
Input Modeling

CS1538: Introduction to Simulations



Steps in a Simulation Study

Problem & Objective Formulation

Data CollectionModel Conceptualization

Model translation,

Verification, Validation

Experimental Design

Experimentation & Analysis

Documentation, Reporting, 

Implementation



Input Modeling
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 In the real world, input data distributions are not always 

obvious or even clearly defined

 We may not have any real data at all 

 If we are building a new network or road system, we wouldn’t have a 

way to get the real data

 We may only have a small number of sample data

 If we can determine the distribution of the sample data, we might be 

able to generate enough for our simulation

 The input data may not be from a single distribution

 May differ at different times / days

 Determining the distribution may not be easy

 Usually requires multiple steps, and a combination of computer and 

"by hand" work



No data at all: Create from scratch
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 We would have to rely on knowledge about the problem

 Experts

 What do people in the area in question think, based on their 

knowledge and experience

 Engineering specs

 Ex:  A device is built to have some mean time to failure based on the 

production environment.  We can use that value as a starting point for 

mean time to failure of the device in the real environment

 Similarity to something we already know

 Ex: To figure out the input data distribution for a new road, we may be 

able to use data from similarly configured roads as a starting point 



Fitting sample data to a distribution
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 Create one or more histograms of the data

 Graph them to see the basic "shape" of the distribution

 How "wide" should each group be?

 How do we know if a shape is of a particular distribution?

 We may have some ideas about what might be a set of possible 

theoretical distributions

 Determine the parameters of the distribution

 Ex: if we think it’s exponential, we need to determine l

 Ex: if we think it’s a normal, we need to determine m and s

 Apply goodness of fit tests

 As with the random number testers, we can use the Chi-

Square test and the Kolmogorov-Smirnov test



Parameter Estimation

 Sample mean, X’

 Average of the observed values (just like expectation)

 Sample variance

 S2 = S (Xi – X’)2/(n-1) = ((S Xi
2) – nX’2) / (n-1)

 Why divide by n-1?

 This is necessary to keep the estimate unbiased – equally likely to over-

estimate as under-estimate



Parameter Estimation 

 Suppose we believe that our empirical distribution is from 

the exponential family

 If so, we would need to estimate l

 We have no prior belief about what value l should be

 Pick l so that the chance of getting the empirical data is 

maximized

 This is the Maximum Likelihood Estimate



Maximum Likelihood Estimate (MLE)

 Suppose we observe data points x1, …, xn.  We want to pick 

l so that the observed data is the most likely to happen

 argmax Pr(l | x1,…,xn) = argmax Pr(x1,…,xn | l) Pr(l) / Pr(x1,…,xn )

 We can ignore the denominator because they are all the same

 argmax Pr(l | x1,…,xn) = argmax Pr(x1,…,xn | l) Pr(l)

 If we have no preference for any value of l, then we can assume 

that Pr(l) is from the uniform distribution so we can ignore it 

too

 argmax Pr(l | x1,…,xn) =argmax Pr(x1,…,xn | l)

 True for any distribution (as long as assumptions are true)



MLE for Exponentials

 For exponentials, we further know that

 Pr(x1,…,xn | l) = f(x1,…,xn) = f(x1)*…*f(xn) = ln e-lSxi

 To argmax Pr(x1,…,xn | l),  take the derivative; set to zero and 

solve for l

 First convert to log space ln f(x) = n ln l – lSxi

 Take the derivative w/r/t l and set to 0:  n/l – Sxi =0

 So our estimate for l = 1/(Sxi /n) = 1/X’

 This makes intuitive sense because the expectation of an 

exponential distribution is 1/ l, so our empirical estimation of l

also has an inverse relationship with the empirical mean



More parameter estimations
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 What if we believe that the distribution is …

 Binomial

 p‘ = X’/n

 Poisson

 a’ = X’

 Normal

 m‘ = X’, s’ = S

 Gamma:

 k : see Table A.9 (from Banks et al), q’ = 1/X’



Goodness of Fit Tests

 Once we have chosen a distribution and estimated its 
parameters, we need to check how well the distribution 
fits with the observed data.

