Review of Probability Distributions

CS1538: Introduction to Simulations

Some Well-Known Probability Distributions

- Bernoulli
- Binomial
- Geometric
- Negative Binomial
- Poisson
- Uniform
- Exponential
- ▶ Gamma
- Erlang
- Gaussian/Normal

Relevance to simulations:

- Need to use distributions that are appropriate for our problem
- The closer the chosen distribution matches the distribution in reality, the more accurate our model
- Why not always make a userdefined distribution specific to our problem?

Discrete Distributions

- Bernoulli
- Binomial
- Geometric
- Negative Binomial
- Poisson

The Bernoulli Distribution

- Bernoulli Trial: an experiment with only two possible outcomes: Success or Failure
- ▶ The probability of success is p (where $0 \le p \le 1$)
 - Let q be the probability of failure. What is q in terms of p?
- Examples?

The Bernoulli Distribution

- Let B be a random variable over the outcome of the experiment:
 - ▶ B = I for a success; B = 0 for a failure
 - Expectation of B
 - \rightarrow E[B] = I*p + 0*(I-p) = p
 - Variance of B
 - $Var(B) = E[B^2] (E[B])^2 = (I^2 p + 0^2 (I p)) p^2 = p p^2 = p(I p)$

Binomial Distribution

- Experiment: Repeat Bernoulli Trial for n times
 - Good for determining the probability of getting k
 defective items in a batch size of n
 - Let random variable X be the number of successes
 - Note: the order doesn't matter
 - For example: suppose we toss a biased coin 3 times (with heads=success).
 - $\square X(HHT)=2; X(THH)=2; X(HTH)=2$

Binomial Distribution

▶ The probability mass function for X:

$$p(x) = \begin{cases} \binom{n}{x} p^x q^{n-x}, & x = 0,1,\dots, n \\ 0, & otherwise \end{cases}$$

- ► $E[X] = E[B_1 + B_2 + ... B_n] = \Sigma E[B_i] = np$
- ► $Var(X) = Var(B_1 + B_2 + ... B_n) = \sum Var(B_i) = np(1-p)$
- Note: $\binom{n}{k} = \frac{n!}{k! (n-k)!}$

Geometric Distribution

- Keep on repeating Bernoulli trials until successful
- Let r.v. X be the number of trials until the first success
- ▶ The probability mass function for X:

$$p(x) = \begin{cases} q^{x-1}p, & x = 1, 2, \dots \\ 0, & otherwise \end{cases}$$

▶ What is q?

Geometric Distribution

- $E[X] = \sum xq^{(x-1)}p = p \sum xq^{(x-1)} = I/p$
 - We know that $\int \Sigma xq^{(x-1)} dq = \Sigma q^x$ where x = 1,2,...
 - We also know that Σq^y for y = 0,1,2... = 1/(1-q)
 - ▶ So $\int \Sigma \times q^{(x-1)} dq = I/(I-q) I = q/I-q$
 - $d/dq q/(1-q) = q/(1-q)^2 + 1/(1-q) = 1/(1-q)^2 = 1/p^2$
 - ▶ So p $\Sigma \times q^{(x-1)} = d/dq \int \Sigma \times q^{(x-1)} dq = p(I/p^2) = I/p$
- $Var(X) = q/p^2$

Example Question

Suppose a product has a p% chance of failure. What's the chance that it will still be working after 3 uses?

Example Question

What's the chance that the product is still working after 7 uses, given that it works after 3 uses?

Geometric Distribution Properties

 $Pr(X > t) = q^t$

Memoryless

 $Pr(X > s+t \mid X > s) = Pr(X > t)$

Negative Binomial Distribution

- Keep on running Bernoulli Trials until we get k successes.
 - Like Geometric, but now k successes instead of I success
- Let r.v. X be the total number of trials
- ▶ The probability mass function for X:

$$p(x) = \begin{cases} \binom{x-1}{k-1} q^{x-k} p^k, & x = k, k+1, k+2 \dots \\ 0, & otherwise \end{cases}$$

- Expectation: E[X] = k/p
- \blacktriangleright Var(X) = kq/p²

Poisson Distribution

- Computes the probability of the number of events that may occur in a period, given the rate of occurrence in that period
- Good for modeling arrivals
- Probability mass function:

$$p(x) = \begin{cases} \frac{e^{-\alpha} \alpha^{x}}{x!}, & x = 0,1,\dots\\ 0, & otherwise \end{cases}$$

Where α is a fixed value that must be positive. It represents the average rate of the event of interest occurring.

