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Abstract—Future deep neural networks (DNNs) tend to grow
deeper and contain more trainable weights. Although methods
such as pruning and quantization are widely adopted to reduce
DNN’s model size and computation, they are less applicable
in the area of ReRAM-based DNN accelerators. On the one
hand, because the cells in crossbars are accessed uniformly, it is
difficult to explore fine-grained pruning in ReRAM-based DNN
accelerators. On the other hand, aggressive quantization results
in poor accuracy coupled with the low precision of ReRAM cells
to represent weight values.

In this paper, we propose BFlip – a novel model size and
computation reduction technique – to share crossbars among
multiple bit matrices. BFlip clusters similar bit matrices together,
and finds a combination of row and column flips for each bit
matrix to minimize its distance to the centroid of the cluster.
Therefore, only the centroid bit matrix is stored in the crossbar,
which is shared by all other bit matrices in that cluster. We
also propose a calibration method to improve the accuracy as
well as a ReRAM-based DNN accelerator to fully reap the
storage and computation benefits of BFlip. Our experiments show
that BFlip effectively reduces model size and computation with
negligible accuracy impact. The proposed accelerator achieves
2.45× speedup and 85% energy reduction over the ISAAC
baseline.

Index Terms—neural network, ReRAM, accelerator, crossbar,
process-in-memory

I. INTRODUCTION

Deep neural networks (DNNs) have become an effective

solution in many classification and regression tasks including

computer vision [1], natural language processing [3], speech

recognition [2], etc. However, its superior accuracy is achieved

by millions of parameters (also known as weights) and com-

putation. The size of DNNs has been keeping growing for

almost a decade to constantly achieve better accuracy. For

example, AlexNet [1] – the first DNN winner of the ImageNet

challenge in 2012 – only contains 60M parameters and 727M

operations per input, VGG [4] won this challenge in 2014

with 136M parameters and 15B operations, and most recently

one of the state-of-the-art DNNs EfficientNet-L2 [5] has 480M

parameters and 612B operations. As DNN’s model size and

the number of operations continue to grow, there are more

demands in new underlying computation hardware that could

promise less data movement overhead and more efficient

computation.

Process-in-memory (PIM) using emerging memory tech-

nologies, such as metal-oxide resistive random access memory

(ReRAM) [6], spin-transfer torque magnetic RAM (STT-

RAM) [7], and phase change memory (PCM) [8], has shown to

be a promising solution to meet the above challenges. Among

them, ReRAM is the most widely studied approach. Massive

data movement can be eliminated because computation takes

place in the memory. The crossbar structure only needs a

single operation to perform the matrix-vector multiplication

(MVM) based on Kirchhoff’s current law, thus achieving

significant computation parallelism.

However, although ReRAM is denser than traditional

SRAM and DRAM, it still faces the pressure of DNN’s

growing model size. Because of ReRAM’s low endurance and

slow write speed, existing ReRAM-based DNN accelerators

require weights to be statically mapped on the crossbars to

avoid frequently programming the cells. Therefore, more than

hundreds of thousands of crossbars are needed to execute state-

of-the-art DNNs.

Unfortunately, existing methods that exploit weight sparsity

and weight redundancy can not be effectively applied to

ReRAM-based DNN accelerators. Pruning [9] removes the

values that are close to zero from the weight matrix. However,

because ReRAM crossbars rely on regular MVM, exploiting

the random and irregular distribution of zero weights requires

complex control and peripheral circuits. Quantization [10] is

another method that uses shorter bit width to represent weight

values. However, quantization below eight bits usually incurs

significant accuracy degradation [11], [12].

In this paper, we propose BFlip to flip the bits in crossbars

so that multiple bit matrices can share the same crossbar.

