
Review of Probability Distributions

CS1538: Introduction to Simulations



Some Well-Known Probability Distributions

 Bernoulli

 Binomial

 Geometric

 Negative Binomial

 Poisson

 Uniform

 Exponential

 Gamma

 Erlang

 Gaussian/Normal

Relevance to simulations:
• Need to use distributions that 

are appropriate for our problem

• The closer the chosen 
distribution matches the 
distribution in reality, the more 
accurate our model

• Why not always make a user-
defined distribution specific to 
our problem? 
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Discrete Distributions

 Bernoulli

 Binomial

 Geometric

 Negative Binomial

 Poisson
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The Bernoulli Distribution
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 Bernoulli Trial: an experiment with only two possible 

outcomes: Success or Failure

 The probability of success is p (where 0 ≤ p ≤ 1) 

 Let q be the probability of failure. What is q in terms of p?

 Examples?



The Bernoulli Distribution
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 Let B be a random variable over the outcome of the 

experiment:

 B = 1 for a success; B = 0 for a failure

 Expectation of B

 E[B] = 1*p + 0*(1-p) = p

 Variance of B

 Var(B) = E[B2]- (E[B])2 = (12 p+02 (1-p)) – p2 = p – p2 = p(1– p) 



Binomial Distribution
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 Experiment: Repeat Bernoulli Trial for n times

 Good for determining the probability of getting k

defective items in a batch size of n

 Let random variable X be the number of successes

 Note: the order doesn’t matter

 For example: suppose we toss a biased coin 3 

times (with heads=success).

X(HHT)=2; X(THH)=2; X(HTH)=2



Binomial Distribution
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 The probability mass function for X:

 E[X] = E[B1 + B2 + … Bn] = S E[Bi] = np

 Var(X) = Var(B1 + B2 + … Bn) = SVar(Bi) = np(1-p) 

 Note:
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Geometric Distribution
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 Keep on repeating Bernoulli trials until successful

 Let r.v. X be the number of trials until the first 

success

 The probability mass function for X:

 What is q?
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Geometric Distribution
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 E[X] = S xq(x-1)p = p S xq(x-1) = 1/p

 We know that ∫ S xq(x-1) dq = S qx where x = 1,2,…

 We also know that S qy for y = 0,1,2… = 1/(1-q)

 So ∫ S xq(x-1) dq = 1/(1-q) – 1 = q/1-q

 d/dq q/(1-q) = q/(1-q)2+ 1/(1-q) = 1/(1-q)2 = 1/p2

 So p S xq(x-1) = d/dq ∫ S xq(x-1) dq = p (1/p2) = 1/p

 Var(X) = q/p2



Example Question
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 Suppose a product has a p% chance of failure.  What’s the 

chance that it will still be working after 3 uses?



Example Question

13

 What’s the chance that the product is still working after 7 

uses, given that it works after 3 uses?



Geometric Distribution Properties

 Pr(X > t) = qt

 Memoryless

 Pr(X > s+t | X > s) = Pr(X > t)
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Negative Binomial Distribution

 Keep on running Bernoulli Trials until we get k successes.

 Like Geometric, but now k successes instead of 1 success

 Let r.v. X be the total number of trials

 The probability mass function for X:

 Expectation: E[X] = k/p

 Var(X) = kq/p2
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Poisson Distribution
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 Computes the probability of the number of events that 

may occur in a period, given the rate of occurrence in 

that period

 Good for modeling arrivals

 Probability mass function:

 Where  is a fixed value that must be positive. It represents the 

average rate of the event of interest occurring.  
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Example

 The Prussian Cavalry/Horse study [Bortkiewicz, 1898; cf. Larsen&Marx]

 10 cavalry corps monitored over 20 years.

 X = number of fatality due to horse kicks

x = # of 

deaths

Observed # of corps-years in 

which x fatality occurred

Expected # of corps-year using 

Poisson

0 109

1 65

2 22

3 3

4 1

Total 200
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Poisson Distribution
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 Cumulative distribution function:

 Note that when x  ∞, F(x) 1

 𝑖=0
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Example

 Suppose that I see students at the rate of five per office 

hours.  What is the chance that I’ll see 4 students at office 

hours today?

 What is the chance that I’ll see less than 3 students at 

office hours today?

 What is the chance that I’ll see at least 3 students at 

office hours today?
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Poisson: Relationship to Binomial

 Theorem: Let  be a fixed number and n be an arbitrary 

positive integer. For each nonnegative integer x,

lim
𝑛→∞

𝑛
𝑥

𝑝𝑥(1 − 𝑝)𝑛−𝑥=
𝑒−𝛼𝛼𝑥

𝑥!

where p = /n

 This makes it easier to calculate the binomial distribution, 

especially for large n’s
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Poisson Arrival Process

 Recall  represents average rate of occurrence

 How do we represent time more explicitly?

