1..n, a set of actions{ak}k=1..p, and a
set of transition probabilities which reflect the dynamics of the
environment{p(si|sj , ak)}k=1..p

i,j=1..n: if the model is at timet in
statesj and takes actionak, then it will transition to statesi

with probability p(si|sj , ak). Additionally, an expected reward
r(si, sj , ak) is defined for each transition. When casting the di-
alogue control problem in this formalism, the model parameters
{p(si|sj , ak)}k=1..p

i,j=1..n are typically estimated from a corpus of di-
alogues; then, a simple dynamic programming approach is used
to learn the optimal control policyπ∗, i.e. the set of actions the
model should take at each state, to maximize its expected cumula-
tive reward.

While policy development is very important, choosing the best
features to model the state is equally important, since it impacts
the actions a system will choose to take. In prior work [15], we
used a previously collected corpus of spoken computer tutoring

physics dialogues to train an MDP model of tutoring interactions,
then used this model to learn whether considering more complex
state features impacted the optimization (with respect to improv-
ing student learning) of two types of tutor tactics: whether or not
to generate feedback, and what type of question to ask. How-
ever, because our data was not collected to be exploratory with
respect to tutor tactics, the tutor often only used one type of ac-
tion in many dialogue states, which severely limited the types of
questions that our research could investigate. Thus, our first exper-
iment involves generating an exploratory corpus more suited to re-
inforcement learning (and other probabilistic approaches), which
will then be used to test whether machine learning can optimize
tutorial dialogues.

3. Experimental Design
We are conducting our experiments within the Physics work-
energy domain. From the Physics literature, we collected a
database of 127 quantitative and qualitative problems and listed the
knowledge components2 that must be applied to solve each prob-
lem. We then identified 30 knowledge components to teach and
selected seven quantitative problems that covered these knowledge
components to use for student training. We also selected problems
from the database to create a 37 item test3 to derive expected re-

2Knowledge componentis a generalization of everyday terms like con-
cept, principle, fact, or skill, and cognitive science terms like schema, pro-
duction rule, misconception, or facet.

3The pre and post-test are identical.



wards for use in Reinforcement Learning.
We have written dialogues for Cordillera that have many ac-

tion choices (branches) that are under the tutor’s control. In par-
ticular, for a state or step the tutor chooses (1) whether to tell or
elicit it, and (2) whether to elicit a justification for it or not. In Fig-
ure 1, the dialogue history shows a number oftell actions with a
few elicitsand the pending question in the input pane at the bottom
shows ajustify action choice. As discussed above, these choices
are important and yet difficult to make so as to maximize learning,
motivation and speed. We want to find out if machine learning can
infer effective policies for making such action choices.

In the first experiment these choices are made randomly. We
expect that students will learn some knowledge components slowly
and others rapidly, depending on what choices the tutor makes with
that particular student and knowledge component. For instance,
when solving the problem of Figure 1, if the tutor starts by ask-
ing some students, “Please define variables for the rock’s kinetic
energy,” some students may be so confused that they need a multi-
turn subdialogue to find out what the tutor means by “kinetic en-
ergy” and why two variables are needed for it. This subdialogue
is likely to be so lengthy and complex that these students learn
almost nothing from it. Thus, this tutorial dialogue choice will
slow their learning of thetime pointknowledge component. On
the other hand, learning may be much faster if the tutor’s random
choice led it to tell the student the time points (e.g., “Because the
problem asks for the net work done on the rock, it is likely that
the rock’s kinetic energy changes. Thus, let us use KE0 for its
kinetic energy at time T0 and KE1 for its kinetic energy at time
T1.”). Because the action choices are made randomly during this
experiment, a student might get an unlucky set of choices for one
knowledge component, which causes it to be learned slowly, and
a lucky set of choices for another, which causes it to be learned
quickly. Thus, during this first experiment, we will collect data
on which action choices the tutor makes and how that affects a
student’s learning of individual knowledge components.

During the second experiment, we will test whether the poli-
cies inferred by machine learning are actually pedagogically effec-
tive. The experiment will have two groups of students: treatment
and control. The treatment group will use the version of Cordillera
with the learned policies. The control group will use the random-
choice version of Cordillera that was used in experiment 1. We
hypothesize that the treatment group will learn faster than the con-
trol group. That is, their learning gains will be larger than the
control group’s learning gains.

4. Cordillera
To construct Cordillera, we used the TuTalk [16, 17] NL tutorial
dialogue toolkit as the foundation. TuTalk enables system design-
ers to focus on the development of the content to be presented to
students and was built to support dialogues in which a tutor tries to
elicit the main line of reasoning from a student by a series of ques-
tions. This style of dialogue was inspired by CIRCSIM-Tutor’s di-
rected lines of reasoning [7]. In addition, TuTalk is modular so that
core modules such as NL understanding can be replaced or supple-
mented as needed. We made two modifications; (1) we replaced
language understanding with a human wizard and (2) embedded
GUI menus and forms for student input.

The simplest dialogue one can write for TuTalk can be repre-
sented as a finite state machine. Each state contains a single tutor
turn. The arcs leaving the state correspond to all classifications of

a student’s response turn. When creating a state, the author enters
the text for a tutor’s turn and defines several classes of student re-
sponses as transition arcs, and indicates which state each arc leads
to. An arc can also “call” a finite state network, which allows au-
thors to create hierarchical dialogues.

