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Learning to Overcome Noise in Weak Caption
Supervision for Object Detection

Mesut Erhan Unal, Keren Ye, Mingda Zhang, Christopher Thomas, Adriana Kovashka, Wei Li, Danfeng
Qin, Jesse Berent.

Abstract—We propose the first mechanism to train object detection models from weak supervision in the form of captions at the image
level. Language-based supervision for detection is appealing and inexpensive: many blogs with images and descriptive text written by
human users exist. However, there is significant noise in this supervision: captions do not mention all objects that are shown, and may
mention extraneous concepts. We first propose a technique to determine which image-caption pairs provide suitable signal for
supervision. We further propose several complementary mechanisms to extract image-level pseudo labels for training from the caption.
Finally, we train an iterative weakly-supervised object detection model from these image-level pseudo labels. We use captions from
four datasets (COCO, Flickr30K, MIRFlickr1M, and Conceptual Captions) whose level of noise varies. We evaluate our approach on
two object detection datasets. Weighting the labels extracted from different captions provides a boost over treating all captions equally.
Further, our primary proposed technique for inferring pseudo labels for training at the image level, outperforms alternative techniques
under a wide variety of settings. Both techniques generalize to datasets beyond the one they were trained on.

Index Terms—Language-supervised object detection, weakly-supervised object detection, vision and language

✦

1 INTRODUCTION

L EARNING to localize and classify objects in images is a
fundamental problem in computer vision. It has a wide

range of applications, including robotics, autonomous vehi-
cles, intelligent video surveillance, and augmented reality.
Modern detectors are highly accurate [1], can run in real-
time [2] and on mobile devices [3]. Despite these achieve-
ments, most modern detectors suffer from an important
limitation: they are trained with expensive supervision in
the form of large quantities of bounding boxes meticulously
drawn by a large pool of human annotators. Due to the well-
known domain shift problem [4], [5] and imperfect domain
adaptation techniques, this means that when detection is to
be performed in a novel domain, the expensive annotation
procedure needs to be repeated.

Weakly supervised object detection (WSOD) techniques
aim to alleviate the burden of collecting expensive box anno-
tations. The classic WSOD formulation [6], [7], [8] treats an
image as a bag of proposals, and learns to assign instance-
level semantics to these proposals. WSOD has shown great
potential for object detection, and recent methods have
reached 52% mAP [9] on Pascal VOC 2012.

However, we highlight two limitations of WSOD meth-
ods. First, they depend on large-scale image-level object
category labels; these require human effort that is provided
in an unnatural, crowdsourced environment. Second, they
make the assumption that the image-level label should be
precise, i.e. at least one proposal instance in the image needs
to be associated with the label. This assumption does not
hold for real-world problems and real-world supervision.
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Fig. 1: We propose two mechanisms to infer pseudo training
labels from captions. First (top), we determine the potential
for strong object supervision signal from image-caption
pairs (showing one with strong and one with weak signal).
When supervision is strong, a simple training label extrac-
tion technique can be used. Second (bottom), we learn a
mapping function (a text classifier) from captions to labels,
which compensates for failures of exact-matching label ex-
traction. Finally (right), we train a weakly-supervised object
detection model with these pseudo image labels.

We propose mechanisms to leverage a new form of
supervision for training weakly-supervised object detectors,
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namely supervision in the form of natural language descrip-
tions that web users provide when uploading their photos
to social media sites such as Instagram, or their videos to
video sharing platforms such as YouTube. There are tens
of millions of photos uploaded to Instagram every day,
and a majority have titles, tags, or descriptions. Abundant
videos with subtitles or descriptive narratives are similarly
available on YouTube. These annotations are “free” in that
no user was paid to provide them; they arise out of innate
needs of users to make their content available to others.1

However, existing WSOD methods cannot use such su-
pervision. First, natural language descriptions are unstructured;
they need to be parsed and words relevant for object
recognition to be extracted, while non-object words are
removed. Second, these descriptions are both imprecise and
non-exhaustive—they might mention content that is not in
the image (e.g. what event the user was attending or who
they met after the photo was taken), and omit content that
is in the image but is not interesting. In the bottom of Fig. 1,
many large objects—e.g. dining table and bowls—were not
mentioned in the human-provided description. Thus, di-
rectly feeding web data to the state-of-the-art WSOD system
is infeasible, which under-utilizes the rich supervision that
language on the web can provide.

To address this issue, we propose a three-part framework
to build an object detector from images paired with accom-
panying captions (sentences). Our model bridges human-
written free-form texts and visual objects, and generates
accurate bounding boxes over objects in an image. Our
key contributions are the first two steps, with a smaller
contribution in the third step. First, we estimate which image-
caption pairs can serve as appropriate supervision for extracting
pseudo image-level training labels for training an object
detector. In particular, we model the difference between
images which are visual neighbors and those which appear
with similar captions (semantic neighbors). We prioritize
extracting signal from image-caption pairs where visual
and semantic neighborhoods overlap, which indicates that
captions closely follow the image. This enables the use of
simple techniques for extracting training labels (Fig. 1 top).

Second, we devise complementary advanced techniques
for extracting pseudo image-level training labels from the caption.
One of our proposed strategies (Fig. 1 bottom) is to train a
textual classifier to map captions to discrete object labels.
Unlike the previous contribution, this classifier requires
a small set of labels, and enables us to bridge the gap
between what humans mention in a caption, and what truly
is in an image. Alternatives include learning multimodal
spaces where images and captions are projected, and using
similarity in these spaces to determine which captions are
similar to object words in a predefined vocabulary. This
contribution and the previous have different applications:
The former is fitting when no labels are available, but if
they are, the latter achieves slightly stronger performance.
Thus, we primarily focus on evaluating these contributions
separately, as shown in Fig. 1. Both contributions generalize
beyond dataset boundaries.

Third, we use the pseudo ground truth labels at the image

1. Of course, this data may be subject to license agreements limiting
uses, and not all of it can truly be used for “free.”

level (extracted in the previous step), to train a weakly super-
vised object detection method. The method we propose extracts
region proposals off-the-shelf, then for each proposal and
each class, learns both a class score and a detection score.
These scores are then refined using an iterative approach,
and combined to produce final detection results.

In our work, we first need to infer image-level pseudo
labels for training from the available captions. Only then
can we proceed to train a weakly-supervised detection
(WSOD) algorithm, using those (potentially noisy) image-
level pseudo labels. Thus, to distinguish our work from
WSOD, we refer to our methods as performing language-
supervised object detection (LSOD).

Our paper makes four main contributions. First, we pro-
pose a new task of learning from noisy caption annotations,
and set up a new benchmark. Rather than treating object
categories as IDs only, we also leverage their semantics
and synonyms of those object names. Second, we show the
impact of multiple possible ways to map captions to image-
level labels, ranging from exactly matching the captions to
object category words, using learned image-text similarity
scores, retrieving hand-annotated or predicted synonyms
to the object categories from the captions, or training a
classifier. Our proposed approach outperforms the baseline
by up to 78% on noisy datasets. Third, we demonstrate the
success of explicitly modeling which image-caption pairs
provide strong signal for supervision, using a new metric
that captures how closely the text follows the image. This
alignment metric allows us to improve performance by up
to 37%. Fourth, we show cross-domain results in datasets:
we not only demonstrate competitive WSOD performance
by training/testing on COCO captions, but also validate the
benefit of our COCO-trained text classifier and alignment
metric by applying it on Flickr30K, and the noisy MIR-
Flickr1M and Conceptual Captions. We are not aware of
other work that directly extracts labels for detection training
from the latter two datasets (and only a few works pretrain
for detection on Conceptual Captions). We leverage the
resulting models and evaluate them on the PASCAL and
COCO object detection datasets.

The remainder of the paper is organized as follows. We
overview related work in Sec. 2. In Sec. 3, we discuss how
to filter or weight image-caption pairs as potential signals
for supervision (Sec. 3.1), different ways to reduce the gap
between free-form captions and object categories (Sec. 3.2),
and the backbone of our WSOD model, which combines
prior work [8], [10] in a new way (Sec. 3.3). In Sec. 4, we
compare to upper and lower bounds, in conjunction with
state-of-the-art methods. We conclude in Sec. 5.