Because the bits in a crossbar are accessed uniformly, sep-

arately flipping each bit induces large metadata and complex

control logic. Therefore, we propose to only flip the bits in

the granularity of rows and/or columns in a crossbar. We first

cluster similar bit matrices together and then flip them to match

the cluster’s centroid bit matrix. For each cluster, only the

centroid bit matrix is stored in the accelerator while all other

bit matrices will be reconstructed from the centroid bit matrix

during inference. However, since the bits can only be flipped

in the granularity of rows and columns, it is very likely that

a bit matrix cannot be flipped to perfectly match the centroid

bit matrix. We apply a post-flipping calibration method that

only updates the distribution statistics of batch normalization

(BN) layers to mitigate the precision loss. Finally, We propose

a ReRAM-based accelerator that fully reaps the storage and

computation benefits of BFlip.

In summary, we make the following contributions in this

paper:

• We propose a novel bit-flipping scheme to map multiple

bit matrices onto the same crossbar to effectively reduce
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Fig. 1: ReRAM and crossbar structure.

DNN’s model size and computation.

• Our proposed post-flipping calibration method only needs

to run the forward propagation on training data, without

the need for backward propagation and weight update. So

our method is much faster than retraining and fine-tuning

which are used in conventional pruning and quantization

techniques.

• A full-fledged ReRAM-based DNN accelerator is pro-

posed to fully reap the storage and computation benefits

of BFlip.

• Extensive evaluations on multiple state-of-the-art DNNs

are conducted to analyze BFlip’s impact on accuracy.

This paper is organized as follows. Section II introduces the

necessary background on ReRAM-based in-situ computation.

Section III illustrates the overview of BFlip’s workflow,

whose details are described in Section IV. Section V elabo-

rates the architecture of the proposed accelerator. Experiment

methodology and results are presented in Section VI and VII,

respectively. Finally, Section VIII summarizes related works

and conclusion is made in Section IX.

II. BACKGROUND

A. ReRAM-Based In-Situ Computing

ReRAM stores information through the resistive switching

effects. Fig. 1(a) illustrates the example of a ReRAM cell

comprising two electrodes and a resistive switching layer

sandwiched in between. When a SET or RESET voltage is

applied on the two electrodes, the oxygen vacancy filament in

the resistive switching layer will be constructed or destroyed,

thus changing the resistance of the cell.

ReRAM cells are organized as a crossbar structure to

conduct MVM, as shown in Fig. 1(b). ReRAM cells are

located at each cross point of wordlines and bitlines. The

resistances of ReRAM cells are programmed according to the

values in the matrix, and the wordline voltages are converted

from the values of the input vector. For example, the cells

on the first column are programmed to resistances R1, R2, ...,

Rn, and the conductances (i.e. the reciprocal of the resistance)

of these cells are G1, G2, ..., Gn. If voltages V1, V2, ..., Vn

are applied on the wordlines, the total current flowing out

from the bitline is

n∑

i=0

ViGi based on Kirchoff’s Law. When

applied to DNN computing, the weight values are stored in the

cells, and the input neurons are converted to wordline voltages.

00 10

01 11

00 00

10 11

01 01

10 10

10 00

00 11

<< <<

+ +

ADC

S&H

D
A

C

00

01

00

10

01

10

10

00

<<

+ +

ADC

S&H

D
A

C

10

11

00

11

01

10

00

11

ADC

S&H

D
A

C

2 7

0 11

Filter 1

5 10

8 3

Filter 2

2 7

0 11

Filter 1

5 10

8 3

Filter 2

+ +

(a) (b)

Fig. 2: Map DNN weights to crossbars.

Therefore, The output currents from the bitlines represent the

output neurons.

B. Weight Mapping in ReRAM Crossbars

When applying different WRITE voltages across a

ReRAM cell, the cell’s resistance can be divided into multiple

regions. So one cell can store multiple bits. Recent work has

demonstrated cells that can store up to seven bits. However,

due to the complex control circuit and low precision of the

cells, most ReRAM-based DNN accelerators adopt at most

2-bit cells [13], [14] to construct the crossbars. Some works

even only use single-bit cells for better precision and inference

accuracy [15].

Although there are extensive researches dedicated to quan-

tizing DNN weights to shorter bit width, at least an 8-bit

representation for each weight is still required to maintain high

accuracy. Therefore, a weight value is spread onto multiple

cells. For example, Fig. 2 shows how 4-bit weights are mapped

on crossbars composed of 2-bit cells. Each weight is stored

on two cells, one stores the two most significant bits while the

other stores the two least significant bits. These two cells can

reside on two columns of the same crossbar (Fig. 2(a)) or two

different crossbars (Fig. 2(b)). BFlip adopts the mapping in

Fig. 2(b).