Example

- ▶ The Prussian Cavalry/Horse study [Bortkiewicz, 1898; cf. Larsen&Marx]
 - ▶ 10 cavalry corps monitored over 20 years.
 - X = number of fatality due to horse kicks

x = # of deaths	Observed # of corps-years in which x fatality occurred	Expected # of corps-year using Poisson
0	109	
1	65	
2	22	
3	3	
4	I	
Total	200	

Poisson Distribution

Cumulative distribution function:

$$F(x) = \sum_{i=0}^{x} \frac{e^{-\alpha} \alpha^{i}}{i!}$$

Note that when $x \rightarrow \infty$, $F(x) \rightarrow I$

$$\sum_{i=0}^{\infty} \frac{e^{-\alpha} \alpha^{i}}{i!} = e^{-\alpha} \sum_{i=0}^{\infty} \frac{\alpha^{i}}{i!} = e^{-\alpha} e^{\alpha} = 1$$

- $E[X] = \alpha$
- \blacktriangleright Var(X) = α

Example

- Suppose that I see students at the rate of five per office hours. What is the chance that I'll see 4 students at office hours today?
- What is the chance that I'll see less than 3 students at office hours today?
- What is the chance that I'll see at least 3 students at office hours today?

Poisson: Relationship to Binomial

▶ **Theorem**: Let α be a fixed number and n be an arbitrary positive integer. For each nonnegative integer x,

$$\lim_{n\to\infty} \binom{n}{x} p^x (1-p)^{n-x} = \frac{e^{-\alpha} \alpha^x}{x!}$$

where $p = \alpha/n$

This makes it easier to calculate the binomial distribution, especially for large n's

Poisson Arrival Process

- lacktriangleright Recall lpha represents average rate of occurrence
 - How do we represent time more explicitly?
- Let N(t) be a random variable that represents the number (positive integer) of events that occurred in time [0, t]
 - We want to know Pr(N(t) = n)
 - If we guarantee a few properties, we can use the Poisson Distribution

Poisson Arrival Process

- Assumptions:
 - Arrivals occur one at a time
 - Arrival rate (λ) does not change over time
 - We'll see how to relax this
 - The number of arrivals in given period are independent of each other
- We can now rewrite the Poisson Distribution:
 - $P[N(t) = n] = \begin{cases} \frac{e^{-\lambda t} (\lambda t)^n}{n!}, & n = 0,1,\dots \\ 0, & otherwise \end{cases}$
- How does this affect the expectation and variance?

Properties of the Poisson Arrival Process

Random Splitting

- Consider a Poisson Process N(t) with rate λ . Assume that arrivals can be divided into two groups, A and B with probability p and (I-p), respectively
- N_A is a Poisson Process with rate λp and N_B is a Poisson Process with rate $\lambda(1-p)$
- $N(t) = N_A(t) + N_B(t)$

Properties of the Poisson Arrival Process

Pooled Process

- ▶ Consider two Poisson Processes $N_1(t)$ and $N_2(t)$, with rates λ_1 and λ_2
- The sum of the two processes is also a Poisson Process; it has a rate of $\lambda_1 + \lambda_2$
- Pooling can be used in situations where multiple arrival processes feed a single queue

Discrete Probability Summary

- Binomial Distribution
- Geometric Distribution
- Negative Binomial Distribution

These describe experiments based on repeated Bernoulli Trials

Poisson Distribution

Doesn't have an easy to describe underlying structure, but seems to be a good fit for many real data sets

Continuous Random Variables

- Random variable X is continuous if its range space is an interval or a collection of intervals
- There exists a non-negative function f(x), called the probability density function, such that for any set of real numbers,
 - $f(x) \ge 0 \text{ for all } x \text{ in the range space}$ $\int f(x) dx = 1 \text{ (i.e., the total area under } f(x) \text{ is } I)$ $f(x) \ge 0 \text{ for all } x \text{ in the range space}$
 - f(x) = 0 for all x not in the range space

Note that f(x) does **not** give the probability of X = x

Unlike the pmf for discrete random variables

Continuous Random Variables

The probability that X lies in a given interval [a,b] is

$$P(a \le X \le b) = \int_a^b f(x) dx$$

- aka "area under the curve"
- Note that for continuous random variables, Pr(X = x) = 0 for any x
- Consider the probability of x within a (very small) range
- The cumulative distribution function (cdf), F(x) is now the integral from $-\infty$ to x or

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

☐ This gives us the probability up to x

Continuous Random Variables

- Expected Value for a continuous random variable
 - Similar to the discrete case, except that we integrate instead of summing

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Variance: same formulation as its discrete counterpart (though calculating $E[X^2]$ will involve integrals again).

$$Var(X) = E[X^2] - (E[X])^2$$

Uniform Distribution over range [a,b]

Probability density function:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

Cumulative distribution function:

$$F(x) = \int_{a}^{x} f(y)dy = \int_{a}^{x} \frac{1}{b-a} dy = \frac{x-a}{b-a}$$
 if $a \le x \le b$

Mhat about F(x) when x < a or x > b?