2 RELATED WORK

We formulate a new variant of weakly-supervised object
detection, which we term language-supervised, where the
supervision is even more weak but less costly than in
prior work. We leverage vision-language interactions, so
we also discuss work that finds alignment between image
regions and text and grounds language in images. We also
discuss recent work in learning visual representations from
language. Finally, we describe work that investigates what
kind of content humans describe in captions or models how
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visually concrete particular words are. We are not aware of
other work that explicitly handles noise for language-supervised
object detection, as we propose.

2.1 Weakly-supervised object detection
Weakly-supervised object detection (WSOD) involves lo-
calizing and categorizing objects without instance-level
(bounding box) supervision. Key approaches include
multiple-instance learning (MIL) where one or more re-
gions are associated with the label of interest [8], [11], and
self-training, where high-scoring proposals are treated as
pseudo ground-truth [8], [12], [13]. In the multiple-instance
learning (MIL) setting, proposals of an image are treated
as a bag of candidate instances. If the image is labeled as
containing an object, at least one of the proposals will be
responsible to provide the prediction of that object. Oquab et
al. [14] and Zhou et al. [15] propose a Global Average (Max)
Pooling layer to learn class activation maps. Bilen et al. [6]
propose Weakly Supervised Deep Detection Networks (WS-
DDN) containing classification and detection data streams,
where the detection stream weighs the results of the classifi-
cation predictions. Tang et al. [8], [16] jointly train multiple
refining models together with WSDDN, and show the final
model benefits from the online iterative refinement. Diba
et al. [17] and Wei et al. [7] apply a segmentation map;
Wei et al. [7] further incorporate saliency. Wan et al. [18]
add a min-entropy loss to reduce the randomness of the
detection results. Zeng et al. [12] jointly consider bottom-
up and top-down objectness from low-level measurement
and CNN confidences. Ren et al. [9] aim at instance-aware
self-training where they design DropBlock to zero out the
most discriminative parts to avoid the part domination issue
in WSOD. Earlier (pre-deep-learning) approaches include
Divvala et al. [19] which rely on web search for an initial
set of concepts for which to learn detection models, prune
them based on model performance, and combine synonyms.

Our work is similar to these since we also represent the
proposals using a MIL-weighted representation. However,
prior WSOD methods require structure in the form of class
labels, and these labels require dedicated human effort. Our
contribution is enabling weakly-supervised detection with
less costly language supervision which could work without
explicit human annotations. In this project, we use both
crowdsourced captions (from the COCO and Flickr30K
datasets) and noisier ones obtained as a side product of
users uploading content on the web (MIRFlickr1M, Con-
ceptual Captions). We explicitly handle the noise in the
language supervision and the misalignment between nouns
(objects) that are shown but not mentioned, or mentioned
but not shown. This distinguishes our work from both
WSOD and self-supervised methods.

2.2 Vision-language tasks
Learning visual-semantic embeddings (VSE) has received
tremendous interest due to its broad applications such as
retrieval [20], [21], captioning [22], [23], and visual ques-
tion answering [24]. VSE approaches learn a joint visual-
text space, e.g. via a triplet or contrastive loss, where the
distance between embedded samples reflects their semantic
relationship, and cross-modal attention [25], [26]. As a side

experiment, we conducted a transformer-based pretraining
involving both masked language modeling and image-text
matching objectives to achieve better visual features. Still,
progress in transformers is orthogonal to our primary aim
as it does not consider how strong of a signal a caption
provides for its co-occurring image.

There is also work to associate phrases in the caption to
visually depicted objects [27] but none enable training of an
independent object detector with accurate localization and
classification, as we propose. In recent work, [28] predict
masked words without localization, but use surrounding
text at test time, unlike our models.

In Thomas and Kovashka [29], we show that image-
text matching fails when the relation between an image
and its corresponding (co-occurring) text is complementary
rather than redundant. What this means for training object
detection models from language supervision, is that the
category overlap between image and co-occurring text may
be low. To cope with this, our method exploits the structure
of each unimodal space (image and text), and compares
those structures, to compute how relevant each caption is
for each image, and thus, whether the image-caption pair
should be used for training object detectors.

2.3 Learning visual representations from text

Recent work [30], [31], [32], [33], [34] aims to learn visual
representations from their corresponding textual counter-
parts. Gomez et al. [30] predict the text LDA topic distri-
bution from the image feature. Miech et al. [31] assume an
MIL nature in videos, and use Noise Contrastive Estimation
(NCE) to optimize the alignment between video clips and
associated narrations. Desai and Johnson [33] harvest vi-
sual representations from training bidirectional captioning
models and note the importance of predicting all caption
tokens to learn a good visual representation. Radford et al.
[34] optimize a classical co-attention model but learn the
feature representation on a large dataset of 400M image-
text pairs. However, these methods do not train standalone
object detectors. Bertasius et al. [32] apply a transformer-
based language model to encode the text and match the
visual feature extracted by an object detection model. They
only optimize the representation to classify objects, while
we also care about the detection scores and learn them in the
unified framework since the visual proposals we use (Selec-
tive Search) are not as accurate as detection results. Most
related to our work is Chen et al. [35]. The algorithm in this
work discovers and localizes new objects from documentary
videos by associating subtitles to video tracklets. They extract
keywords from the subtitles using TFIDF. However, video
provides benefits we cannot leverage, e.g. numerous frames
containing nearly identical object instances. Importantly, we
show that only using words that actually appear in the
caption (as done in [35] with TFIDF) results in suboptimal
performance compared to our method. Further, many com-
ponents of Chen et al.’s method, e.g. the restriction to animal
classes and the reliance on tracking, limit generalizability to
other vocabularies and to images.

In our preliminary work, Ye et al. [36], we show we
can successfully leverage unstructured supervision (highly
descriptive captions well-aligned with the visual modality)
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but we do not explore any filtering or weighting of image-
caption pairs. This weighting allows us to bypass the need
for training a text-only classifier (which required a small
amount of class labels), replacing it with techniques that re-
quire only image-caption pairs. In this work, we also include
results on noisier datasets (MIRFlickr1M and Conceptual
Captions) and without ImageNet pretraining.

2.4 Visual reporting bias and concreteness

Our results show there is a gap between what humans name
in captions, and what categorical annotations they provide.
[37] study a similar phenomenon they refer to as “human
reporting bias”. They model the presence of an object as a
latent variable, but we do the opposite—we model “what’s
in the image” by observing “what’s worth saying”. Further,
we use the resultant model as precise supervision to guide
detection model training.

Our work also measures how abstract is the connection
between an image and a co-occurring text. Prior work
predicts whether image and text that co-occur have a di-
rect or complementary relationship [38], [39], e.g. whether
the relation between image and its caption is “visible”,
“story”, “subjective” or “meta” [39]. Unlike our method
which also implicitly measures abstractness, these methods
require additional annotations, aim for a discrete rather than
continuous abstractness score, and are not applied in an
object detection setting. Also related is work that measures
how tightly clustered the visual companions of a word are
[40] but this approach only computes scores for individual
words, not for the relationships within image-caption pairs.
In an auxiliary task, we compute the potential of [39], [40] to
predict which captions may serve as clean supervision for
weakly-supervised object detection, and we show that our
method is equally or more promising.

3 APPROACH

We train object detectors from supervision only consisting
of noisy captions and corresponding images. In realistic
scenarios, captions and images may contain complementary
information. We hypothesize that even for crowdsourced,
descriptive captions which closely follow the image (e.g.
COCO), not all caption-image pairs provide equally strong
supervision, as some captions will overlap with the image
to a stronger degree. Fig. 1 (top) shows two images, the
first with high image-text alignment, where two objects
(highlighted) are both shown and mentioned. The second
image contains concepts that are visually not shown or are
visually ambiguous (e.g. display, fabrics), hence extracting
concrete nouns (objects) is more challenging. Thus, the first
step in our framework (Sec. 3.1) is to determine which
image-caption pairs to use as supervision: we propose two
alternative approaches, one which uses a hard cutoff over
the image-text alignment score, and another which uses all
image-caption pairs but gives them different weight.