The ReRAM-based MVM is performed using analog signals

(i.e. voltages, conductances, and currents). So DACs and

ADCs are needed for conversion between the digital and

analog domains. Input voltages are generated using DACs. The

current signals flowing out from bitlines are first stored in the

Sample and Hold (S&H) unit, and then converted to digital

values in ADCs. The output from one bitline only represents

a partial result, which needs to be combined with results from

other bitlines to form the final output. For example in Fig.

2(a), the output of the first bitline needs to be left-shifted by

two positions and added with the output of the second bitline

to form the final result.

III. OVERVIEW

The workflow of BFlip is illustrated in Fig. 3.
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Fig. 3: The overview of BFlip’s workflow.

The whole workflow is composed of an offline phase to

compress the DNN model and an online phase to use the com-

pressed model for inference. Given a pre-trained DNN model,

the Decomposing step decomposes each layer’s weight matrix

into bit matrices. In the Clustering step, the bit matrices are

grouped into clusters. Each cluster has a centroid bit matrix

computed by averaging all the bit matrices in the cluster.

Within each cluster, the Flipping step finds a combination

of row and column flips (referred to as metadata) for each

bit matrix to make its distance to the centroid bit matrix

as close as possible. Next, in the Reconstructing step, we

reconstruct all the bit matrices by flipping the centroid bit

matrix according to their metadata. In the Calibrating step,

we re-run the forward propagation using the reconstructed bit

matrices on the training dataset to mitigate the accuracy loss.

If the calibration generates a satisfying accuracy, the centroid

bit matrices and the metadata will be mapped to physical

crossbars in the Mapping step and then enters the online

phase for inference. If the accuracy is not satisfying, we first

check whether it is still possible to improve the accuracy by

applying more iterations in the Flipping step. If so, we re-

execute the Flipping step with more iterations. Otherwise,

we increase the number of clusters and go through the entire

offline phase again until a satisfying accuracy is met.

IV. BFLIP DETAILS

In this section, we describe the details of BFlip following

the steps introduced in Section III.

A. Decomposing Weight Matrices

Given a pre-trained DNN model, the Decomposing step

decomposes each layer’s weight matrix into bit matrices. For

example, if a weight matrix uses 8-bit fixed-point format to

represent its weight values, the weight matrix is decomposed

into eight bit matrices. Each bit matrix contains all the bits that

have the same significance in the weight values. Then, the bit

matrices are partitioned into segments of size (n−2m)×(n−
2m). n is the crossbar size (i.e. n rows and n columns) and m
is the maximum number of bit matrices that could share the

same crossbar. These parameters are provided by the designer

before the offline phase starts. All subsequent operations are

performed on the partitioned bit matrices.

B. Clustering Bit Matrices

The Clustering step is to decide which bit matrices could

share the same crossbar. We use Hamming Distance as the

metric to measure the similarity between bit matrices. A small

Hamming Distance between two bit matrices indicates that

they are more likely to match each other after a small number

of bit flips. We use Kmeans to group similar bit matrices

into K clusters. K is a predefined parameter provided by the

designer before the offline phase starts, but it may be changed

in the following steps. Each cluster has a centroid bit matrix,

such that the sum of the squared distances from all the bit

matrices in the cluster to the centroid bit matrix is at the

minimum. The centroid bit matrix is calculated by taking the

average of all bit matrices in that cluster. The bit matrices that

are in the same cluster will share the same crossbar. So K is

limited by the available crossbars in the accelerator.

C. Flipping Bits in Bit Matrices

After clustering similar bit matrices, the next step is to

minimize the distances from all the bit matrices in the cluster

to the centroid bit matrix. A naive way is to find all the

mismatched bits between each bit matrix and the centroid bit

matrix, and only flip those bits to make them identical to the

centroid bit matrix. However, this naive way will generate a

large amount of metadata to record the positions of the flipped

bits. Another problem is that MVM on a crossbar activates

all the cells at the same time, flipping each bit individually

breaks the regular access pattern and induces complex control

overhead.

