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Output Analysis for a Single Model
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 Since most simulations are stochastic in nature, their 

output can vary from run to run due to random chance

 The results from any single run may not be useful

 We typically need to analyze our results over many runs

 The values may have great differences

 No one run would necessarily represent the “correct” result

 We need to perform statistical analysis on these results in 

some way



Model output types

 The analysis is affected by the type of outputs

 They generally fall into two categories of behaviors for a 

stochastic process:

1) Transient behavior

 Indicated by a simulation with a specific termination event 

(ex: runs for X minutes,  or runs until C customers have 

been processed, or runs until inventory is exhausted etc.)

2) Steady-state behavior

 Indicated by a simulation that runs over a very long 

period of simulated time, or with no stated stop event



Transient vs. Steady State
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 Mathematically, their output distributions have different 
characteristics

 Consider output Y1, Y2, … for a simulation with initial conditions I

 And distribution Fr(y | I) = P(Yr ≤ y | I) for r = 1, 2, …
 In words, F gives the probability distribution for each output conditional upon 

the initial conditions

 For a stochastic process with transient behavior

 Each Fr will be different for different r and for different I

 In other words the output values vary from each other and are different 
for different initial conditions

 For a stochastic process with steady state behavior

 Eventually a point is reached such that
Fr(y | I)  F(y) 

 Or, the output converges to a distribution that is independent of r and I



Transient Behavior Processes
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 Consider an output value of interest

 Ex: Queue length, Q

 Ex: Wait time in queue, WQ

 Within a single run of a simulation, the values will 

autocorrelate, and thus will not be independent

 Why might that be?

 Because they are not IID (Independent & Identically 

Distributed), we cannot do “classical” statistical analysis on 

these values within a single simulation run

 However, the results should be independent between runs, as 

long as different random number streams were used.



Transient Behavior Processes
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 For example, suppose Wcr
Q represents the wait time for 

customer c during run r of the simulation

 Wcr
Q for the same r and c = 1, 2, … are not independent

 Wcr
Q for the same c and r = 1, 2, … are independent, and can be 

analyzed as such

 If we get the average wait for each run, we can also analyze 

that value across the runs

 To analyze the values, we’d like to establish some 

confidence about the accuracy / validity of our results



Confidence Intervals
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 Consider result Yr for r = 1, 2, …, n that we obtain for the 
n runs of our simulation

 We refer to the (ground truth) mean of the result as µ and the 
standard deviation σ

 However, we don’t know what they are (since we only have some 
observed data)

 We’d like to know whether the computed mean of the observed 
results, Ῡ, is close to the actual mean, µ, of the output 
distribution

 A confidence interval will tell us whether the actual mean 
is within a certain range with a certain probability

 Ex: µ = 5.2  0.32 with confidence 90%

This says that there is a 90% chance that the actual mean of our output 
distribution is between 4.88 and 5.52 



Confidence Intervals

 Desirable properties of the confidence interval:

 The confidence to be as high as possible (close to 1)

 The interval to be as narrow as possible (width close to 0)

 The actual confidence and interval values are dependent upon a 

few factors, including:

 The variation in the data produced by the simulation

 The number of simulation runs performed

 There are two methods of determining confidence intervals

1. Given n runs and a confidence probability, what is our 

confidence interval?

2. Given a desired confidence interval, how many runs are 

necessary to achieve that interval?



Confidence Intervals
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 First, we determine the point estimate, Ῡ, for our 

distribution

 This is simply the mean of the sample points

 𝑌 =

 𝑗=1
𝑛 𝑌𝑗

𝑛

 We next need to determine the sample variance, S2

𝑆2 =
 𝑗=1
𝑛 𝑌𝑗 −  𝑌

2

𝑛 − 1



Confidence Intervals
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 This gives us an estimate of the actual variance, σ2, of Ῡ
through the following:

 𝜎2  𝑌 =
𝑆2

𝑛

 Taking the square root of this gives us the standard error 
of the sample mean

 𝜎  𝑌 =
𝑆2

𝑛
=

𝑆

𝑛

 This value helps us to determine how accurate our 
estimate of the mean, Ῡ, is.