After selecting image-caption pairs for training, we next
extract discrete labels at the image level (Sec. 3.2). We do
so through a variety of techniques, the simplest of which is
looking for exact string match between nouns in the caption
and object words, and the most complex being training a

classifier which takes in a caption (without a paired image)
and maps this caption to a discrete set of labels (which may
or may not be mentioned in the caption). Finally, given these
pseudo ground-truth image-level labels, we train a variant
of a prior weakly-supervised object detection technique: it
first computes initial scores for each region and each object
class, then refines these iteratively (Sec. 3.3).

3.1 Filtering captions by estimated supervision purity
We propose to filter image-caption pairs that are unlikely to
be useful for training. The key idea is to estimate to what
extent an image caption and the image provide overlapping
(redundant) or complementary information. While comple-
mentarity is useful in general, for detection we require
redundancy, i.e. the same objects being both shown and
mentioned in the caption. We first describe an example of
how to learn a joint image-text embedding; we do not
require any particular technique for this part. We then
compute homogeneity, i.e. how visually similar semantic
neighbors of an image (images whose captions are similar
in a unimodal word embedding space) are in the learned
joint, multimodal embedding space. This homogeneity allows
us to estimate the overlap of the image-caption pair. The
computation of homogeneity follows our prior work [41],
but was never used for object detection before.

3.1.1 Preliminaries
Let D = {I,T} represent a dataset of n image-text pairs,
where I = {x1, x2, . . . , xn} and T = {y1, y2, . . . , yn} are
the set of images and text (captions), respectively, and yi is
text co-occurring with image xi (the two are semantically
related). To reason about the relationships of images and
text, we seek a joint manifold M. For images, a convolu-
tional network f : I → M is used to project images into the
joint space, while a recurrent network g : T → M projects
text. To obtain M, we can use any cross-modal retrieval
method. We describe two possibilities, triplet loss [42] and
polysemous embedding model (PVSE) [21].

We first consider a simple triplet loss to derive M:

Ltrip =
[
||xi − yi||22 − ||xi − yj ||22 +m

]
+

(1)

where xi, yi appear together, while xi, yj do not, + denotes
hinge loss, and m is a margin. Alternatively, PVSE uses a
multiple-instance variant of triplet loss (K meanings hence
K embeddings per sample), along with self-attention for
visual and text features (not shown). The similarity of image
xi and text yi is:

s(xi, yi) = max
(k1,k2)∈{1,...,K}×{1,...,K}

〈
xik1

∥xik1
∥2

,
yik2

∥yik2
∥2

〉
(2)

3.1.2 Homogeneity
To capture how well-aligned an image and its correspond-
ing caption are, we measure visual homogeneity (similarity)
of the semantic concepts that an image illustrates. In other
words, are images corresponding to semantically similar
texts, visually similar? To measure this homogeneity, we
first discover each image-text pair’s semantic neighbors in text
space Ω(T). Following [43], we compute neighbors in text
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space2 because the text domain provides the cleanest seman-
tic representation of the image-text pair. Let Ψ(Ω(yi)) ={〈

x′
in
, y′in

〉}N
n=1

represent the semantic nearest neighbor
function over Ω(T), where

{〈
x′
in
, y′in

〉}N
n=1

denotes the set
of the N neighbors of ⟨xi, yi⟩ and ⟨xi, yi⟩ /∈ Ψ(Ω(yi)).

We next measure the homogeneity of the semantic
neighbors in both the image and text domains, using the
f : I → M and g : T → M projections of image and text
into the joint space. Because our formulation is equivalent
for both image/text neighbors, we let si represent a sample
from either domain but require samples si and sj come from
the same domain. Let s′i = [s′i1 , s

′
i2
, . . . , s′iN ]⊺ denote the

N×H matrix of embeddings of the neighbors of si found via
Ψ, and U = s′is

′⊺
i compute the pairwise similarities between

all semantic neighbors through cross-product. We compute
the homogeneity score αHOM

i for si as follows:

αHOM
i =

1

N2

N∑
r=1

N∑
c=1

U(r,c) (3)

where r, c index over the rows and columns of U = s′is
′⊺
i .

For the different image (si = xi) and text (si = yi) do-
mains, we compute visual homogeneity score αHOM

(I) and text
homogeneity score αHOM

(T ) , respectively. Both of these scores
capture how aligned an image and its co-occurring text are;
thus, higher α scores indicate image-text captions from
which supervision signal can more reliably be extracted.
We also consider the difference of αHOM

(I) and αHOM
(T ) as

an indicator for supervision purity.
Note that the cost for computing homogeneity score

is neglectable in that we offline preprocessed all examples
in the training set by caching sample embeddings into a
memory bank. We only find semantic neighbors once using
a pre-trained Doc2Vec. Then, computing αHOM weights is
efficient as it only requires multiplication.

3.1.3 Scoring captions for homogeneity
For object detection, we prefer to train from examples in
which objects are both shown in the image and mentioned
in the text. Sec. 3.1.2 provides a way to measure the re-
dundancy between the image and text modalities. Here, we
describe how to use this measure.

Filtering. We hypothesize that selecting training data
and filtering out noisy image-caption pairs using αHOM

(I)

2. Specifically, Doc2Vec [44] due to its appropriateness for longer
texts, although BERT [45] could also be used.

and αHOM
(T ) will improve the detection model training. We

provide an experiment in Sec. 4.4, which selects the 30,000
image-caption pairs from COCO that have the highest ho-
mogeneity scores. Our method provides significantly better
detection results than random selection (Tab. 5).

Weighting. Hard-cutoff filtering requires finding the
right cutoff value (e.g. top-30k), and it means discarding
some potentially useful data. Compared to the filtering strat-
egy, weighting does not require a hard cutoff and is more
data-efficient. It applies different weights to image-caption
pairs. For image-caption pairs that are more overlapped
(i.e. high homogeneity), weighting assigns large weight to
the loss term in that these examples will likely be useful
for training detection models. For image-caption pairs that
are more complementary, weighting assigns small weights
because the information may not well-aligned. In Eq. 9, we
use αHOM

(I) as the heuristic weighting factor γ. We provide
an ablation in Sec. 4.4, and Tabs. 6, 7 and 8 show the impact
of using the weighting factor αHOM

(I) .
The strategy described in this section allows us to select

captions with useful supervision, thus can be coupled with
simple mechanisms to extract labels at the image level from
captions, e.g. EXACTMATCH in the next subsection. We do
not expect it to improve results when a mapping function
from captions to training labels is learned with supervision.

3.2 Pseudo training label inference from text

After getting the image-caption pairs estimated to be well-
aligned, we now proceed to extract pseudo object la-
bels from the selected noisy captions, to benefit weakly-
supervised object detection. The foundation of WSOD
builds on an important assumption from MIL (Eq. 7), which
suggests that precise image-level labels should be provided.
The straightforward solution is to extract object labels from
captions via lexical matching. However, it has limitations.
Consider an image with three sentence descriptions:

“a person is riding a bicycle on the side of a bridge.”
“a man is crossing the street with his bike.”
“a bicyclist peddling down a busy city street.”
Only the first sentence exactly matches the categories

“person” and “bicycle”. Even if we allow synonyms of
“man” and “person” or “bicycle” and “bike”, only the
first two precisely describe both objects, while the last one
still misses the instance of “bicycle” unintentionally. When
using these examples to train object detectors, the first two
instances may bring positive effect, but the last one will be
wastefully discarded as false negative i.e. not relevant to
the categories “person” or “bicycle”. As further examples,
in Fig. 1 (bottom-right), none of the captions (one shown)
mention the “bowls” or “spoons” that are present, and
only some mention “oven”. Finally, in Fig. 6, the caption
mentions a “suit” worn by a speaker at a conference, but
not the “tie”, even though one is present.