Therefore, we propose to flip the bits in the granularity of

rows and columns. Each row and column only needs one bit

to record whether it has been flipped or not. For a t × t bit

matrix, there are only 2t bits metadata, which only has an

overhead of 2/t. We call the t-bit vector that records the

flip status of each row the row flip vector (RFV), and the

other t-bit vector that records the flip status of each column

the column flip vector (CFV). To flip the bits in bit matrix

A to match the centroid bit matrix C, we first calculate the

difference between these two bit matrices by XORing them to

get the bit matrix B, as shown in Fig. 4. In B, 1 means there

is a mismatch between the corresponding bits in A and C.

We define a score variable s for each row and column in B,

indicating the number of mismatched bits. When flipping the

bits in a row or column, the corresponding score s changes to

t−s. Finding the combination of row and column flips on A to

match C, is equivalent to finding the combination of row and

column flips on B to minimize its total score. Unfortunately,

finding the optimal flip pattern can be reduced to the Shortest
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Fig. 4: Flip rows and columns to minimize the distance of two matrices. A is a bit matrix in the cluster. C is the centroid bit

matrix of the cluster. B is calculated by XORing A and C.

Vector Problem (SVP) in the lattice, which is known to be NP-

hard [16]. Therefore, We propose a greedy approach to find a

flip pattern that could make the two bit matrices as close as

possible.

We first calculate all the column scores by counting the

number of 1s in each column of B, if any of the scores is larger

than t/2, then we flip this column and flip the bit in CFV
to record this column has been flipped. Then we calculate all

the row scores and perform the same operation on the rows

and RFV as we did for the columns. After the row check is

done, it is possible some column scores that are previously

less than t/2 now become larger than t/2. For example, the

score of the forth column in Fig. 4 turns from 3 to 4 after the

row check. So we iteratively perform the column check and

row check until all the scores are less than t/2.

Even though all the scores are less than t/2 after the column

and row checks, the total score can still be reduced if one

column and one row are flipped at the same time. For example,

after the second column check in Fig. 4, all the column scores

and row scores are already less than t/2, and the total score

is 20. If we flip the second column and the second row

simultaneously, the total score can be further reduced to 16.

Actually, in addition to flipping one column and one row

simultaneously, we could also flip multiple columns and/or

multiple rows simultaneously to further reduce the total score.

In general, given a set of columns (denoted as C) and a set

of rows (denoted as R), flipping all these columns and rows

simultaneously could reduce the total score if the following

equation is satisfied:
∑

c∈C

sc +
∑

r∈R

sr >
(|R|+ |C|)t− 2t0 + 2t1

2
(1)

where sc and sr are the column score and row score respec-

tively, |C| is the number of columns in set C, |R| is the number

of rows in set R, t is the bit matrix size, t0 is the number

of intersection cells whose value is 0, t1 is the number of

intersection cells whose value is 1. The whole bit flipping

algorithm is shown in Algorithm 1.

D. Reconstructing Bit Matrices

The metadata (CFV s and RFV s) produced in the previous

step records the information of how to minimize the distance

of each bit matrix in the cluster to the centroid bit matrix.

Algorithm 1 Bit Flipping

NC : maximum number of columns that flip simultaneously

NR: maximum number of rows that flip simultaneously

t: t× t bit matrix size

1: Flipped = True
2: while Flipped do

3: Flipped = False
4: if Has columns whose score is larger than t/2 then

5: Flipped = True
6: Flip those columns

7: end if

8: if Has rows whose score is larger than t/2 then

9: Flipped = True
10: Flip those rows

11: end if

12: if Flipped == False then

13: for i = 1 to NC , j = 1 to NR do

14: Choose i columns to form set C

15: Choose j rows to form set R

16: if C and R satisfy eq. (1) then

17: Flipped = True
18: Flip these rows & columns simultaneously

19: end if

20: end for

21: end if

22: end while
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Fig. 5: Reconstruct A’ from C.

