
Random Number Generation

CS1538: Introduction to simulations

Random Numbers

2

 Stochastic simulations require random data

 True random data cannot come from an algorithm

 We must obtain it from some process that itself has random behavior

 Ex: thermal noise, atmospheric noise, radioactive decay

 What about all these different implementations of rand()?

 Pseudo-Random Number Generation:

 Sampling from a true random source may just not be practical

 Plus, there are advantages to being able to reuse the same "random"

values

 Debugging

 Compare across systems

Pseudo-Random Numbers

3

 These numbers are generated deterministically (i.e. can

be reproduced)

 However, we still want them to have most of the

properties of true random numbers:

 Numbers are distributed uniformly on [0,1]

 Assuming a generator from [0,1), which is the most common

 Numbers should show no correlation with each other

 Must appear to be independent

 There are no discernible patterns in the numbers

Pseudo-Random Numbers

4

 First, let’s consider the following “generation” algorithm:

 Suppose we generate X0…X99 in the following way:

X0 = 0.00;

Xi = Xi-1 + 0.01

Pseudo-Random Numbers

6

 First, let’s consider the following “generation” algorithm:

 Suppose we generate X0…X99 in the following way:

X0 = 0.00;

Xi = Xi-1 + 0.01

 Next idea:

X0 = seed value

Xi+1 = (aXi + c) mod m for i = 1, 2, …

where the seed value, a, c, and m are values we choose

Pseudo-Random Numbers

 Next idea:
X0 = seed value

Xi+1 = (aXi + c) mod m for i = 1, 2, …

where the seed value, a, c, and m are values we choose

 Suppose we want some uniformly distributed integers
between 0 and 100. Which seems better?

 Choice A: let X0 = 31, a=11, c=43, and m=100

 Choice B: let X0 = 27, a=17, c=43, and m=100

 Is the “better” choice a good enough pseudo random
number generator?

Linear Congruential Generators

9

 Standard Eq’s:
X0 = seed value

Xi+1 = (aXi + c) mod m for i = 1, 2, …

where a, c, and m are constants we choose;

if c == 0 it is called a multiplicative congruential generator

if c != 0 it is called a mixed congruential generator

 Easy and fairly efficient

 Depending upon parameter choices

 Simple to reproduce sequences

 Give good results (for the most part, and when used properly)

 But we wanted random numbers in [0, 1)

 How can we get that?

Linear Congruential Generators

 The density of the distribution

 How many different values in the range can be generated?

 Larger m  more densely populated [0,1)

 The period of the generator

 How many numbers will be generated before the generator

cycles?

 Since the values are deterministic this will inevitably happen

 Clearly, a large period is desirable, especially if a lot of numbers will be

needed

 A large period also implies a denser distribution

 The ease of calculation

 Generate numbers quickly, with few complex operations

Multiplicative Linear Congruential

Generators (c=0)

12

Xi+1 = (aXi) mod m

 If m is prime, longest period possible is (m–1)

 Requirement: the smallest integer k such that 2k – 1 is

divisible by m is k = m – 1.

 If m = 2b for some b, longest period possible is m/4

 Requirement: X0 is odd; and a = 3 + 8k or a = 5 + 8k for

some k = 0,1…

Mixed Linear Congruential Generators (c≠0)

13

Xi+1 = (aXi + c) mod m

 If m = 2b for some b, the longest possible period is 2b

 Requirement: c and m are relatively primes (greatest common

factor of c and m is 1) and a = (1+4k) for some k

Some Commonly Used Parameters

14

 For more, see:

http://en.wikipedia.org/wiki/Linear_congruential_generator

Source m a (multiplier) c (increment)

Glibc (GCC) and

ANSI C

2^32 1103515245 12345

Numerical Recipes 2^32 1664525 1013904223

MS Visual/Quick

C/C++

2^32 214013 2531011

MMIX (by Knuth) 2^64 6364136223846793005 1442695040888963407

http://en.wikipedia.org/wiki/Linear_congruential_generator

Quality of Linear Congruential Generators

15

 The previous criteria for m, a and c can guarantee a full

period of m (or m-1 for multiplicative congruential

generators)

 This does not guarantee that the generator will be good

 Still need to check for uniformity and independence in the

values generated

Testing for uniformity

 Consider two options:

 Kolmogorov-Smirnov Test

 Chi-Square Test

 Both try to compare the generated numbers against the

uniform distribution

 NULL Hypothesis, H0: The generated data might have been sampled

from the Uniform Distribution

 Hypothesis H1: The generated data is very unlikely to have been

sampled from the Uniform Distribution

Testing for uniformity

 NULL Hypothesis, H0

 The generated data might have been sampled from the Uniform

Distribution

 Hypothesis H1

 The generated data is very unlikely to have been sampled from

the Uniform Distribution

 Procedure:

 Apply an appropriate statistical test to compute the likelihood

of seeing observed data given that H0 is true.