Confidence Intervals
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 As long as our estimators are not too biased, the random 
variable is approximately t-distributed with n-1 degrees of 
freedom

 Hence, we are (1-α)% confidence that μ is within:

  𝑌 − 𝑡𝛼
2
,𝑛−1

𝑆2

𝑛
and       𝑌 + 𝑡𝛼

2
,𝑛−1

𝑆2

𝑛
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Confidence Intervals

 Using the formula, we get the interval around our point 

estimate of the mean

 It says that the actual mean will fall in the interval with a 

(1 - ) probability

 We look up the  value in the t-distribution table and plug in 

the other numbers

 We can also think of it visually, looking at a t-distribution curve

 It is actually quite similar to a normal curve and is also symmetric

 The  value is divided into /2 on either extreme of the curve

 The t-distribution approaches a standard normal distribution 

as degrees of freedom 

 If n is large enough we can substitute z for t



Exercise
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 A call center takes questions between 8am and 4pm.  The 

results of a simulation of the call center is shown below.

 What is the sampled average wait time?

 Find the 95% confidence interval around the sample 

average wait time.

Run Avg Wait Time 

(in minutes)

Avg # of people 

on hold

1 0.88 0.68

2 5.04 4.18

3 4.13 3.26

4 0.52 0.34



Confidence Intervals
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 Suppose we’d like our sample mean to be within 2 of the 

actual mean, with a stated probability of (1-α), i.e.:

 𝑃  𝑌 − 𝜇 < 𝜖 ≥ 1 − 𝛼

 We will do this in a multistep process:

 Choose an n0 as an initial number of runs to try.  From n0 we 

calculate an S0 (initial standard deviation)

 We know that the precision increases (and  decreases) with 

increased n



Confidence Intervals
 From our previous derivations, we know that the half-length 

of a confidence interval is
 half-length = 

 for confidence probability 1 - 

 Which we would like to solve for n such that

 However, since we don’t know n yet, we can’t look up t/2, n-1

 But we do know that the t-distribution approaches the standard 
normal distribution as n 

 If we substitute z/2 we can get a ballpark value for n
 Last row of Student’s T Table
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Confidence Intervals

 This leads us to

 However, this may not be exactly correct, since we 

substituted z for t in our formula

 Since tn > z, the value we calculate for n may be a bit small

 We can make this an iterative process – updating n and testing it until 

we get the desired precision
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Exercise

 Same setup as before.

 Suppose we want the confidence interval to be within 0.5 

minutes with 95% confidence.  How many more runs do 

we have to do?

Run Avg Wait Time 

(in minutes)

Avg # of people 

on hold

1 0.88 0.68

2 5.04 4.18

3 4.13 3.26

4 0.52 0.34
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Quantiles and Percentiles

 Sometimes, instead of the average value, we are more 

interested in the probability that the result for a given run 

will be ≤ some value

 In other words, we want to specify some probability p such that

Pr(Y ≤ θ) = p

for some value θ

 We say the value θ is the pth quantile (as a fraction) or 

percentile (as a percentage) of Y 

 Example: Consider a simulation of a grocery checkout line.  Suppose we 

run over several (independent) days, keeping track of the average time 

in the system for each customer

 Determine the value for θ, such that the average time a customer spends in 

the system is ≤ θ on 80% of the days
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Quantiles and Percentiles

 We typically determine these in the following way:

 Determine the desired probability

 Find the value that satisfies that probability

 More specifically:

 Calculate the point estimate, by taking the appropriate 

proportion of the sample points

 Ex: If we have 1000 sample points and we want the 80th percentile, we 

estimate the 80th percentile as the 0.8(1000)th point (sorted)

 We then calculate the (1 - ) confidence interval using 

formulas 11.18 in the Banks et al. text
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Quantiles and Percentiles
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 These give us the range of probabilities that we then 

convert to quantiles

 Ex: The lower bound, θl, is the pl(1000)th point in our sample 

(sorted) and the upper bound, θu, is the pu(1000)th point in our 

sample (sorted)

 Ex: Thus the 80th percentile of our sample will be 

between θl and θu with probability (1 - )

 This gets a bit confusing because we are talking about 

probabilities at two different levels

 The quantile itself gives a probability

 The confidence interval also gives a probability



Percentiles Example
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 Consider a simulation of a 
grocery checkout line.  
Suppose we run over 
several (independent) days, 
keeping track of the 
average time in the system 
for each customer.