So, we could either apply the flips on each bit matrix in the

cluster to make it close to the centroid bit matrix, or we could

apply the flips on the centroid bit matrix to make it more

close to each bit matrix in the cluster. The Reconstructing



TABLE I: BN’s impact on accuracy.

Network baseline no BN update after BN update

ResNet50 76.13% 71.628% 74.508%

VGG16 71.592% 58.214% -

VGG16-BN 73.360% 68.966% 70.732%

step performs the latter to reconstruct each bit matrix in the

cluster from the centroid bit matrix. Fig. 5 shows how to use

the metadata generated in the previous step to reconstruct A
from C. The reconstructed bit matrix is denoted as A′. The

cells with dark background indicate the flipped cells. Because

the Flipping step does not guarantee a flip pattern to make

A and C identical, the reconstructed bit matrix A′ is only an

approximation of A. The mismatched cells between A and

A′ are marked with red numbers. In the same way, we could

reconstruct an approximation of every original bit matrix in the

cluster from the centroid bit matrix. As a result, we could get

a new modified DNN model consists of all the reconstructed

bit matrices.

E. Calibrating the Modified DNN

Most recent DNN models contain Batch Normalization

(BN) layers to accelerate the training process and improve

the accuracy via a regularization effect. BN layers standardize

the inputs to DNN layers, i.e. making the each layer’s inputs

follow a standard distribution. However, calculating the actual

mean and standard deviation of each layer’s input during

inference incurs a large computation overhead. So BN layers

use the statistics (mean and standard deviation) collected from

the training data to standardize the inputs in the inference

phase, based on the assumption that the training data has

the same distribution of the whole data seen by the DNN in

real applications. Because the modified DNN model produced

in the previous step introduces noises to the weights which

alters the distribution of the input to the next layer, the above

assumption can no longer be held true. As shown in Tab.

I, there is an accuracy drop from 76.13% to 71.628% for

ResNet50 if we directly use the modified DNN model in

the inference phase. We tackle this problem by updating the

distribution statistics in BN layers. One thing to note here

is that we only update the distribution statistics of BN layers,

instead of the trainable parameters (i.e. the gamma weights and

beta weights) of the BN layers. Because distribution statistics

are collected during the forward propagation, we only need

to re-run the forward propagation phase on the training data

without the need for backward propagation and weight update.

The last column in Tab. I shows the accuracy after updating

the BN statistics.

For networks that do not have BN layers, we add BN layers

after each convolutional layer and fully connected layer to

mitigate the impact of weight noises intruduced in previous

steps. Tab. I also shows the accuracy of the VGG16 network

with and without BN layers. Adding BN layers not only

increases the baseline accuracy, but also effectively mitigates

the accuracy loss caused by mismatched bits introduced in

previous steps.
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Fig. 6: Map centroid bit matrix and meta data to crossbar.

F. Mapping to Crossbars

All the bit matrices in the same cluster can be constructed

from the centroid bit matrix and the metadata. So they can

share the same crossbar, and we only need to store the centroid

bit matrix and the metadata. If a cluster has more than m
matrices (m is the maximum number of matrices that can

share the crossbar, defined in the Decomposing step), the

cluster is divided into sub-clusters with size not greater than

m. Each sub-cluster will map to a separate crossbar. In the

Decomposing step, the bit matrices have been cut into sizes

of (n−2m)×(n−2m), so the size of the centroid bit matrix is

also (n− 2m)× (n− 2m). In addition to storing the centroid

bit matrix on the crossbar, the remaining 2m rows and 2m
columns of the crossbar store the metadata of each bit matrix

in the sub-cluster. For each bit matrix, we use two rows to store

its CFV and RFV , and two columns to store its RFV and

the negation of RFV (i.e. RFV ). Fig. 6 shows an example

of mapping the centroid bit matrix C and the metadta of A
in Fig. 4 to a crossbar. If there are other bit matrices that also

share this crossbar, each bit matrix needs two more rows to

store its CFV and RFV and two more columns to store its

RFV and RFV .