This observation inspires us to amplify the supervision
signal that captions provide, and squeeze more information
out of them. Fig. 3 (bottom) shows the approach we use
to amplify the signal. This text-only model takes free-form
texts as input, embeds individual words to a 300D space
using GloVe [46], and projects the embedded features to a
400D latent space. We then use max-pooling to aggregate
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(bottom) to amplify signals in free-form texts to supervise the learning of the multiple instance detection network (top).
The detection model is refined by an online refinement module (right) to produce the final detection results. Detection
(odeti,j ∈ RC ) and classification (oclsi,j ∈ RC ) scores and image predictions p̂i ∈ RC refer to predictions for all classes.

the word-level representations. Then, we use this interme-
diate representation to predict the implied instances (e.g.
80 classes as defined in COCO, or any other categories);
this prediction answers “what’s in the image” and serves as
pseudo image-level training labels, to be used in Sec. 3.3.

There exists a subtle balance when using pseudo labels to
train object detectors. Admittedly, our strategy increases the
recall rates thus more data could be utilized. However, with
the increased recall, precision will drop inevitably thus the
fundamental assumption in MIL is threatened. Specifically,
the precise label assumption makes the model very sensitive
to false positive cases: when inappropriate labels are given
where none of the proposals have a good response, the
model gets confused, resulting in non-optimal detections.
Thus, we adopt a two-steps procedure: first we look for
an exact match of object labels from captions, following the
intuition that explicitly mentioned objects should be significant
and obvious enough in the image; second, when no object
can be matched, we use our label inference model to predict
labels as unspoken intended objects to guide the object detec-
tion. We show our method TEXTCLSF outperforms several
strong alternatives that also infer pseudo labels.

Alternative strategies. We also experiment with alter-
native multiple pseudo-label generation techniques when
lexical matching (EXACTMATCH) fails to find a match. First,
we consider a manually constructed, hence expensive COCO
synonym vocabulary list (EXTENDVOCAB) which maps
413 words to 80 categories [47]. Another variant, GLOVE,
takes advantage of GloVe word embeddings [46], assigning
pseudo-labels for a sentence by looking for the category that
has the smallest embedding distance to any word in the
sentence. We also finetune the GloVe word embeddings on
COCO using a visual-text ranking loss, and use the pseudo
labels retrieved by the resultant text embedding, resulting
in LEARNEDGLOVE.

Discussion. Our text classifier relies on both captions

and category labels. Once the bridge between captions and
labels is established, it generalizes to other datasets, as we
show in Tab. 1. Importantly, we only need a small fraction
of labels to train this text classifier; as we show in Fig. 5,
precision has a small range (between 89% and 92%) when
we use between only 5% and 100% of the COCO data, while
recall is stable at 62%. Thus, our text model could learn
from a single source dataset with a few labels, then it could
transfer the knowledge to other target datasets, requiring
only free-form text as supervision. If no labels are available,
the caption weighting strategy (Sec. 3.1) can be paired with
EXACTMATCH or other alternatives to TEXTCLSF. However,
TEXTCLSF performs slightly better overall.

3.3 Detection from inferred pseudo image labels

We next describe how we use the inferred pseudo labels at
the image level, to train an object detection model. As shown
in Fig. 3 (top), we first extract proposals with accompany-
ing features. An image is fed into randomly initialized or
pretrained (on ImageNet [48]) convolutional layers. Then,
ROIAlign is used for cropping the proposals (at most 500
boxes per image) generated by Selective Search [49], resulting
in fixed-sized convolutional feature maps. Finally, a box
feature extractor is applied. If {ri,j}mj=1 are the m proposals
of a given image xi, this process results in proposal feature
vectors {ϕ(ri,j)}mj=1 where each ϕ(ri,j) ∈ Rd. Note that
even when our model is pretrained on ImageNet, it does not
leverage any image labels on the datasets on which we train
and evaluate our detection models (PASCAL and COCO).

3.3.1 Initial detection scores
We next introduce the prediction of image-level labels p̂i,c
(c ∈ {1, . . . , C} for the i-th image, where C is the number of
classes) and of detection scores. If not noted otherwise, we
use i to index training examples, j to index region proposals
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within an image, and c to index class labels. The method
described in this section follows prior work, i.e. Bilen et al.
[6], but labels used for training are potentially noisy as they
come from our pseudo label inference module, Sec. 3.2.

First, we feed the proposal features ϕ(ri,j) into two
parallel fully-connected layers to compute the detection
scores odet

i,j,c ∈ R1 (top branch in the green MIL module in
Fig. 3) and classification scores ocls

i,j,c ∈ R1 (bottom branch),
in which both scores are related to a specific class c and the
j-th proposal of image xi:

ocls
i,j,c = wcls⊺

c ϕ(ri,j) + bcls
c , odet

i,j,c = wdet⊺
c ϕ(ri,j) + bdet

c (4)

We convert these scores into: (1) pcls
i,j,c the probability

that object c presents in the j-th proposal; and (2) pdet
i,j,c the

probability that the j-th proposal is important for predicting
image-level label yi,c:

pcls
i,j,c = σ(ocls

i,j,c), pdet
i,j,c =

exp(odet
i,j,c)∑m

j=1 exp(o
det
i,j,c)

(5)

Finally, the aggregated image-level prediction is com-
puted as follows, where greater values of p̂i,c ∈ [0, 1] mean
higher likelihood that c is present in the image xi:

p̂i,c = σ

( m∑
j=1

pdet
i,j,co

cls
i,j,c

)
(6)

Assuming the label yi,c = 1 if and only if class c
is present in the input image xi, the multiple instance
detection loss used for training the model is defined as:

Lmid(xi, yi) = −
C∑

c=1

[
yi,c log p̂i,c + (1− yi,c) log(1− p̂i,c)

]
(7)

The weakly supervised detection score given both pro-
posal ri,j and class c is the product of pcls

i,j,c and pdet
i,j,c which

is further refined as described in Sec. 3.3.2.

3.3.2 Online instance classifier refinement
The third component of our WSOD model is Online Instance
Classifier Refinement (OICR), as proposed by Tang et al. [8].
Given a ground-truth class label, the top-scoring proposal,
as well as proposals highly overlapping with it, are se-
lected as references. These proposals are treated as positives
for training the box classifier of this class while others
are treated as negatives. The initial top-scoring proposal
may only partially cover the object, so allowing highly-
overlapped proposals to be treated as positives gives them
a second chance to be considered as containing an object, in
the subsequent model refinement. This reduces the chance
of propagating incorrect predictions. In addition, sharing
the convolutional features between the original and refining
models makes training more robust.

Following [8], we stack multiple refining classifiers and
use the output of the previous one to generate instance-level
supervision to train the successor. The detection score at
the 0-th iteration is computed using s

(0)
i,j,c = pclsi,j,c pdeti,j,c(c ∈

{1, . . . , C}), s(0)i,j,C+1 = 0 (where C + 1 is the background

class). Given the detection score s
(k)
i,j,c at the k-th iteration,

we use the image-level label to get the instance-level supervi-
sion y

(k+1)
i,j,c at the (k+1)-th iteration. Assume that c′ is a label

attached to image xi, we first look for the top-scoring box
ri,j′ (j′ = argmax

j
s
(k)
i,j,c′ ) responsible to predict c′. We then

let y
(k+1)
i,j,c′ = 1,∀j ∈ {j|IoU(ri,j , ri,j′) > threshold}. When

k > 0, s(k)i,j,c is inferred using a (C + 1)-way FC layer, as in
Eq. 4. The OICR training loss is defined in Eq. 8.

Lk
oicr(xi, yi) = − 1

m

m∑
j=1

C+1∑
c=1

ŷ
(k)
i,j,c log s

(k)
i,j,c, k = 1, . . . ,K

(8)
Unlike the original OICR, our WSOD module aggregates

logits instead of probability scores, which in our experience
stabilizes training. We also removed the reweighing of un-
trustworthy signals emphasized in [8] since we found it did
not contribute significantly.