 Determine the value for θ
(with 95% confidence), 
such that the average time 
a customer spends in the 
system is ≤ θ on 80% of 
the days

5.4 10.6

3.7 4.5

8.3 8.5

6.1 9.3

2.2 6.4

Average time for 
each run (minutes)



Comparing Two Alternative Designs
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 If we have the same output variable of interest for both 
designs, we’d like to compare them

 Are the differences between them statistically significant?

 A common approach is to look at the difference of the values

 Form a confidence interval around the difference

 If the difference is large and the confidence interval around it is tight 
and with high confidence, we say that the difference is statistically 
significant

 We need to judge separately whether the difference is practically
significant



Comparing Two Alternative Designs
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 What if the difference between the two alternatives led 

to an observed difference within the following confidence 

interval:

 -4.5 ≤ Ῡ1 - Ῡ2 ≤ 3.6 with 95% confidence

 What if the difference has the following confidence 

interval instead:

 3.0 ≤ Ῡ1 - Ῡ2 ≤ 4.3 with 95% confidence



Comparing Two Alternative Designs
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 Correlated Sampling
 Identical random data streams are used for the different simulation 

variations
 i.e. the input data is identical for both versions (not just the same 

distribution, but the same exact data)

 Will always have the same number of runs in this case

 Correlated sampling tends to reduce variance in the difference of the 
results, thereby giving better confidence intervals for the same 
number of runs
 However, it is not always possible or easy to do

 Independent Sampling
 Separate random data streams are used for the different simulation 

variations

 We may or may not have the same number of runs for each Ῡi



Correlated Sampling
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 Also called paired-t approach

 In this case, both versions use the identical random data 

for the identical number of runs

 Thus, the output from run Xi for each version is not 

independent

 So we can process the difference of the versions Yr1 –Yr2

as a new, separate random variable for each run r

 Then the difference result can be analyzed in the same 

way as single result data

 An advantage of this approach is that it reduces the variance 

(which, in turn reduces the width of the confidence interval)



Exercise
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 We ran simulations to 

compare two methods of 

taking customer orders.  

Both models received 

identical input data for all 10 

trials.  To the right are the 

average wait time for each 

method.

 Based on the outcome, can 

we be 95% confident that the 

methods are different?

Trial Method A Method B

1 12.3 12.0

2 12.0 12.3

3 12.0 12.5

4 13.0 12.0

5 13.0 13.1

6 12.5 12.4

7 11.3 10.3

8 11.8 11.3

9 11.5 11.6

10 11.0 11.5



Independent Sampling
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 Trials from one simulation variant have no 

pair/connection to trials from another simulation variant

 Two possibilities:

 Equal Variances

 Unequal Variances

 Why didn’t we have this question with paired sampling?



Independent Sampling with Equal Variances
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 Also called two-sample-t approach

 Method 1 and Method 2 have the same variance σ1= σ2

 Method 1 is run for R1 trials

 Method 2 is run for R2 trials

 What is the confidence interval for the difference of outcomes of the two 
methods?
 (Ῡ1 - Ῡ2) ± t/2,v [s.e.(Ῡ1 - Ῡ2)] with prob. (1-)

 To calculate this we need to determine the standard error (s.e.) for the difference of 
the two means, and the degrees of freedom (v)

 Degrees of freedom is just sum of df of both methods:
 (R1 - 1) + (R2 - 1) = R1 + R2 – 2

 Calculating the standard error is a little more complicated
 Since R1 ≠ R2, the contributions from the two methods’ sample variances may 

not be equal



Independent Sampling with Equal Variances
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 Weighted average of the two sample variances:

𝑆𝑝
2 =

𝑅1 − 1 𝑆1
2 + 𝑅2 − 1 𝑆2

2

𝑅1 + 𝑅2 − 2

 Note that if R1 = R2, the pooled sample variance is simplified to 

just the sum of the two sample variances divided by 2.