G. Inference

In Fig. 6, because the crossbar only stores the centroid bit

matrix, the output from the crossbar (i.e. O0, O1, ..., O5) is

the MVM product between input I and centroid bit matrix C.

Note that when performing MVM in the crossbar, the top rows

which store the metadata do not participate in the computation

by applying a zero voltage on their wordlines. In order to

get the MVM product between I and A′, additional steps are

required to adjust the Ois. The dark cells in Fig. 6 indicates

the different cells between C and A′. If we denote the bits in

A′ as Bi, the dark cells stores 1−Bi. If the corresponding bit

in RFV is 1, we apply the opposite value of the input to on

the wordline. As a result, for O0, O2, O4, and O5, whose bit

in CFV is 1, the output is −
∑

(IB)+ I0 + I2 + I4 + I5. We

can adjust these outputs by subtracting them from the output

of O7. And for O1 and O3, whose bit in CFV is 0, the output



is
∑

(IB) − I1 − I3. We can adjust these outputs by adding

the output of O6. The adjusted outputs (i.e. O′

0
, O′

1
, ..., O′

5
)

are the MVM product between I and A′.

V. ARCHITECTURE

In this section, we present our BFlip accelerator. The

accelerator is integrated into the system via PCIe bus and

works as a slave to process DNN tasks received from the

CPU. The top-level structure of the BFlip accelerator follows

the generic ReRAM-based DNN accelerator design, which

consists of multiple tiles as shown in Fig. 7. The tiles are

connected using an on-chip concentrated mesh. The right of

Fig. 7 shows the details of one such tile. Each tile has an

eDRAM buffer to store inputs of DNN layers, an output

buffer for output aggregation, a Shift and Add unit to form

the full production results from bit slices, a Pooling unit for

pooling layers, and an Activation unit that implements non-

linear activation functions. The computation is distributed to

multiple Processing Engines (PEs). Each PE has a set of

ReRAM crossbars to perform the MVM computation. Each

crossbar is partitioned into four areas – the rows at the top store

the CFV s (shown in green) and RFV s (shown in yellow), the

right columns store the RFV s (shown in yellow) and RFV s

(shown in pink), and the left bottom part to store the centroid

bit matrix (shown in blue). Both the inputs and the weights

are in two’s complement format.

A MVM computation for one bit matrix consists of three

steps. In the first step, the RFV vector and the CFV vector

are read from the top rows from the crossbar. The CFV
vector is stored in Buffer1 of the Reconstruct unit. The

RFV vector is loaded into the RFV buffer in the wordline

driver. In the second step, the inputs are converted to their

opposite values according to the bits in the RFV buffer.

Then, the inputs compute with the centroid bit matrix and

the right-most columns which store the RFV s and RFV s.

The results of the centroid bit matrix are stored in Buffer2
of the Reconstruct unit. The results of the RFV s and RFV s

are stored in Buffer3 of the Reconstruct unit. In the third

step, the ALU adjusts the results in the three buffers to get

the MVM product between the input and the reconstructed bit

matrix.

VI. METHODOLOGY

A. Accuracy Models

We evaluate four datasets: MNIST [19], SVHN [17], Ci-

far10 [18] and ImageNet [20]. We construct custom neural

network structures for SVHN and Cifar10. The details of these

structures are listed in Tab. II. For MNIST, we run it on LeNet-

5 [21]. For ImageNet, we test it on five different networks –

VGG16 [4], ResNet50 [22], ResNeXt50 [23], GoogLeNet [24]

and DenseNet [25]. All these five networks are popular ones

in the machine learning community.

B. Hardware Models

We implement a custom cycle-accurate simulator for the

BFlip accelerator. The hardware parameters are listed in Tab.
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Fig. 7: BFlip accelerator architecture.

TABLE II: Benchmarks.