The final loss we optimize is Eq. 9, where γi is the per-
example weighting factor. γi = 1 for all i if we are not
applying homogeneity weighting. If we use hard filtering
based on αHOM

(I) i , αHOM
(T ) i , then γi = 1 for samples included

in training, and γi = 0 for others. If using image-caption
weighting, γi = αHOM

(I) i . We refine our model for 3 times
(K = 3) if not mentioned otherwise.

L(xi, yi) = γi

(
Lmid(xi, yi) +

K∑
k=1

Lk
oicr(xi, yi)

)
(9)

3.4 Implementation details

We first obtain a joint image-caption embedding space, by
training a triplet loss model [42] (with margin m set to 0.5)
or PVSE [21] model (with K = 3 embeddings per sample
and margin 0.1, using the COCO validation set). We use
this model to infer image-text joint embeddings. Then we
use Eq. 3 to infer the homogeneity scores. We use ResNet-
50 [50] initialized randomly or with ImageNet features for
images (both types of results shown in Table 8). Images are
scaled to 224x224 and augmented with random horizontal
flipping. For text, we use GRU [51] with hidden state size
512, initialized with 200D word embeddings learned on
the COCO dataset, using [52]’s implementation of Doc2Vec,
distributed memory [44], 20 epochs with window size of
20, and ignoring words that appear less than 20 times. We
use Xavier initialization [53], the Adam optimizer [54] with
minibatch size of 32, learning rate 1.0e-4 (decayed by 10x
after every 5 epochs of no decrease in val loss), and weight
decay 1e-5. We use [55] to efficiently compute approximate
nearest neighbors for Ψ and use N = 200 nearest neighbors.

For the text classifier which predicts the pseudo image-
level labels, we adopt a multi-layer perceptron (see Fig. 3
bottom). We first embed word tokens to 300D GloVe embed-
dings and project them to a 400D latent space. We use max-
pooling to aggregate these word-level representations to
get the fixed-length 400D caption representation. Next, we
use this max-pooled intermediate representation to predict
the implied instances (e.g., 80 classes in COCO). The object
labels are used to supervise the text classifier learning (cross-
entropy loss). We use AdaGrad optimizer [56], learning rate
of 0.1, and batch size of 20.

To train the weakly supervised object detection model,
we first use Selective Search [49] from OpenCV [57] to
extract at most 500 proposals for each image. We follow the
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“Selective search quality” parameter settings in [49]. We use
Selective Search because it is a generic, dataset-independent
proposal generation procedure, as opposed to other CNN-
based alternatives which are trained end-to-end from a
specific dataset in a supervised fashion. We use TensorFlow
[58] as our training framework. To compute the proposal
feature vectors, we use the layers (“Conv2d 1a 7x7” to
“Mixed 4e”) from Inception-V2 [10] to get the conv feature
map, and the layers (“Mixed 5a” to “Mixed 5c”) from the
same model to extract the proposal feature vectors after
the ROIAlign operation. The Inception-V2 model is either
randomly initialized, or pretrained on ImageNet [48]; the
supervised detector counterpart of our model, using this
architecture, was explored by [59]. To augment the training
data, we resize the image randomly to one of the four scales
{400, 600, 800, 1200}. We also randomly flip the image left
to right at training time. At test time, we average the
proposal scores from the different resolution inputs. We
set the number of refinements to 3 for the OICR since it
gives the best performance. For post-processing, we use
non-maximum-suppression with IoU threshold of 0.4. We
use the AdaGrad optimizer [56], a learning rate of 0.01, and
a batch size of 2 as commonly used in WSOD methods [8],
[16]. The models are usually trained for 100K iterations on
Pascal VOC (roughly 40 epochs on VOC2007 and 17 epochs
on VOC2012) and 500K on COCO (8.5 epochs), using a
validation set to pick the best model. Our implementation is
available at https://github.com/yekeren/Cap2Det.

4 EXPERIMENTS AND RESULTS

First, we present our experimental settings (Sec. 4.1). Sec-
ond, we compare the accuracy of alternative strategies
on pseudo image-level training label extraction from captions
(Sec. 4.2). Third, we show that our approach achieves
strong detection performance using supervision from cap-
tions (Sec. 4.3). By training on COCO captions, we achieve
close to state-of-the-art results on weakly supervised de-
tection on PASCAL, even though the supervision we
leverage is weaker than competitor methods. Importantly,
our text classifier trained on COCO generalizes to other
datasets, and allows us to use Flickr30K and the noisier
datasets MIRFlickr1M and Conceptual Captions which do
not feature clean, descriptive captions. In all settings, our
primary pseudo label inference method, EM+TEXTCLSF,
outperforms the alternative techniques, including the EX-
ACTMATCH baseline. Fourth, we show the improvements
achieved by filtering and scoring noisy image-caption ex-
amples (Sec. 4.4). We conclude that the redundancy be-
tween image and text is key to train a successful weakly-
supervised detection model. Finally, as a sanity check, we
show our approach performs competitively to prior meth-
ods on the task of learning from clean, ground-truth image-
level labels (Sec. 4.5).

Note that in all experiments, we focus on evaluating
the impact of a single component of our model, focusing
on the caption weighting and pseudo label inference. For
most experiments, we determine success by comparing to
an upper bound (e.g. ground-truth labels) and/or a lower
bound (e.g. naive training label extraction, unweighted loss
using captions equally). We show our methods’ advantages

persist when we replace Sec. 3.3 with alternative state-of-
the-art techniques, e.g. Ren et al. [9].

4.1 Datasets and metrics
Our experiments involve the datasets COCO, PASCAL
VOC, Flickr30K, MIRFlickr1M, and Conceptual Captions.

PASCAL Visual Object Classes (VOC) [60] is a standard
image dataset for object class recognition. It focuses on a
limited number of classes (20 objects). We use it to evaluate
our learned object detection models (4,952 and 10,991 test
examples in VOC07 and VOC12, respectively).

Common Objects in Context (COCO) [61] is a large-
scale object detection, segmentation, and captioning dataset.
We use: (1) its image-caption data to train the triplet and
PVSE models necessary to infer image-caption homogeneity
(Sec. 3.1); (2) its caption-label data to train our pseudo
label inference module (Sec. 3.2) and test it on three other
datasets; (3) its 118K training images, each paired with
5 captions, to train our detection model (Sec. 3.3) using
591,435 COCO [62] captions paired to the 118,287 train2017
images. EXACTMATCH fails to extract any label for roughly
15K train2017 instances. Since COCO is fully annotated with
instance-level boxes, we use its evaluation server to measure
performance of the resulting object detection models.

Flickr30K and MIRFlickr1M. We use the Flickr data to
prove that our weakly-supervised object detection models
can generalize to alternative datasets. Flickr30K [63] (30K
images, each paired with 5 captions) contains crowdsourced
captions. However, we also use 200K examples from the 1M
noisy data in MIRFlickr1M [64] (subset for computational
reasons). The dataset pairs images with user-generated con-
tent, which is not guaranteed to describe the content of the
images in an exhaustive or precise manner. EXACTMATCH
fails to extract labels on roughly 113K of those. We use
captions from these datasets to train our detection models.
Fig. 4 shows examples.

Conceptual Captions [65] contains 3.3M images anno-
tated with captions. The captions are from the web, and
illustrate the noisy web data environment. We conduct an
experiment that tries to benefit from the large corpus via
vision-language pretraining. We also directly train object
detectors on Conceptual Captions. To keep results com-
parable to those when using COCO Captions, we extract
a 118K subset from Conceptual Captions. EXACTMATCH
fails to extract any label on roughly 54K samples in that
subset. Conceptual Captions includes alt-text for images.
Alt-texts are preprocessed with hypernimization to replace
named entities (e.g. architect’s name) with object names (e.g.
“person”). As can be seen from Fig. 4 (right), this alt-text is
not descriptive of the images in the same way that COCO
captions are descriptive. For example, the third caption
mentions “person”, but this person likely refers to whoever
made the decorative paint; this person is not visible in the
image. Similarly, the “person enjoying tea” (fourth caption) is
also not visible. Conversely, the persons in the first example
are not explicitly mentioned, and neither is the car in the
bottom example. This makes straightforward techniques for
extracting labels (e.g. EXACTMATCH) prone to failure due to
missed or incorrect labels.