 The standard error is then:

𝑠. 𝑒.  𝑌1 −  𝑌2 = 𝑆𝑝
1

𝑅1
+

1

𝑅2



Independent Sampling with Equal Variances
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 Can generally be used in two situations:

 Variances for Y1 and Y2 are the same but the number of runs of 

each may or may not be the same

 The number of runs for Y1 and Y2 are the same and the 

variances may or may not be the same



Independent Sampling with Unequal Variances
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 Also called modified two-sample-t approach

 For when variances for Y1 and Y2 are not equal

 Standard Error

 Degrees of Freedom

 Confidence Interval

 (Ῡ1 - Ῡ2) ± t/2,v [s.e.(Ῡ1 - Ῡ2)] with prob. (1-)
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Equality of Variances?

45

 Homoscedasticity – homogeneity of variances

 Test for homoscedasticity

 Bartlett’s test – assumes normality of data

 Levene’s test – less sensitive to departures from normality

 Brown-Forsythe test – even less sensitive (tests on median, not 

mean)

 H0: variances are equal

 Ha: variances are not equal



Conclusions
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 If identical random data and identical runs can be used for 

both design versions, it should be

 A positive correlation between the versions reduces the 

variance, thereby improving the confidence interval

 Note that caution must be taken to ensure that the data used 

is actually identical

 So for each data stream, value Xi in version 1 must be used for the same 

purpose in version 2



Conclusions
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 In some circumstances, using identical data may not be 

possible

 One version may have different amounts of input from the 

other, or different input parameters

 In these cases, we need to use independent sampling, as 

discussed previously

 If possible, we’d like the number of runs to be the same

 Generally speaking, we prefer to get results that will 

have the least variance, thereby giving the best 

confidence intervals

 However, we can always improve our confidence intervals 

for any system by increasing the runs



Which Approach to Use?

48

 Have two methods or versions of the system.

 Correlated (Paired) Sampling

 Same number of runs for both methods

 For both methods, run i has the same random number stream

 Independent Sampling

 Equal Variances vs. Unequal Variances

 Test for equality of variances using Homoscedasticity test

 Could always assume unequal variances, but not as powerful as equal 

variance version



Steady State Analysis
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 If our simulation is evaluating steady state behavior, we 

use somewhat different evaluation techniques

 Recall that for a given measure θ, if we are determining a 

long run value, then

 For some variable of interest Y, where n is the number of observations 

of Y

 Where θ is independent of any initial conditions of the simulation







n

i

i
n

Y
n 1

1
lim



Steady State Analysis
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 However, it may not be obvious how large n has to 

be until we approach the long run value

 Initial conditions CAN affect the value of n needed to 

get to a steady state

 These introduce a bias into the data that can take a lot of 

time to dissipate
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Steady State Analysis

 Some ways to reduce this initial bias:

 Set initial conditions intelligently

 Run the simulation for a while, then start collecting data
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Steady State Analysis

1) Set the initial conditions of the simulation in an 

intelligent way, as close to the steady state values as 

possible

 These conditions could be obtained through observation 

of the real system

 They could also be approximated using analytical 

techniques (Markov analysis, as discussed in Chapter 6 of 

Banks et al)

 Determine long run values and use these as the initial 

conditions for our simulation

 We likely cannot model the exact system but we can get 

something close enough to reduce the initial bias
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Steady State Analysis

2) Run the simulation for a while without tabulating any data

 By the time data begins to be collected, the conditions should be 

close to the steady state

 How can we determine how long to wait before tabulating data?

 In other words, if we divide our run into two segments, T0 and TE, 

how long should we make T0 and TE be?

 This is most likely done via experimentation

 The text discusses how to break up runs into batches and calculate 

ensemble averages in order to accomplish this

 Idea:

 Let's say we want to do R runs of our simulation

 Let's say each run will be for time T
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Steady State Analysis

 Break up T into k subdivisions (batches)

 Given variable of interest, Y, calculate the average value of Y for 

each batch across all runs to get the ensemble averages

 Examine the ensemble averages and the cumulative average

 Also consider cumulative average when some of the initial 

batches are not considered

 In other words, we start tabulating the data with batch m, with

m >= 1





R

r

rjj Y
R

Y
1

.

1
for 1 <= j <= k
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Steady State Analysis

 We can plot ensemble averages over time and see if there 

is a trend

 If necessary we can decide to eliminate some of the initial 

batches if they show too much bias

 Once we have done our runs we still need to analyze the 

data

 Follow steps discussed earlier for transient systems