Dataset Network

MNIST LeNet-5

SVHN conv3x32-conv3x32-pool-conv3x64-conv3x64-
pool-conv3x128-conv3x128-pool-1024-512-10

Cifar10 conv3x128-conv3x128-conv3x128-pool-
conv3x256-conv3x256-conv3x256-pool-
conv3x512-conv3x512-conv3x512-pool-1024-10

ImageNet VGG16, ResNet50, ResNeXt50, GoogLeNet,
DenseNet

III. Most of the parameter values are adopted from ISAAC
[13]. For components that are new in the BFlip accelerator,

we use CACTI [26] and NVSIM [27] to model SRAM buffers

and ReRAM crossbars, respectively. Both SRAM and logic use

32nm process. Crossbar arrays use single-bit ReRAM cells,

which need 4.4ns for read and 52.2ns for write. The DAC’s

resolution is one bit and the ADC’s resolution is seven bits.

We use the same ADC design as in ISAAC, and scale the

power consumption reported in ISAAC to seven bits using

the equation in [28].

We compare BFlip’s performance and energy consumption

with two existing works – ISAAC [13] and SRE [14].

ISAAC is the most widely used baseline in ReRAM-based

DNN accelerator designs. The performance and energy com-

parison results with ISAAC can be conveniently scaled to

compare with other ReRAM-based DNN accelerators. SRE
is one of the state-of-the-arts that exploit model sparsity in

ReRAM-based DNN accelerators. Both ISAAC and SRE
use two-bit cells. We modify these two baselines to use single-

cells for a fair comparison with BFlip.

VII. RESULTS

In this section, we divide the evaluation of BFlip into two

parts. In the first part, we first evaluate BFlip’s impact on

accuracy with different ms (i.e., the number of bit matrices

that share the same crossbar). In terms of compression ratio,

changing m in BFlip has the same effect as using different

bit widths in quantization. Tab. IV shows the equivalent

quantized bit width for different ms, assuming crossbar size



TABLE III: BFlip accelerator parameters.

Unit Spec Power

Resconstruct Unit

Buffer size: 48B 0.07mW

ALU num: 1 0.1mW

PE

ADC num: 8; resolution: 7bits 9mW

DAC num: 8×128; resolution: 1bit 4mW

S+H num: 8×128 10uW

Xbar array num: 8; size: 128×128; cell bits: 1 1.8mW

RFV buffer size: 16B 0.028mW

Reverse num: 1 0.01mW

Reconstruct num: 4 0.64mW

IR size: 2KB 1.24mW

OR size: 256B 0.23mW

PE Total num: 1 17

Tile

PE num: 12 204mW

eDRAM size: 64KB; banks: 2; width: 256 20.7mW

Bus wires: 384 7mW

Router flit size: 32; ports: 8 42mW

Activation num: 2 0.52mW

S+A num: 1 0.05mW

Maxpool num: 1 0.4mW

OR size: 3KB 1.68mW

Tile Total num: 1 276mW

Chip

Tile num: 168 46.3W

Hyper Tr links: 4; freq: 1.6GHz 10.4W

Chip Total num: 1 56.7W

is 128× 128. In the second part, we analyze BFlip’s benefits

of performance improvement and energy reduction.

A. Accuracy

Fig. 8 shows the accuracy results of BFlip, the full-

precision baseline, and the conventional quantization method.

The full-precision baseline is obtained from the PyTorch

torchvision package. For quantization, eight bits are sufficient

for all benchmarks to keep the accuracy the same as the full-

precision baseline. However, further reducing the bit width

will significantly degrade the accuracy. Small datasets can

sustain a more aggressive quantization. For example, there is

an accuracy loss of only 0.09%, 0.16%, and 0.3% for MNIST,

SVHN, and Cifar10 when their weights are quantized to four

bits. However, DNN models for ImageNet need at least seven

bits to prevent a massive loss of accuracy. On the other hand,

we observe little accuracy loss for BFlip even when m = 9
(equivalent to 1-bit quantization). Binarized neural networks

(BNNs) have gained a lot of attention as each weight value

only needs one bit. BNNs are different from convention 1-bit

quantization in that many optimizations are made in either the

quantization method or the training process. The accuracy gap

between BNNs and the full-precision model is getting smaller

in recent years. Fig. 8 also shows the accuracy of recent state-

of-the-art results of BNNs for each model. For ImageNet, there

is still a 6.26% to 22.6% accuracy gap between BNN and the

full-precision baseline. However, the accuracy loss of BFlip

TABLE IV: Equivalent quantized bit width for different m.