Evaluation protocols. We follow the standard proto-
cols used in VOC and COCO to fairly compare to other
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Conceptual Captions (captions)MIRFlickr1M (captions and UGC tags)

Caption: Running Out of Time
UGC tags: night, london, england, uk, 
tripod, bigben, time, trails, lights, cars, 
clock

Caption: Swan's world - Standing
UGC tags: nature, river, water, swan, 
cygne, animal, bird, day, light, schwan

Caption: When Cookies and Brownies 
Love Each Other Very Much...
UGC tags: food, junkfood, sugar, 
dessert, chocolate, brownies, cookies, 
baked, bakery, …

Caption: Van Persie Scores!
UGC tags: arsenalvseverton, arsenal, 
gunners, everton, ashburtongrove, 
emiratesstadium, emirates, stadium, 
ashburton, grove, london, football, …

Caption: children 's choir at a market

Caption: person enjoys a good cup of 
tea.

Caption: furniture built this bed from 
reclaimed oak and finished with 
decorative paint by person in fiber 
and graphite with dark wax.

Caption: person comforting one of the 
younger horses who was tired on his 
first big excursion with the herd and 
riders.

Caption: orange cat in the road

Caption: a sign at the entrance warns 
visitors that swimmer 's itch is active 
photo by person

Caption: What flower are you? I think 
this one sort of describes me.
UGC tags: stopdown, girl, flower, 
portrait, kylee, littlegirl, child, blur, 
50mm, pink, explore, explored, …

Caption: CLK DTM
UGC tags: dtm, clkdtm, benz, 
mercedes, amg

Fig. 4: Example image-caption pairs from MIRFlickr1M and
Conceptual Caption datasets. For MIRFlickr1M, captions
and tags are written by the uploader and website users.
For ConcCap, captions are parsed from the alt-text HTML
attribute associated with web images. Both datasets did not
crowdsource i.e. pay workers to label the images. Note how
often “person” is mentioned on the right but not visible.

methods. On VOC, we report the mean Average Precision
(AP) at IoU > 0.5 and we also report the per-class AP.
On COCO, we report the same AP@IoU0.5 as in VOC, and
the mean Average Precision across different IoU thresholds,
i.e., mAP@IoU.5:.05:.95. We also include the full metrics in
COCO such as AP of differently-sized objects. We submit
our results to the VOC and COCO evaluation servers to get
the VOC07 and COCO testing results.

4.2 Accuracy of pseudo image label inference
We first test the generalizing power of our pseudo image-
level label inference module (Sec. 3.2). Our results show that
without using too much data, one can train a reasonably
good text classifier inferring accurate image-level labels
from paired captions.

In Fig. 5 we show the precision and recall of these
label inference methods evaluated directly on the COCO
image-level labels (5,000 examples of the val2017 set). We
observe that EM+EXTENDVOCAB, which uses the hand-
crafted word-synonyms dictionary, provides the best recall
(60.6%) among all methods but the worst precision of 81.1%.
The word-embedding-based top-scoring matching methods
of EM+GLOVE and EM+LEARNEDGLOVE provide precise
predictions (84.5% and 84.7% respectively, which are the
highest). However, our EM+TEXTCLSF achieves signifi-
cantly improved precision compared to these. We would
like to point out that while in Tab. 1 and 2, our method uses
the full COCO training set (118,287 concatenated captions),
it achieves very similar performance with even a small
fraction of the data. With 5% of the data (6,000 caption-
label pairs), the method achieves 89% precision (vs 92%
precision with 100% of the data), both of which are much
higher than any other baselines; recall is about 62% for both
5% and 100% training data. Thus, it is sufficient to use a

EXTENDVOCAB
P 81.1% R 60.6%

EXACTMATCH
P 83.1% R 40.6%

LEARNEDGLOVE
P 84.7% R 28.9%

GLOVE
P 84.5% R 28.9%

TEXTCLSF 5% DATA
P 89.4% R 62.3%

TEXTCLSF 100% DATA
P 92.2% R 61.7%

Fig. 5: Analysis of different text supervision. We compare
the pseudo labels (Sec. 3.2) to COCO val ground-truth.

397133

A man is in a kitchen making pizzas .
Man in apron standing on front of oven with pans and 
bakeware .
A baker is working in the kitchen rolling dough .
A person standing by a stove in a kitchen .
A table with pies being made and a person standing 
near a wall with pots and pans hanging on the wall .

GROUNDTRUTH: dining table, oven, person, bottle, 
bowl, broccoli, carrot, cup, knife, sink, spoon
EXACTMATCH: dining table, oven, person
EXTENDVOCAB: dining table, oven, person, pizza
GLOVEPSEUDO: oven
LEARNEDGLOVE: dining table
TEXTCLSF: person, oven, bowl, dining table, bottle, 
cup, spoon, knife, chair, refrigerator, pizza

8021

A presenter projected on a large screen at a conference
People watching an on screen presentation of a 
gentleman in a suit .
People watch a man delivering a lecture on a screen .
A large screen showing a person wearing a suit
An audience is looking at an film of a man taking that is 
projected onto a wall .

GROUNDTRUTH: person, tie, bottle

ExACTMATCH: person
EXTENDVOCAB: person
GLOVEPSEUDO: person
LEARNEDGLOVE: person
TEXTCLSF: person, tie, chair, handbag, tv

Fig. 6: Demonstration of different pseudo labels. Our
method fills the gap between what is present and what
is mentioned, by making inferences on the semantic level.
Matches to the ground truth are shown in blue.

small portion of precise text labels to train a generalizable
label inference classifier, and the knowledge can transfer to
other datasets as we show in Tab. 1.

To better understand the generated labels, we show two
qualitative examples in Fig. 6. The image on the right shows
that our model infers “tie” from the observation of “presen-
ter”, “conference” and “suit”, while all other methods fail
to extract this object category for visual detection.

It is also interesting to measure this performance per
class, as we show in Fig. 7. The lexical matching method
EXACTMATCH performs similarly to EM+TEXTCLSF in
terms of precision (not shown). For both EXACTMATCH and
EM+TEXTCLSF, recall is very low for bottle, car, and chair,
indicating these are common objects which however are
usually not mentioned in captions. In contrast, other common
objects (e.g. cat) have high recall because they are usually
mentioned when present in the image. However, for classes
such as boat, cow, and person, EXACTMATCH has much
lower recall rate than EM+TEXTCLSF. We thus quantitatively
explain why EM+TEXTCLSF is better than EXACTMATCH
for these classes (Tab. 1 B, boat 29.9% v.s. 25.9% or 13.3%
v.s. 9.6%; cow 61.2% v.s. 49.0% or 47.4% v.s. 28.0%; person
16.9% v.s. 10.4% or 10.7% v.s. 4.0%). By explicitly handling
the noise in the captions (the lack of mentions of objects that
do appear), we cope with the “human reporting bias” [37].
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Fig. 7: Recall of PASCAL labels. We evaluate the recall of
the COCO-learned text classifier, but we show only the
overlapped 20 PASCAL VOC classes.

4.3 Comparing label inference strategies for detection

We compare our pseudo label inference module (Sec. 3.2)
with alternative strategies to extract object labels from cap-
tions. All of these strategies are upper-bounded in terms
of performance by using ground-truth image-level labels
GT-LABEL. Note that apart from the strategy used to mine
image-level labels for training, these strategies all use the
same architecture and WSOD approach as our method
(Sec. 3.3). We show combinations of the exact match strategy
with these methods (when exact match fails), resulting in
EM+GLOVE, EM+LEARNEDGLOVE, EM+EXTENDVOCAB
and EM+TEXTCLSF. We examine how well these strategies
leverage captions from COCO, Flickr30K, MIRFlickr1M, and
Conceptual Captions for detection.