 If the chance seems too small, we reject the NULL hypothesis.

 We formalize “too small” by choosing a, a probability value

representing Pr(reject H0 | H0 is true).

Kolmogorov-Smirnov Test

 Suppose we generate N values with our RNG. Consider the
empirical distribution based on these N values.

 Let SN(x) be the % of N values that are ≤ x, for any value x

 For example, consider the following 10 values:

(0.275, 0.547, 0.171, 0.133, 0.865, 0.112, 0.806, 0.155, 0.572, 0.222)

SN(0.25) =

SN(0.5) =

SN(0.75) =

Kolmogorov-Smirnov Test

 Suppose we generate N values with our RNG. Consider the
empirical distribution based on these N values.

 Let SN(x) be the % of N values that are ≤ x, for any value x

 For example, consider the following 10 values:

(0.275, 0.547, 0.171, 0.133, 0.865, 0.112, 0.806, 0.155, 0.572, 0.222)

SN(0.25) =

SN(0.5) =

SN(0.75) =

 The Kolmogorov-Smirnov Test checks to see what is the biggest
deviation of SN(x) from F(x).

 If max |SN(x) – F(x)| is very large, we reject the null hypothesis

Procedure of the Kolmogorov-Smirnov Test

21

 Sort the empirical data R(1) ≤ R(2) ≤… ≤ R(N)

 Compute D+ = max1≤ i≤ N {i/N – R(i)}

 Compute D- = max1≤ i≤ N {R(i) – (i-1)/N}

 Compute D = max(D+, D-)

 Find Da in a table for the desired level of a and sample

size N

 If D > Da, reject the null hypothesis

 See table on next slide, or the course website

Kolmogorov-Smirnov Critical Values

22 Appendix 3, Practical Reliability Engineering, Fifth Edition

Summary of Kolmogorov-Smirnov Test

23

 We saw the one sample test

 Compares a sample with a reference (continuous) probability
distribution

 This is a general purpose test. The reference doesn’t have to be
uniform in general

 Compares the distance between the empirical
distribution function of the sample against the CDF of the
reference distribution

 Null hypothesis: the sample is from the reference
distribution

 Reject null hypothesis if the observed distance is greater
than critical value

Chi-Squared Test - introduction

24

 Another useful general-purpose statistics test

 Can be used for any distribution

 Compares a histogram of observed data (samples) with

the expected theoretical values

 Null hypothesis: sample came from the reference

theoretical distribution

 If null hypothesis is true, the sample distribution of the test

statistic (sum of squared differences between observed and

theoretical frequencies) follows a probability distribution called

the chi-squared distribution

 Alternate Hypothesis (H1)?

Chi Square Test

25

 Let X be a r.v. that can take on possible values x1, x2, …,
xk with probabilities p1, p2, …, pk (pi‘s sum to 1)

 Suppose we perform n trials to assign values to X

 The expected number of times xi will come up: Ei = npi

 Now suppose there is a r.v. Y that also takes on possible
values x1, x2, …, xk but we don’t know their probability
distribution. However, Y is thought to be the same as X.

 Is distribution Y really the same as X?

 Check to see if the occurrences of xi’s under Y more or less
match those of Ei according to X’s distribution.

 NB: For this test to work, the number of trials has to be
large enough so that each Ei ≥ 5.

Chi Square Test

26

where Yi is the observed number of occurrences of value xi and
Ei is the expected number of occurrences of value xi

 NULL Hypothesis, H0 : Y matches distribution of X

 Hypothesis H1: Y does not match distribution of X

 If the value for C is “too large”, we reject the null hypothesis.

 C is actually a random variable whose distribution
approximates a c2 distribution with k-1 degrees of
freedom.

 c2 distribution is another special case of Gamma
Distribution, where r = (k-1)/2 and l = 1/2

 






k

i i

ii

E

EY
C

1

2

Chi-Square Test

 C is “too large” basically

means the value for the

cumulative distribution

(area under the curve) is

too large compared to

what is considered

acceptable according to

the level of significance

(that we specify).