In TuTalk, the NL associated with states and arcs is repre-
sented in concept definitions. In the simplest case, a concept is
a set of NL phrases. For instance, the set for concept NEG-ACK
might be “Not quite”, “Well, not exactly”, “No”. When a string
is input, the dialogue manager asks the understanding module to
determine what concepts it represents and determines transitions
on the basis of the concept labels returned. Likewise when a con-
cept is to be expressed, the dialogue manager asks the generation
module to determine how to best express it in NL.

We embedded a GUI command language into the concept
definitions that the Cordillera interface interprets. As a result, a
Cordillera dialogue can interleave requests for student input to be
via GUI or NL. The variables in the bottom right pane of Figure 1
were defined either by the student using a form interface or pro-
vided by the tutor (elicit vs. tell).

Figure 2: The wizard’s NL classification pane

To reduce the confounds of imperfect NL understanding on
our experiments, we replaced the NL understanding module with
a human interpreter which we call the language understanding wiz-
ard. The wizard’s interface mirrors that of the student except that
the student input pane is replaced by the student’s response and
a set of check-boxes for classifying the student’s response. See
Figure 2 for an example of the wizard’s classification pane.

TuTalk also provides a number of advanced features. The most
important of these features for Cordillera is the one in which au-
thors can specify states to be skipped if certain simple conditions
hold. For experiment 1, we marked justifications as states that can
be randomly skipped.

5. Current Status

We completed two rounds of pilot testing on the dialogues to check
that the content presented is understandable and helpful to stu-
dents. We started experiment 1 at the beginning of the summer
and expect be ready to begin experiment 2 by mid Fall.



6. References
[1] B. S. Bloom, “The 2 sigma problem: The search for meth-

ods of group instruction as effective as one-to-one tutoring.,”
Educational Researcher, , no. 13, pp. 4–16, 1984.

[2] A. C. Graesser, N. Person, and J. Magliano, “Collaborative
dialog patterns in naturalistic one-on-one tutoring,”Applied
Cognitive Psychology, , no. 9, pp. 359–387, 1995.

[3] S. Katz, G. O’Donnell, and H. Kay, “An approach to ana-
lyzing the role and structure of reflective dialogue,”Inter-
national Journal of Artificial Intelligence in Education, , no.
11, pp. 320–343, 2000.

[4] K. VanLehn, “The behavior of tutoring systems,”Interna-
tional Journal of Artificial Intelligence and Education, , no.
16, 2006.

[5] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and R. Pel-
letier, “Cognitive tutors: Lessons learned,”The Journal of
the Learning Sciences, vol. 4, no. 2, pp. 167–207, 1995.

[6] K. VanLehn, C. Lynch, K. Schultz, J. A. Shapiro, R. H.
Shelby, and L. Taylor, “The Andes physics tutoring system:
Lessons learned,”International Journal of Artificial Intelli-
gence and Education, vol. 3, no. 15, pp. 147–204, 2005.

[7] M. Evens and J. Michael,One-on-One Tutoring by Humans
and Computers, Lawrence Erlbaum Associates, Inc., 2006.

[8] K. VanLehn, A. C. Graesser, G. T. Jackson, P. Jordan, A. Ol-
ney, and C. P. Rose, “When are tutorial dialogues more ef-
fective than reading?,”Cognitive Science, vol. 31, no. 1, pp.
3–62, 2007.

[9] A. Collins, J. S. Brown, and S. E. Newman, “Cognitive
apprenticeship: Teaching the craft of reading, writing and
mathematics,” inKnowing, learning and instruction: Essays
in honor of Robert Glaser, L. B. Resnick, Ed., pp. 453–494.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1989.

[10] M. T. H. Chi, S. Siler, H. Jeong, T. Yamauchi, and R. G.
Hausmann, “Learning from human tutoring,”Cognitive Sci-
ence, vol. 25, pp. 471–533, 2001.

[11] R. Sutton and A. Barto,Reinforcement Learning, The MIT
Press, 1998.

[12] E. Levin and R. Pieraccini, “A stochastic model of computer-
human interaction for learning dialog ues,” inProc. of EU-
ROSPEECH ’97, 1997.

[13] M. Walker, “An application of reinforcement learning to di-
alogue strategy select ion in a spoken dialogue system for
email,” JAIR, vol. 12, 2000.

[14] S. Singh, D. Litman, M. Kearns, and M. Walker, “Optimiz-
ing dialogue managment with reinforcement learning: Ex-
perimen ts with the njfun system,”JAIR, vol. 16, 2002.

[15] J. Tetreault, D. Bohus, and D. Litman, “Estimating the reli-
ability of mdp policies: a confidence interval ap proach,” in
NAACL, 2007.

[16] P. W. Jordan, M. Ringenberg, and B. Hall, “Rapidly devel-
oping dialogue systems that support learning studies,” in
Proceedings of ITS06 Workshop on Teaching with Robots,
Agents, and NLP, 2006.

[17] P. W. Jordan, B. Hall, M. Ringenberg, Y. Cui, and C.P. Rosé,
“Tools for authoring a dialogue agent that participates in
learning studies,” inProceedings of AIED 2007, 2007.