 Let N(t) be a random variable that represents the 

number (positive integer) of events that occurred in time 

[0, t]

 We want to know Pr(N(t) = n)

 If we guarantee a few properties, we can use the Poisson 

Distribution
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Poisson Arrival Process

 Assumptions:

 Arrivals occur one at a time

 Arrival rate (l) does not change over time

 We’ll see how to relax this

 The number of arrivals in given period are independent of each 

other

 We can now rewrite the Poisson Distribution:

  = lt

 How does this affect the expectation and variance?
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Properties of the Poisson Arrival Process

 Random Splitting

 Consider a Poisson Process N(t) with rate l.  Assume 

that arrivals can be divided into two groups, A and B 

with probability p and (1-p), respectively

 NA is a Poisson Process with rate lp and NB is a 

Poisson Process with rate l(1-p)

 N(t) = NA(t) + NB(t)
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Properties of the Poisson Arrival Process

 Pooled Process

 Consider two Poisson Processes N1(t) and N2(t), with 

rates l1 and l2

 The sum of the two processes is also a Poisson Process; 

it has a rate of l1 + l2

 Pooling can be used in situations where multiple arrival 

processes feed a single queue



Discrete Probability Summary

 Binomial Distribution

 Geometric Distribution

 Negative Binomial Distribution

 Poisson Distribution

These describe  
experiments based on 
repeated Bernoulli Trials

Doesn’t have an easy to 
describe underlying 
structure, but seems to be 
a good fit for many real 
data sets 



Continuous Random Variables
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 Random variable X is continuous if its range space is an 

interval or a collection of intervals

 There exists a non-negative function f(x), called the 

probability density function, such that for any set of real 

numbers, 

 f(x) >= 0 for all x in the range space

 (i.e., the total area under f(x) is 1)

 f(x) = 0 for all x not in the range space 

Note that f(x) does not give the probability of X = x

 Unlike the pmf for discrete random variables
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Continuous Random Variables
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 The probability that X lies in a given interval [a,b] is

 aka "area under the curve"

 Note that for continuous random variables,

Pr(X = x) = 0  for any x

 Consider the probability of x within a (very small) range

 The cumulative distribution function (cdf), F(x) is now the 

integral from - to x or

 This gives us the probability up to x
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Continuous Random Variables

 Expected Value for a continuous random variable

 Similar to the discrete case, except that we integrate instead 

of summing

 Variance: same formulation as its discrete counterpart 

(though calculating E[X2] will involve integrals again).

Var(X) = E[X2] – (E[X])2
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Uniform Distribution over range [a,b]
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 Probability density function:

 Cumulative distribution function:

 What about F(x) when x < a or x > b?
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Uniform Distribution over range [a,b]
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 Expectation

 What does the expected value of a discrete uniform 

distribution look like?

 Variance
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Normal Distribution
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 Probability density function:

𝑓 𝑥 =
1

𝜎√2𝜋
exp −

1

2

𝑥−𝜇

𝜎

2
,   -∞ < x < ∞

where we supply the mean and variance:

 m:  mean

 s:  square-root of variance

 The normal distribution is also denoted as: N(m,s2)

 Some of its properties:
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Normal Distribution

38

 F(x) = P(X≤x) =

 Doesn’t have a closed form.

 Can use numerical methods, but want to avoid evaluating 

integrals for each pair (m,s2)

 Transform to standard normal distribution

 Let z = (t-m)/s then we can rewrite the above as:

 F(x) = P(X≤x) = P(Z ≤ (x-m)/s) 

=

dt
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CDF table for N(0,1)

 There are a few variants. On the website:

 A typical table from a stats book lets you specify z to 2 significant 

digits: (z=column1+row1)



Example (from textbook 5.21)

 Suppose we have a normal distribution such that:

X is a r.v. from N(50, 9)

 What is the chance that X ≤ 56?

 We wish to compute F(56) (i.e., P(X≤56)).



Exponential Distribution

 Models

 Interarrival times

 Service times

 Lifetime of a component that fails instantaneously

 Parameter λ indicates rate



Exponential Distribution

 Probability density function:

 where l >0 is a parameter that we supply

 Since the exponent is negative, the pdf will decrease as x increases
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Exponential Distribution
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Exponential Distribution: l

 l represents a rate: number of occurrences per time unit

 x: amt. of time it took for some occurrence to take place

 F(x): prob. that the event happened during interval [0,x]

 1-F(x): prob. that the event doesn’t happen until after x

Example 5.17

Suppose lifespan of a type of lamp is exponentially distributed 

with failure rate l = 1/3000 hrs.  What’s the chance a particular 

lamp will beat the average?

 Has a relationship to the Poisson Arrival Process



Exponential Distribution
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 Like the geometric distribution, the exponential 

distribution is memoryless

 P(X > s+t | X > s) = P(X > t)

 The proof is similar to how we showed that the geometric 

distribution is memoryless



Relationship between Poisson Distribution and 

Exponential Distribution (1/3)

 Events occur at a rate of l

 Poisson: chance of n events taking place is given by:

Pr[N(t)=n] = e-lt (lt)n/n!