 Goodness-of-fit tests

 Chi-Squared Test (good for large sample sizes)

 Kolmogorov-Smirnov Test

 The same general idea as when we checked for 
uniformity of the outputs from a PRNG

 Except, a uniform distribution does not have any estimated 
parameters



Goodness of Fit Tests

 Suppose expected distribution X has k possible outcomes.  We 
compare the frequencies against the expected frequencies:

 𝐶 =  𝑖=1
𝑘 𝑂𝑖−𝐸𝑖

2

𝐸𝑖

where Oi is the observed number of occurrences of value xi, and
Ei is the expected number of occurrences of value xi

 NULL Hypothesis, H0 : O matches distribution of X

 Hypothesis H1: O does not match distribution of X

 If  the value for C is “too large” compared to the critical value, we reject 
the null hypothesis

 Critical value is determined by:

 Degrees of freedom = k-s-1 where s is the number of sampled parameters

 k is number of outcomes (also called bins)

 s is the number of estimated parameters (e.g. for Exponentials, s=1; for Normals, s=2)

 Level of significance



Chi-Square Test Requirements
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 Total number of observed data points > 20

 The expected frequency of each outcome is not too sparse 

(commonly required to be >= 5)

 If Ei < 5 for some outcome xi, it can be merged with an adjacent 

outcome

 If the distribution is continuous, bin the outcomes into k 

intervals

 Set up the intervals for equal probability

 To determine k, use the following guideline:

Sample size (n) Number of intervals (k)

<= 20 N/A

50 5-10

100 10-20

> 100 Sqrt(n) to n/5



Example

 Suppose we observed 

these 50 time 

intervals between 

customer arrivals

 How should we begin 

to fit the observed 

data to a known 

distribution?

5.409 0.028 15.31 1.641 3.83

5.933 2.025 19.00 8.533 7.349

12.75 6.167 1.291 6.333 3.899

6.314 10.63 0.389 1.833 6.59

12.19 15.12 0.322 13.45 8.192

0.263 6.777 4.523 8.793 13.85

7.33 2.31 11.57 1.25 16.53

15.84 31.25 6.863 29.22 11.35

7.552 0.962 10.47 2.32 7.207

0.985 0.939 6.45 0.532 4.238

(read column-first)



Example
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 Possible distribution choices

 Poisson distribution (modeling the number of people arriving 

over some period of time)

 Need to convert the 50 data points of inter-arrival times into 

cumulative time

 Need to decide on a duration to use as a time period so that the 

number of outcomes (k) is appropriate

 Exponential distribution (modeling the amount of time 

between arrivals)

 When doing chi-square test, we’ll need to quantize the continuous 

outcomes into bins of intervals where each interval has the same 

amount of probability mass



Example: As Poisson Distribution

5.409 74.596 166.085 228.600 304.689

11.342 76.622 185.087 237.134 312.038

24.092 82.789 186.378 243.467 315.937

30.407 93.420 186.767 245.300 322.527

42.599 108.541 187.089 258.746 330.718

42.862 115.318 191.611 267.539 344.573

50.192 117.628 203.180 268.790 361.105

66.031 148.877 210.043 298.006 372.457

73.582 149.839 220.509 300.326 379.664

74.567 150.777 226.959 300.859 383.902

If we want to treat the arrivals as a Poisson distribution, how should we 
go about analyzing the data? 



Processing the Observed Data using

Poisson Distribution

 We really should have taken the data for a fixed duration 

multiple times

 e.g., we might show up every weekday at Panera’s and observe 

the number of customers who arrive between 4:00 and 4:15 

for two weeks

 Since we took one long stream of observations, we’d be 

assuming that the rate of arrival is static

 We can construct # of arrivals in some fixed period:

 e.g.,  count how many people arrived in each 10 minute intervals



Arrivals in 10-minute intervals
5.409 74.596 166.085 228.600 304.689

11.342 76.622 185.087 237.134 312.038

24.092 82.789 186.378 243.467 315.937

30.407 93.420 186.767 245.300 322.527

42.599 108.541 187.089 258.746 330.718

42.862 115.318 191.611 267.539 344.573

50.192 117.628 203.180 268.790 361.105

66.031 148.877 210.043 298.006 372.457

73.582 149.839 220.509 300.326 379.664

74.567 150.777 226.959 300.859 383.902
Period # of 

Arrivals

Period # of 

Arrivals

Period # of 

Arrivals

Period # of 

Arrivals

10 1 110 1 210 1 310 3

20 1 120 2 220 1 320 2

30 1 130 0 230 3 330 1

40 1 140 0 240 1 340 1

50 2 150 2 250 2 350 1

60 1 160 1 260 1 360 0

70 1 170 1 270 2 370 1

80 4 180 0 280 0 380 2

90 1 190 4 290 0 390 1

100 1 200 1 300 1



Arrivals

Period # of Arrivals Period # of Arrivals Period # of Arrivals Period # of Arrivals

