
Discrete Event Simulation Approach

CS1538: Introduction to Simulations



Simple Simulation: Single Server Queue

2

 Scenario: A fast-food 

restaurant with just a single 

server/cook and a single 

stove. 

 Customers arrive and wait in 

line for their turn. 

 The customer orders, then wait 

for the food to be prepared 

(service time may vary). 

 Customer picks up the food 

and leaves. 



The Single Server Restaurant

 A few simplifying assumptions (for now) 

 Ignore: customer’s party size, order complexity, money spent 

 Customers will patiently wait for their turns indefinitely 

 Customer arrival is independent and identically distributed (iid)

 Service time is also iid.

 Some possible simulation objectives: 

 How often is the server idle? 

 What’s the chance that a customer has to wait? 

 On average, how long is a customer’s wait time? 

 How long is a customer’s wait time given that there already is a line? 



Modeling the Single Server Restaurant

 Need to model: 

 Randomized customer arrivals 

 Waiting in line 

 Randomized customer service times 

 How to generate a random event?

 How to simulate the passage of time?



Time Advance Mechanisms

 Next-event time advance 

 Simulation clock initialized to zero 

 Determine the times of occurrences of future events 

 Advance clock to the most imminent of the future event 

 Update system variables 

 Update knowledge of the times for future events 



Future Events List (FEL)

 The Single-Server problem has two types of events: 

arrivals and departures. 

 To simulate using next-event time advance, we need to 

keep track of events in chronological order

 If you were to implement this scenario using a 

programming language, what data structure would be 

appropriate for Future Events List? 



Modeling Events

 Arrival of a new 

customer 

 Departure of a served 

customer



Pseudo-Code for Single-Server Simulation
inits: wait_queue  {}, server  idle, clock  0, FEL  {}

generate an arrival event and add it to FEL, customer_count = 1 

while FEL not empty: 

remove event from FEL 

update clock to event’s time 

if it’s an arrival event then call model_arrival() 

else call model_departure() 

print_stats() 

define model_arrival(): 

if customer_count < max_customers // or clock < max_time

then schedule next arrival event and add to FEL; customer_count++; 

if server busy then add current customer to wait queue 

else server  busy; schedule current customer’s departure event and add to FEL

define model_departure(): 

gather stats for the customer about to depart // done serving this customer 

if wait_queue is empty then server  idle 

else remove customer from wait_queue, schedule their departure event and add to FEL