Training with COCO captions. Tab. 1, segments (A)
and (B), show the results on PASCAL VOC 2007. At the
top (A) are two upper-bound methods that train on ground-
truth image-level labels, while methods in (B) train on
labels extracted from image-level captions. EXACTMATCH
(EM) performs the worst probably due to its low data
utilization rate, as evidenced by the fact that all methods
incorporating pseudo labels improve performance notably.
Specifically, EM+GLOVE uses knowledge of the pre-trained
GloVe embeddings. It alleviates the synonyms problem to
a certain extent, thus it improves the mAP by 2% com-
pared to EXACTMATCH. However, the GloVe embedding
is not optimized for the specific visual-captions, resulting
in noisy knowledge transformation. EM+LEARNEDGLOVE
learns dataset-specific word embeddings. Its performance,
as expected, is 3% better than EM+GLOVE. The strongest
baseline is EM+EXTENDVOCAB, as the manually picked
vocabulary list covers most frequent occurrences. However,
collecting such vocabulary requires human effort, and is
not a scalable and transferable strategy. Our EM+TEXTCLSF
outperforms this expensive baseline, especially for cate-
gories “cat”, “cow”, “horse”, and “train”. Finally, despite
the noisy supervision, our EM+TEXTCLSF almost bridges
the gap to the GT-LABEL COCO upper bound in Tab. 1 (A).

For the results on COCO (Tab. 2), the gaps in perfor-
mance between the different methods are smaller, but as
before, our proposed EM+TEXTCLSF shows the best perfor-
mance. We believe the smaller gaps are because many of
the COCO objects are not described precisely via natural
language, and the dataset itself is more challenging than
PASCAL thus gain may be diluted by tough examples.

Training with Flickr30K captions. We also train our
model on the Flickr30K [63] dataset, which contains
31,783 images and 158,915 descriptive captions. Training on

Flickr30K is more challenging: on one hand, it includes less
data compared to COCO; on the other hand, we observe
that the recall rate of the captions is only 48.9% with
EXACTMATCH which means only half of the data can be
matched to some class names. In Tab. 1 (D), we observe
that due to the limited training size, the detection models
trained on Flickr30K captions achieve weaker performance
than those trained on COCO captions. However, given the
“free” supervision, the 33.6% mAP is still very encouraging.
Importantly, we observe that even though our text classifier
is trained on COCO captions and labels, it generalizes well
to Flickr30K captions, as evidenced by the gap between
EM+TEXTCLSF and EM+EXTENDVOCAB.

Results without pretraining on ImageNet. For our
experiments thus far, we pretrain our visual backbone on
ImageNet. This is a realistic setting consistent with WSOD
because while ImageNet contains clean labels at the image
level, no labels are available at the box level. However, to
reduce the potential interference from those labels, we also
test in a setting where no image-level labels are used to learn
the visual representations. The results are shown in Tab. 1
(C, E). We observe that the advantage of our EM+TEXTCLSF
method remains. In particular, EM+TEXTCLSF achieves 96%
(=19.30/20.15) of the GT-LABEL COCO performance, which
is comparable to (even higher than) the 93% achieved when
pretraining on ImageNet was used (Tab. 1 A, B). Further,
EM+TEXTCLSF achieves a 5% gain (=19.30/18.46-1) over
EXACTMATCH in Tab. 1 (C), vs 8% in (B). On Flickr30K, the
gain of EM+TEXTCLSF over EXACTMATCH is 12% without
pretraining (E), greater than 8% with pretraining (D).

Training on noisier data: MIRFlickr1M and Conceptual
Captions. The ultimate goal of our work is to enable training
of object detection models from widely-available language
data, e.g. user-generated content or narratives. The results
thus far meet some of the challenges of working with
language dataset as supervision, but rely on relatively clean
datasets. Thus, we next extend our evaluation to two noisier
datasets, MIRFlickr1M and Conceptual Captions. Examples
from these datasets are shown in Figs. 4 and 11. Due to
the noise in these datasets (see Figs. 4 and 11), performance
is significantly lower when training on captions from them,
compared to the cleaner COCO and Flickr30K. However, we
observe that our EM+TEXTCLSF still significantly improves
upon the naive EXACTMATCH for both datasets, in Table
1 (F-H). In particular, EM+TEXTCLSF improves upon EX-
ACTMATCH by 78% on MIRFlickr1M (subset), and 27-50%
on Conceptual Captions (without/with ImageNet pretrain-
ing, G-H). These are both much higher than the 8% gain
of EM+TEXTCLSF over EXACTMATCH, in segment Tab. 1
(B). We note the difference in performance when using a
clean (COCO) vs noisy dataset (ConcCap). EM+TEXTCLSF’s
performance on the latter is reduced by 37% compared to
the former (27.2 mAP in G vs 43.1 in B), using the same
amount of captions.