 Let E be the first occurrence of an event since the start of 

the clock at 0; let t represent the time when E happens

 Want to find: distribution for t

 Look for CDF F(t) – the probability that E happened some 

time within the interval [0,t]

 Then we can take the derivative of F(t) to find f(t)

 Want to show: F(t) fits Exponential



Relationship between Poisson Distribution 

and Exponential Distribution (2/3)

 F(t) = The chance that E occurs in some interval [0,t]

= 1 – Pr(E occurred after t) = 1 – Pr(nothing took place in [0,t])

 Nothing took place in [0,t] relates counting discrete event 
occurrences with measuring continuous time duration

 Pr(nothing took place in [0,t]) = Pr[N(t)=0]

 F(t) = 1 – Pr(E occurred after t) = 1 – Pr[N(t) = 0] = 1 – e–lt

which is the CDF for exponential distribution

 So the duration between the 0th and 1st event of a 
Poisson arrival process follows an exponential 
distribution



Relationship between Poisson Distribution 

and Exponential Distribution (3/3)

 More generally, for any two events Ei and Ej that follows 

the Poisson arrival process, the duration between them 

also follows the exponential distribution

 Let i be the time when Ei occurs and j be the time when  

Ej occurs

 We can use the same analysis as before (just align i with 0 

and j with t in the previous case)

 This is because Poisson arrival process assumes constant rate

 Also makes sense – exponential distribution is memoryless



Exercises with Exponential

 Rate: 0.5 arrivals per minute

 F(t) = 1-e-0.5t = probability of time elapse between arrivals

 What’s the probability that the next customer shows up before 

30 seconds have passed?

 … within 1 minute?

 … within 2 minutes?

 What’s the chance that a customer shows up between 5 and 7 

minutes?



Relationship between Gamma Distribution 

and Poisson Distribution

 Suppose some event occurs over time interval of length x 

at the average rate of l per unit time. How long would it 

take for r events to happen?

 Divide up x into small independent subintervals such that the 

chance of more than one event happening in the subinterval is 

negligibly small

 Let W be a r.v. counting the # of occurrences of the event in 

the total duration [0,x]. W is a Poisson r.v. w/ params lx

 FX(x) = Pr(X≤x) = 1-Pr(X>x) 

= 1-FW(r-1) =1 −  𝑘=0
𝑟−1 𝑒−𝜆𝑥

(𝜆𝑥)𝑘

𝑘!

 fX(x) = F’X(x) = 
𝜆𝑟

𝑟−1 !
𝑥𝑟−1𝑒−𝜆𝑥



The Gamma function:

 If r can be non-integer, then we need to replace (r-1)! with a 

continuous function of r. 

 We’ll call this function Gamma of r: G(r)

 For any real number r > 0, the gamma function G(r) is:

Γ 𝛽 =  
0

∞

𝑥𝛽−1𝑒−𝑥𝑑𝑥

 G(1) = 1

 G(1/2) = sqrt()

 G(r+1) = r G(r) for any positive real r

 G(r+1) = r! if r is a nonnegative integer


𝑛+𝑟−1

𝑛
=

G(n+r)
G(n+1)G(r)



G(r)G(s)
G(r+s)

=  0
1
𝑢𝑟−1(1 − 𝑢)𝑠−1𝑑𝑢



Gamma Distribution (general form)
 Useful for when waiting times between events is relevant (e.g. 

waiting time between Poisson events)

 Let X be a random variable such that

𝑓𝑋 𝑥 =  

𝛽𝜃

G(β)
(𝛽𝜃𝑥)𝛽−1𝑒−𝛽𝜃𝑥, 𝑥 > 0, 𝛽 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝛽 is referred to as a shape parameter

 𝜃 is referred to as a scale parameter

 E[X] =  0
∞
𝑥 𝑓 𝑥 𝑑𝑥 =

1

𝜃

 Var(X) = 
1

𝛽𝜃2

 CDF: 𝐹𝑋 𝑥 =  0
𝑥
𝑓 𝑡 𝑑𝑡 = 1 −  𝑥

∞
𝑓 𝑡 𝑑𝑡



Erlang Distribution

56

 When β is an arbitrary positive integer, the Gamma 

Distribution is called the Erlang Distribution of order k 

(k= β)

 Can simplify the CDF to:

 𝐹 𝑋 =  1 −  𝑖=0
𝑘−1 𝑒

−𝑘𝜃𝑥(𝑘𝜃𝑥)𝑖

𝑖!
𝑥 > 0

0 𝑥 ≤ 0

 This is the sum of Poisson terms with mean α = kθx

 k is the number of events

 θ is the rate of the collection of events

 λ = kθ is the rate of one event (events per unit time)



Erlang Example

 Suppose a node in a network does not transmit until it has 

accumulated 5 messages in its buffer.  Suppose messages arrive 

independently and are exponentially distributed with a mean of 

100 ms between messages.

 Suppose a transmission was just made; what’s the probability that more 

than 552 ms will pass before the next transmission?
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