 






k

i i

ii

E

EY
C

1

2

Image from: http://faculty.vassar.edu/lowry/ch8pt1.html

http://faculty.vassar.edu/lowry/ch8pt1.html

Chi Square Test for uniformity

28

 Chi Square Test is discrete, so we have to quantize the

uniform distribution first.

 Divide [0,1) into intervals that represent each discrete value.

 Count how many generated values are in each interval

 Perform the Chi Square test

 Example

 Do the random numbers in the spreadsheet on the daily

schedule come from U[0, 1)?

Example

29

 Do the random numbers in the spreadsheet on the daily

schedule come from U[0, 1)?

1. Write out null and alternative hypotheses

2. Divide [0,1) into 10 intervals (so k-1 = 9)

3. Bin the numbers from the RNG into their corresponding

intervals

4. Compute C

5. If we want to be 95% confident about rejecting H0, we would

compare C against c2
0.05,9

Chi-Squared Critical Value Table

30 From: http://planetandepoch.com/?p=783

Kolmogorov-Smirnov test vs.

Chi-square test

31

Kolmogorov-Smirnov Chi-square

Small sample (i.e. small values of N) Large sample

Reference is continuous distribution Reference is discrete distribution (but we

can quantize continuous reference, as

done with Uniform distribution)

Difference between observed and

expected CDFs

Difference between observed and

expected PDFs

Uses each observed sample without

grouping

Group observations (i.e. make histograms)

Returning to Random Number Generation

32

 Linear Congruential Generators

 Xi+1 = (aXi + c) mod m for i = 1, 2, …

 X0 = seed value = 31

 a=11, c=43, and m=100

 Is this RNG good enough?

 Qualities?

Example

34

 Was our “better” choice from earlier a good enough

pseudo random number generator?

Testing for Independence

 Many Tests:

 Runs Tests (Wald–Wolfowitz)

 Auto-correlation (in textbook)

 Gap Test

 Poker Test

 many others …

 A sequence of numbers may pass some tests while not

others; therefore: run as many tests as practically possible

 e.g. the Diehard test suite (http://en.wikipedia.org/wiki/Diehard_tests)

 Knuth, The Art Of Computer Programming vol. 2 Seminumerical

Algorithms

 For links to more test suites, see:

http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf

http://en.wikipedia.org/wiki/Diehard_tests
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/nissc-paper.pdf

Runs Tests

41

 The Wald-Wolfowitz test is on a sequence consisting of two

types of elements (say + or -).

 A run is a contiguous segment of the sequence where the adjacent

elements are all the same.

 Example: In the sequence +++----++-----+-+++

 7 runs, with lengths (3,4,2, 5, 1,1,3)

 In random data the number and length of runs should not be

either too great or too small

 Test: let S+ = number of +’s in the sequence, and S- = number

of –’s in the sequence and S = S+ + S-

 The expected number of runs is  = ((2 S+ S-)/S) + 1

 And the variance is 2 = (-1)(-2)/(S-1)

Applying the Runs Test

 To apply the Wold-Wolfowitz test on our sequence of N

numbers between [0,1), we have to transform it.

 Option 1: Define +/- to represent whether a number is above or

below the (observed) mean

 Option 2: Transform the sequence of N numbers into a sequence

of N-1 symbols of +/- by taking the differences between adjacent

numbers.

 For this option, we use a different calculation of mean/variance:

 The expected number of runs is  = (2 N-1)/3

 And the variance is 2 = (16N - 29)/90

 If the observed number of runs is very different from (2 N-1)/3, we

would reject the null hypothesis that the numbers came from U[0,1).

Hypothesis Testing Procedure

43

 We know the expected mean and variance, so we can use

the normal distribution to check whether the observed

mean is too far from the expected.

 Null hypothesis: the numbers are independent

 The test statistic:

 Subtract observed number of runs from expected, divide by

the expected standard deviation

 Z = (O-E)/σ

 Say we want to test with a statistical significance of 1-α

 Reject null hypothesis if Z < Zα/2 or if Z > Z1- α/2

Autocorrelation test

 We check for correlations between every l numbers,

starting with the ith number.

 We compute

where Ri is the value of the ith number, and M is the maximum

rounds of intervals we’d get (that is, i+(M+1)l ≤ N))

 Under the null hypothesis ril = 0, so we’d reject it if the

observed value is very different from 0

)1(12

713

25.0
1

1
ˆ

,ˆ

0

)1(,
















 





M

M

RR
M

li

M

k

lkiklili

r

r