Uniform Distribution over range [a,b]

Expectation
$$E(X) = \int_{a}^{b} \frac{x}{b-a} dx = \frac{b}{a} \left| \frac{x^{2}}{2(b-a)} \right| = \frac{b^{2}-a^{2}}{2(b-a)} = \frac{(b+a)(b-a)}{2(b-a)} = \frac{b+a}{2}$$

- What does the expected value of a discrete uniform distribution look like?
- Variance $Var(X) = E[X^{2}] (E[X])^{2} = \int_{a}^{b} \frac{x^{2}}{b-a} dx (E[X])^{2}$ $= \frac{b}{a} \left| \frac{x^{3}}{3(b-a)} \frac{(b+a)^{2}}{4} \right| = \frac{b^{3} a^{3}}{3(b-a)} \frac{(b+a)^{2}}{4}$ $= \frac{4(b^{3} a^{3}) 3(b+a)^{2}(b-a)}{12(b-a)} = \frac{(b+a)^{2}}{12}$

Normal Distribution

Probability density function:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right], \quad -\infty < x < \infty$$

where we supply the mean and variance:

- μ: mean
- σ: square-root of variance
- The normal distribution is also denoted as: $N(\mu, \sigma^2)$
- Some of its properties:

$$\lim_{x \to -\infty} f(x) = 0 = \lim_{x \to \infty} f(x)$$
$$f(\mu + x) = f(\mu - x)$$
$$\max(f(x)) = f(\mu)$$

Normal Distribution

- Doesn't have a closed form.
- Can use numerical methods, but want to avoid evaluating integrals for each pair (μ, σ^2)
 - Transform to standard normal distribution
- Let $z = (t-\mu)/\sigma$ then we can rewrite the above as:
 - $F(x) = P(X \le x) = P(Z \le (x-\mu)/\sigma)$

$$= \int_{-\infty}^{(x-\mu)/\sigma} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(z)^2\right] dz$$

CDF table for N(0,1)

There are a few variants. On the website:

Z	.00	.01	.02	.03
-3.9	.00005	.00005	.00004	.0000
-3.8	.00007	.00007	.00007	.0000
-3.7	.00011	.00010	.00010	.0001
-3.6	.00016	.00015	.00015	.0001
-3.5	.00023	.00022	.00022	.0002
-3.4	.00034	.00032	.00031	.0003
-3.3	.00048	.00047	.00045	.0004
2 2	00060	00066	00064	0006

A typical table from a stats book lets you specify z to 2 significant digits: (z=column₁+row₁)

Example (from textbook 5.21)

- Suppose we have a normal distribution such that:
 X is a r.v. from N(50, 9)
 - ▶ What is the chance that $X \le 56$?
 - ▶ We wish to compute F(56) (i.e., $P(X \le 56)$).

- Models
 - Interarrival times
 - Service times
 - Lifetime of a component that fails instantaneously
- \triangleright Parameter λ indicates rate

Probability density function:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & otherwise \end{cases}$$

- where $\lambda > 0$ is a parameter that we supply
- ▶ Since the exponent is negative, the pdf will decrease as x increases

$$F(x) = \begin{cases} 0, & x < 0 \\ \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$

$$E[X] = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$

- $ightharpoonup \lambda$ represents a rate: number of occurrences per time unit
- x: amt. of time it took for some occurrence to take place
- ightharpoonup F(x): prob. that the event happened during interval [0,x]
- ▶ I-F(x): prob. that the event doesn't happen until after x

Example 5.17

Suppose lifespan of a type of lamp is exponentially distributed with failure rate $\lambda = 1/3000$ hrs. What's the chance a particular lamp will beat the average?

Has a relationship to the Poisson Arrival Process

- Like the geometric distribution, the exponential distribution is memoryless
 - $P(X > s+t \mid X > s) = P(X > t)$
 - The proof is similar to how we showed that the geometric distribution is memoryless

Relationship between Poisson Distribution and Exponential Distribution (1/3)

- Events occur at a rate of λ
- Poisson: chance of n events taking place is given by: $Pr[N(t)=n] = e^{-\lambda t} (\lambda t)^{n}/n!$
- Let E be the first occurrence of an event since the start of the clock at 0; let t represent the time when E happens
- Want to find: distribution for t
- ▶ Look for CDF F(t) the probability that E happened some time within the interval [0,t]
 - Then we can take the derivative of F(t) to find f(t)
 - Want to show: F(t) fits Exponential