10 1 110 1 210 1 310 3

20 1 120 2 220 1 320 2

30 1 130 0 230 3 330 1

40 1 140 0 240 1 340 1

50 2 150 2 250 2 350 1

60 1 160 1 260 1 360 0

70 1 170 1 270 2 370 1

80 4 180 0 280 0 380 2

90 1 190 4 290 0 390 1

100 1 200 1 300 1

Arrivals 
per Period Frequency

0 6
1 22
2 7
3 2

4+ 2

Sample mean = #arrivals/#intervals
= 50/39 = 1.28

Sample variance = 0.945

Estimated rate of arrival is 
1.28 person per 10 minutes, or
0.128 person per minute



Example: Chi-Square Test for Poisson

arrivals
Observed

freq
Expected 

freq
0 6.000 10.821
1 22.000 13.873
2 7.000 8.893
3 2.000 3.801

4+ 2.000 1.612

Some bins are too small…
Which and why?



Example: Chi-Square Test for Poisson

arrivals
Observed

freq
Expected 

freq

Bin together
arrivals with 

low freq
Observed Freq
After binning

expected freq
After binning (O-E)2/E

0 6.000 10.821 0 6.000 10.821 2.148
1 22.000 13.873 1 22.000 13.873 4.760
2 7.000 8.893 2+ 11.000 14.305 0.764
3 2.000 3.801

4+ 2.000 1.612
C = 7.672

For bins too small, merge with adjacent bins until 
large enough (what is “large enough”)?



Example: Chi-Square Test for Poisson

arrivals
Observed

freq
Expected 

freq

Bin together
arrivals with 

low freq
Observed Freq
After binning

expected freq
After binning (O-E)2/E

0 6.000 10.821 0 6.000 10.821 2.148
1 22.000 13.873 1 22.000 13.873 4.760
2 7.000 8.893 2+ 11.000 14.305 0.764
3 2.000 3.801

4+ 2.000 1.612
C = 7.672

We used k=3 bins and we have one estimated parameter (l=0.128)
so our degrees of freedom=3-1-1 = 1

We’d look up the c2 table for the appropriate critical value to compare.

c2 
1, 0.05 = 7.88 > 7.672 = C   – accept H0 – awfully close though…



Example
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 Possible distribution choices

 Poisson distribution (modeling the number of people arriving 

over some period of time)

 Need to convert the 50 data points of inter-arrival times into 

cumulative time

 Need to decide on a duration to use as a time period so that the 

number of outcomes (k) is appropriate

 Exponential distribution (modeling the amount of time 

between arrivals)

 When doing chi-square test, we’ll need to quantize the continuous 

outcomes into bins of intervals where each interval has the same 

amount of probability mass



Processing the Observed Data as 

Exponential Distribution

 Sample mean = 7.678

 Average of observations

 Sample variance = 46.738

 Variance of observations

 Estimated l = 1/7.678 = 0.130 

 So in our goodness of fit, we want to see how closely the 

observed dataset might have come from 

 f(x) = 0.13 e-0.13x

 Apply the chi-square test to check the goodness of fit



Example: Chi-Square Test for Exponential
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 To use Chi-Square Test, we need to decide on a way to bin the 

observed data so that we have frequency counts

 Rather than fixed value intervals, we can define the intervals so 

that they have equal probability mass

 In general, we still want the number of data points in each 

interval to be greater than 5 

 So if we have n data points, we might pick interval probability 

mass to be at least 5/n

 In our example, each interval would have to take up at least 10% 

probability mass



Example: Chi-Square Test for Exponential

 Let’s say that we decided to break up the exponential 

function into 5 intervals (20% prob mass each)

 CDF of our exponential is F(x) = 1 - e -0.13x

 Solve for x when F(x)=0.2, 0.4, etc.