Quant. bit width 4 3 2 1

m for BFlip 2 3 5 9

with m = 9 (equivalent to 1-bit quantization) is still negligible

(2.18% on average).

B. Performance and Energy

We select m = 2 and 9 for BFlip as examples to compare

the performance speedup with the baselines. We select these

two configurations because m = 2 is equivalent to quantizing

weight bit width to four bits and the accuracy loss is negligible

for small datasets, while m = 9 is equivalent to BNNs which

have been wildly studied in previous works. Fig. 9 shows

the performance speedup of BFlip over the baselines. All

the results are normalized to ISAAC. BFlip’s performance

speedup ranges from 1.26× to 2.15× for m = 2 and 1.6×
to 3.8× for m = 9, and the average speedup is 1.58× and

2.45×, respectively. The performance speedup comes from

reusing the crossbar outputs, as the crossbar-based MVM

is the most time-consuming operation. Using larger m also

helps to reduce the computation bottleneck, because only

a smaller region inside the crossbar needs to be accessed

simultaneously for computation, which needs significantly less

access time than activating the whole crossbar. For example,

when m = 9, one crossbar computation result can be used to

generate the MVM product of nine bit matrices, and only a

110× 128 sub-region inside the crossbar needs to participate

in the MVM computation. Because the computation saving

in SRE depends on the sparsity of the pruned model, its

performance is worse than ISAAC for dense models (Cifar10

and GoogLeNet).

Fig. 10 shows the energy consumption of BFlip when

m = 2 and 9 normalized to ISAAC. SRE reduces energy

consumption by skipping all-zero rows in OUs (Operation

Unit) – a fine-grain sub-region inside a crossbar. However,

because the inputs need to be reordered due to the irregular

access pattern in the crossbar, it demands additional eDRAM

accesses which incur a large energy overhead. So, it can save

more energy consumption on models with structural sparsity

(for example, 90% energy save for VGG16). BFlip only needs

to convert the inputs into their opposite values, the order is

not changed, so no additional eDRAM access is required. The

energy saving of BFlip does not depend on sparsity structure

after pruning, it saves 75% and 85% energy on average for

m = 2 and 9, respectively.

VIII. RELATED WORK

ReRAM has been extensively studied to design PIM ac-

celerators [13], [15]. As model compression techniques (such

as pruning and quantization) are widely adopted in ASIC

accelerators, more recent works start to focus on designing

compression-friendly accelerators based on ReRAM. [29] pro-

poses a structural pruning algorithm to find more all-zero rows

and columns by regularizing the distribution of zero weights.

[30] uses a fine-grained column compression to exploit the
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(f) ResNeXt50

0

20

40

60

80

FP

8bit 7bit 6bit 5bit 4bit

m=2

3bit

m=3

2bit

m=5

bit

m=9

BNN

m=10 m=11 m=12

T
o
p

-1
 A

cc
u

ra
cy

FP

Quantization

BFlip

BNN

(g) GoogLeNet

0

20

40

60

80

FP

8bit 7bit 6bit 5bit 4bit

m=2

3bit

m=3

2bit

m=5

bit

m=9

BNN

m=10 m=11 m=12

T
o

p
-1

 A
cc

u
ra

cy

FP

Quantization

BFlip

BNN

(h) DenseNet

Fig. 8: Accuracy of the full-precision baseline, conventional quantization, BNN and BFlip.
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Fig. 9: Speedup of BFlip over baselines.
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Fig. 10: Energy consumption of BFlip over baselines.

sparsity in ReRAM crossbars. However, it suffers from a high

overhead of output indexing. [14] exploits the sparsity by

activating a sub-region of a crossbar, such that more all-zero

rows or columns can be found in the sub-regions. It suffers

from a high overhead of reordering the inputs.

IX. CONCLUSION

We propose BFlip to share a crossbar by multiple bit

matrices. BFlip provides a way to balance between accuracy

and model size. Our evaluation shows that BFlip achieves

significantly higher accuracy compared to the conventional

quantization method and binarized neural networks.
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