Relationship between Poisson Distribution and Exponential Distribution (2/3)

- F(t) = The chance that E occurs in some interval [0,t]
 = I − Pr(E occurred after t) = I − Pr(nothing took place in [0,t])
- Nothing took place in [0,t] relates counting discrete event occurrences with measuring continuous time duration
 - ▶ Pr(nothing took place in [0,t]) = Pr[N(t)=0]
 - ▶ $F(t) = I Pr(E \text{ occurred after } t) = I Pr[N(t) = 0] = I e^{-\lambda t}$ which is the CDF for exponential distribution
- So the duration between the 0th and 1st event of a Poisson arrival process follows an exponential distribution

Relationship between Poisson Distribution and Exponential Distribution (3/3)

- More generally, for any two events E_i and E_j that follows the Poisson arrival process, the duration between them also follows the exponential distribution
- Let i be the time when E_i occurs and j be the time when E_i occurs
- We can use the same analysis as before (just align i with 0 and j with t in the previous case)
 - This is because Poisson arrival process assumes constant rate
 - ▶ Also makes sense exponential distribution is memoryless

Exercises with Exponential

- ▶ Rate: 0.5 arrivals per minute
- F(t) = $I e^{-0.5t}$ = probability of time elapse between arrivals
 - What's the probability that the next customer shows up before 30 seconds have passed?
 - ... within I minute?
 - ... within 2 minutes?
 - What's the chance that a customer shows up between 5 and 7 minutes?

Relationship between Gamma Distribution and Poisson Distribution

- Suppose some event occurs over time interval of length x at the average rate of λ per unit time. How long would it take for r events to happen?
 - Divide up x into small independent subintervals such that the chance of more than one event happening in the subinterval is negligibly small
 - Let W be a r.v. counting the # of occurrences of the event in the total duration [0,x]. W is a Poisson r.v. w/ params λx
 - ► $F_X(x) = Pr(X \le x) = I Pr(X > x)$ = $I - F_W(r - I) = 1 - \sum_{k=0}^{r-1} e^{-\lambda x} \frac{(\lambda x)^k}{k!}$
 - $f_X(x) = F'_X(x) = \frac{\lambda^r}{(r-1)!} x^{r-1} e^{-\lambda x}$

The Gamma function:

- If r can be non-integer, then we need to replace (r-1)! with a continuous function of r.
- We'll call this function Gamma of r: $\Gamma(r)$
 - For any real number r > 0, the gamma function $\Gamma(r)$ is:

$$\Gamma(\beta) = \int_0^\infty x^{\beta - 1} e^{-x} dx$$

- $\Gamma(1) = 1$
- $\Gamma(1/2) = \operatorname{sqrt}(\pi)$
- $\Gamma(r+1) = r \Gamma(r)$ for any positive real r
- $\Gamma(r+1) = r!$ if r is a nonnegative integer

$$\frac{\Gamma(r)\Gamma(s)}{\Gamma(r+s)} = \int_0^1 u^{r-1} (1-u)^{s-1} du$$

Gamma Distribution (general form)

- Useful for when waiting times between events is relevant (e.g. waiting time between Poisson events)
- Let X be a random variable such that

$$f_X(x) = \begin{cases} \frac{\beta \theta}{\Gamma(\beta)} (\beta \theta x)^{\beta - 1} e^{-\beta \theta x}, & x > 0, \beta > 0 \\ 0, & otherwise \end{cases}$$

- β is referred to as a shape parameter
- θ is referred to as a scale parameter

- $E[X] = \int_0^\infty x f(x) dx = \frac{1}{\theta}$ $Var(X) = \frac{1}{\beta \theta^2}$ $CDF: F_X(x) = \int_0^x f(t) dt = 1 \int_x^\infty f(t) dt$

Erlang Distribution

- When β is an arbitrary positive integer, the Gamma Distribution is called the Erlang Distribution of order k (k= β)
- Can simplify the CDF to:

$$F(X) = \begin{cases} 1 - \sum_{i=0}^{k-1} \frac{e^{-k\theta x} (k\theta x)^i}{i!} & x > 0 \\ 0 & x \le 0 \end{cases}$$

- This is the sum of Poisson terms with mean $\alpha = k\theta x$
- **k** is the number of events
- θ is the rate of the collection of events
- $\lambda = k\theta$ is the rate of one event (events per unit time)

Erlang Example

- Suppose a node in a network does not transmit until it has accumulated 5 messages in its buffer. Suppose messages arrive independently and are exponentially distributed with a mean of 100 ms between messages.
 - Suppose a transmission was just made; what's the probability that more than 552 ms will pass before the next transmission?