Example: Chi-Squared for Exponential
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5.409 0.028 15.31 1.641 3.83

5.933 2.025 19.00 8.533 7.349

12.75 6.167 1.291 6.333 3.899

6.314 10.63 0.389 1.833 6.59

12.19 15.12 0.322 13.45 8.192

0.263 6.777 4.523 8.793 13.85

7.33 2.31 11.57 1.25 16.53

15.84 31.25 6.863 29.22 11.35

7.552 0.962 10.47 2.32 7.207

0.985 0.939 6.45 0.532 4.238

(read column-first)



What Next for Simulations?
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 Once we’ve settled on a distribution that describes out 

input, what do we do with it?

 Why were we attempting to model out input?

 How do we use it in our simulations?



Input Modeling

 To run a simulation, we need to be able to generate 

realistic input data

 Challenges:

 We may not have any real data at all 

 We may only have a small number of sample data

 Determining the distribution may not be easy

 The input data may not be from a single distribution

 Multiple variables

 The input data may not be independent over time



Multivariate and Time-Series Input Model
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 If the input random variables are not independent, we 
need to be able to account for the dependence

 Multivariate input models:

 The input is described by a fixed, finite number of random 
variables

 Ex:  The number of pedestrians arriving at an intersection 
and the number of cars arriving at an intersection

 Time-series input models:

 A sequence of related random variables

 Can be conceptually infinite

 Ex:  The size of the audience for a stage play over 
consecutive evenings



Example 9.21 from Banks et al.
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 A supply-chain simulation includes the lead time and 

annual demand for industrial robots.  An increase in 

demand results in an increase in lead time: The final 

assembly of the robots must be made according to the 

specifications of the purchaser.

 Therefore, rather than treat lead time and demand as 

independent random variables, a multivariate input model 

should be used



Example 9.22 from Banks et al.
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 A simulation of the web-based trading site of a stock 

broker includes the time between arrivals of orders to 

buy and sell.

 Might be tempted to model inter-arrivals time naïvely using 

Exponential distribution.  However, …



Example 9.22 from Banks et al.
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 A simulation of the web-based trading site of a stock 

broker includes the time between arrivals of orders to 

buy and sell.

 Might be tempted to model inter-arrivals time naïvely using 

Exponential distribution.  However, …

 Investors tend to react to what other investors are doing, 

so these buy and sell orders arrive in bursts.

 Therefore, rather than treat the time between arrivals as 

independent random variables, a time series model should be 

developed.



Example 9.22 from Banks et al.
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 A simulation of the web-based trading site of a stock 

broker includes the time between arrivals of orders to 

buy and sell.

 Might be tempted to model inter-arrivals time naïvely using 

Exponential distribution.  However, …

 Investors tend to react to what other investors are doing, 

so these buy and sell orders arrive in bursts.

 Therefore, rather than treat the time between arrivals as 

independent random variables, a time series model should be 

developed.
How is this different from non-

stationary Poisson Process?



Recall Covariance and Correlation

 Let X be a random variable with mean mX and variance 

s2
X and let Y be a random variable with mean mY and 

variance s2
Y

 The covariance between X and Y is defined to be

 Cov(X,Y) = E[(X-mX)(Y-mY)] = E(XY) – mXmY

 If X and Y are independent, Cov(X,Y) = 0

 Cov(X,X) = Var(X)

 The correlation between X and Y is defined to be

 r = Corr(X, Y) = Cov(X,Y)/sXsY

 Corr(X,Y) = 0:  X and Y are independent

 1> Corr(X,Y) > 0: they are positively correlated

 -1 < Corr(X,Y) < 0: they are negatively correlated



Useful Case:

Bivariate Normal Distribution

 If X and Y are both normally distributed, the dependence 

between them can be modeled by the bivariate normal 

distribution with parameters mX, mY, s
2
X, s2

Y, and r = 

Corr(X, Y)

 We can estimate mX, mY, s
2
X, s2

Y empirically from the sample 

data (X’, Y’, S2
X, S2

Y)

 To estimate r, we would first need to estimate the covariance:

 Cov’(X,Y) = 1/(n-1) Sj=1..n (Xj- X’)(Yj –Y’)

= 1/(n-1) (Sj=1..n XjYj) – nX’Y’ 

 r’ = Cov’(X,Y)/(SX Sy)



Example 9.23

(continuation of 9.21: Lead time & demand)
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 Let L represent average 
lead time (in months)

 L’ = 6.14

 SL’ = 1.02

 Let D represent annual 
demand

 D’ = 101.80

 SD’ = 9.93

 Are L and D normally 
distributed?

 How do we check?

Lead Time Demand

6.5 103

4.3 83

6.9 116

6.0 97

6.9 112

6.9 104

5.8 106

7.3 109

4.5 92

6.3 96



Example 9.23

(continuation of 9.21: Lead time & demand)
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 Cov’(L, D) = 1/(n-1) (Sj=1..n LjDj) – nL’D’

= 1/(10-1) (Sj=1..10 LjDj) – 10*6.14*101.80

= 8.66

 r’ = Cov’(L,D)/(SL SD) = 8.66/(1.02*9.93) = 0.86

 r’ > 0

 L and D are positively correlated

 r’ close to 1

 Strongly dependent



Bivariate Normal Distribution
 We can generate more data points that follow a bivariate normal 

distribution:
 Generate two independent standard normal random variables, Z1 and Z2

 How do we do that?

 Let X = mX + sXZ1

 Let Y = mY + sY(rZ1 + sqrt(1-r2)Z2)

 For the example:
 L* = L’ + SL’Z1

 D* = D’ + SD’(rZ1 + sqrt(1-r2)Z2)

 Also possible:
 k-variate normal distribution

 Transform bivariate normal distribution to non-normal bivariate 
distributions



Time-Series Input Models

 Time series is a sequence of random variables X1, X2, X3, 

… that are identically distributed but could be dependent

 Cov(Xt, Xt+h): lag-h autocovariance

 Corr(Xt, Xt+h): lag-h autocorrelation

 This measures the dependence between random variables that 

are separated by h-1 others in the time series

 If the value of the autocovariance depends only on h and 

not on t, then the time series is covariance stationary

 rh = Corr(Xt, Xt+h) = rh

 That is, the lag-h autocorrelation decreases geometrically as the 

lag increases

 If the observations are far apart, they are nearly independent



Example 9.22 from Banks et al.
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 A simulation of the web-based trading site of a stock 

broker includes the time between arrivals of orders to 

buy and sell.  Investors tend to react to what other 

investors are doing, so these buy and sell orders arrive in 

bursts.

 Therefore, rather than treat the time between arrivals as 

independent random variables, a time series model should be 

developed.



Example 9.24

(continuation of 9.22: Stock broker)
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 Suppose we have the 20 

time gaps between 

customer buy and sell 

orders (in seconds) on the 

right

 T’ = 5.2 s

 ST’2 = 26.7 s2

Time between orders (sec)

1.95 0.68

1.75 0.61

1.58 11.98

1.42 10.79

1.28 9.71

1.15 14.02

1.04 12.62

0.93 11.36

0.84 10.22

0.75 9.20

(read column-first)



Generating Random Variates of

Time-Series Models
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 Exponential Autoregressive Order-1 Model
 Also called EAR(1) Model

 Use EAR(1) if autocorrelation > 0

 Generate Tt according to:

 𝑇𝑡 =  
𝜙 ∗ 𝑋𝑡−1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜙

𝜙 ∗ 𝑋𝑡−1 + 𝜖𝑡 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜙

 t = 2, 3, …

 ε2, ε3, … are independent and identically (exponentially) distributed with 
mean 1/λ

 0 <= 𝜙 < 1

 Estimate parameters:
 𝜙’ = r’

 λ’ = 1/X’



Generating (stationary) EAR(1) Time series
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1. Generate X1 from exponential distribution with mean 
1/λ

2. Set t = 2

3. Generate U from U[0, 1)

4. If U <= 𝜙:

 Xt = 𝜙*Xt-1

5. Else:

 Generate εt from exponential with mean 1/λ

 Xt = 𝜙*Xt-1 + εt

6. t += 1

7. Go to Step 3