Our text classifier inferred reasonable image-level labels
on noisier captions, even though it was trained on much
cleaner data (COCO). For example, on Conceptual Captions,
it was able infer ‘person’, ‘cup’, ‘chair’ and ‘dining table’
from the caption “front view of a young couple of college
students drinking coffee and studying in a cafe”, and ‘per-
son’, ‘tie’, ‘bottle’, ‘wine glass’ and ‘cup’ from the caption
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(A) Training on different datasets using ground-truth labels:
GT-LABEL VOC 68.7 49.7 53.3 27.6 14.1 64.3 58.1 76.0 23.6 59.8 50.7 57.4 48.1 63.0 15.5 18.4 49.7 55.0 48.4 67.8 48.5
GT-LABEL COCO 65.3 50.3 53.2 25.3 16.2 68.0 54.8 65.5 20.7 62.5 51.6 45.6 48.6 62.3 7.2 24.6 49.6 34.6 51.1 69.3 46.3
(B) Training on COCO dataset using captions:
EXACTMATCH (EM) 63.0 50.3 50.7 25.9 14.1 64.5 50.8 33.4 17.2 49.0 48.2 46.7 44.2 59.2 10.4 14.3 49.8 37.7 21.5 47.6 39.9
EM + GLOVE 66.6 43.7 53.3 29.4 13.6 65.3 51.6 33.7 15.6 50.7 46.6 45.4 47.6 62.1 8.0 15.7 48.6 46.3 30.6 36.4 40.5
EM + LEARNEDGLOVE 64.1 49.9 58.6 24.9 13.2 66.9 49.2 26.9 13.1 57.7 52.8 42.6 53.2 58.6 14.3 15.0 45.2 50.3 34.1 43.5 41.7
EM + EXTENDVOCAB 65.0 44.9 49.2 30.6 13.6 64.1 50.8 28.0 17.8 59.8 45.5 56.1 49.4 59.1 16.8 15.2 51.1 57.8 14.0 61.8 42.5
EM + TEXTCLSF 63.8 42.6 50.4 29.9 12.1 61.2 46.1 41.6 16.6 61.2 48.3 55.1 51.5 59.7 16.9 15.2 50.5 53.2 38.2 48.2 43.1
(C) Training on COCO dataset without ImageNet pretraining:
GT-LABEL COCO 40.7 17.2 5.7 0.8 0.0 31.9 21.4 30.6 0.3 31.0 26.0 30.5 23.9 43.8 13.8 7.0 25.5 2.7 15.3 34.9 20.15
EXACTMATCH (EM) 43.8 13.9 6.0 0.8 0.0 39.6 31.0 34.2 0.3 20.6 28.8 25.6 25.2 35.9 4.9 3.3 27.3 3.0 9.9 15.1 18.46
EM + GLOVE 44.6 13.4 9.1 1.4 0.1 36.3 29.7 30.7 0.2 17.2 21.2 29.3 25.1 36.9 5.9 2.6 6.7 2.7 8.7 16.8 16.93
EM + EXTENDVOCAB 44.9 12.8 8.3 1.1 0.0 35.5 31.6 27.0 0.4 25.7 27.1 27.1 22.0 34.8 10.3 0.2 29.6 4.1 11.7 26.8 19.05
EM + TEXTCLSF 44.5 18.4 6.7 1.5 0.3 35.6 27.6 32.2 0.2 25.7 28.0 28.3 26.0 38.8 6.2 0.1 28.4 2.7 9 25.8 19.30
(D) Training on Flickr30K dataset using captions:
EXACTMATCH (EM) 46.6 42.9 42.0 9.6 7.7 31.6 44.8 53.2 13.1 28.0 39.1 43.2 31.9 52.5 4.0 5.1 38.0 28.7 15.8 41.1 31.0
EM + EXTENDVOCAB 37.8 37.6 35.5 11.0 10.3 18.0 47.9 51.3 17.7 25.5 37.0 47.9 35.2 46.1 15.2 0.8 27.8 35.6 5.8 42.0 29.3
EM + TEXTCLSF 24.1 38.8 44.5 13.3 6.2 38.9 49.9 60.4 12.4 47.4 39.2 59.3 34.8 48.1 10.7 0.3 42.4 39.4 14.1 47.3 33.6
(E) Training on Flickr30K dataset using captions, without ImageNet pretraining:
EXACTMATCH (EM) 1.4 14.5 2.4 0.7 0.0 9.4 19.2 3.5 0.2 3.5 9.2 11.0 10.0 23.0 1.6 0.0 0.4 2.1 2.8 2.8 5.9
EM + EXTENDVOCAB 0.9 15.0 2.9 0.6 0.0 1.0 11.2 4.0 0.2 0.3 13.0 10.8 10.9 21.6 2.7 0.1 0.6 3.9 0.8 6.6 5.4
EM + TEXTCLSF 1.8 21.0 1.9 0.7 0.0 5.4 20.6 5.7 0.2 2.1 12.4 11.0 10.4 24.7 3.4 0.1 1.0 1.4 3.7 4.1 6.6
(F) Training on MIRFlickr1M (200k subset) using captions, without ImageNet pretraining:
EXACTMATCH (EM) 7.6 7.5 8.5 0.5 0.1 13.0 18.9 15.2 0.4 2.9 2.6 6.6 3.7 21.9 3.3 0.2 2.4 2.3 1.4 16.2 6.8
EM + TEXTCLSF 31.7 10.5 8.9 0.8 0.3 15.5 28.9 28.1 0.6 6.3 6.5 20.5 12.9 26.6 15.1 0.6 4.1 1.0 3.5 19.1 12.1
(G) Training on Conceptual Captions (118k subset):
EXACTMATCH (EM) 26.1 21.2 17.0 10.0 7.7 19.1 31.1 15.2 7.0 22.3 35.9 32.6 13.1 25.5 3.5 4.6 34.1 12.0 11.8 12.2 18.1
EM + TEXTCLSF 60.9 36.5 35.7 21.4 8.9 28.3 20.1 26.2 4.4 34.8 17.5 41.7 22.8 51.2 11.3 0.3 42.4 29.3 21.3 28.4 27.2
(H) Training on Conceptual Captions (118k subset), without ImageNet pretraining:
EXACTMATCH (EM) 1.1 1.6 0.7 0.3 0.0 3.1 10.4 14.2 0.2 0.3 1.2 7.0 0.9 2.7 1.8 0.1 0.5 0.7 0.6 0.2 2.38
EM + TEXTCLSF 1.4 1.6 0.5 0.3 0.0 3.9 7.0 13.5 0.2 0.4 3.4 8.8 1.7 8.9 2.9 0.1 0.3 0.6 4.1 0.1 3.02

TABLE 1: Average precision (in %) on the VOC 2007 test set (learning from COCO, Flickr30K, MIRFlickr1M, and Conceptual
Captions captions). We evaluate on only the overlapping 20 VOC objects. Best method per column (except GT methods) in
bold. Our proposed EM+TEXTCLSF achieves 93-96% of GT-LABEL COCO, and exceeds EXACTMATCH (EM) by 8% with
COCO captions and 27-78% with noisy captions (MIRFlickr1M and Conceptual Captions).

Methods Avg. Precision, IoU Avg. Precision, Area Avg. Recall, #Dets Avg. Recall, Area
0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

GT-LABEL 10.6 23.4 8.7 3.2 12.1 18.1 13.6 20.9 21.4 4.5 23.1 39.3
EXACTMATCH (EM) 8.9 19.7 7.1 2.3 10.1 16.3 12.6 19.3 19.8 3.4 20.3 37.4
EM + GLOVE 8.6 19.0 6.9 2.2 10.0 16.0 12.2 18.7 18.9 2.9 19.0 37.6
EM + LEARNEDGLOVE 8.9 19.7 7.2 2.5 10.4 16.6 12.3 19.1 19.6 3.5 20.0 37.7
EM + EXTENDVOCAB 8.8 19.4 7.1 2.3 10.5 16.1 12.1 19.0 19.5 3.4 20.3 37.5
EM + TEXTCLSF 9.1 20.2 7.3 2.6 10.8 16.6 12.5 19.3 19.8 3.5 20.6 37.8

TABLE 2: COCO test-dev results (learning from COCO captions), measured by COCO eval server. Best method in bold.
Our EM+TEXTCLSF achieves 86% of the GT-LABEL performance, and improves upon EXACTMATCH (EM) by 2.5%.

Methods Avg. Precision, IoU
0.5:0.95 0.5

GT-LABEL COCO 11.2 22.8
EXACT MATCH (EM) 10.0 21.1

EM + TEXTCLSF 10.4 22.0

TABLE 3: Evaluation of our pseudo label inference, using
Ren et al. [9] as our WSOD method, on COCO2017-val.

“group of business people raising a toast with champagne
at office”. On MIRFlickr1M, it inferred ‘tie’ from the caption
“For G. aaron kilt wedding whitby dunsleyhall”, and ‘knife’,
‘bowl’, ‘broccoli’, ‘carrot’ from the caption “Roasted Veggies!
cauliflower asparagus limes roasted food cooking kitchen

vegetables dinner suppertime eating healthy explore”. Thus,
EM+TEXTCLSF can infer labels that are implied but not
stated, and leverage them for training.

Contribution of pseudo label inference using alter-
native WSOD method. For all of our experiments thus
far, we have used OICR [8] as our WSOD method. In
other words, once pseudo labels for the training set are
inferred at the image level by one of the method alterna-
tives, these labels are used to train a WSOD model, using
OICR. Here, we experiment with replacing OICR with a
more recent WSOD technique, namely Ren et al. [9]. We
compare the performance of two label inference techniques,
EXACTMATCH and EM+TEXTCLSF, against using ground-
truth labels at the image level (GT-LABEL). We show the
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EXACTMATCH EXACTMATCH EXACTMATCHEM + TEXTCLSF EM + TEXTCLSF EM + TEXTCLSF

Fig. 8: Visualization of our Cap2Det model results on COCO val set. We show boxes with confidence scores > 5%. Green
boxes denote correct detection results (IoU > 0.5) while red boxes indicate incorrect ones. Best viewed with 300% zoom-in.
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Fig. 9: Data vs. Performance. Our text classifier learned
on COCO generalized well on Flickr30K and the noisier
Flickr200K data (subset of MIRFlickr1M) formed by user-
generated content tags.

results in Tab. 3, where all methods rely on Ren et al.’s
WSOD method. We see that our proposed EM+TEXTCLSF
achieves 96% of the GT performance (using IoU 0.5), and a
4% boost over EXACTMATCH. These results are even better
than Tab. 2 where our method achieved 86% of the ground-
truth performance, and 2.5% gain over EXACTMATCH.

Data v.s. performance. We show the potential of our
model using Flickr30K and MIRFlickr1M [64]. For the latter,
we concatenate the title and all user-generated content tags
to form caption annotation. We then use our text classifier
learned on COCO to rule out examples unlikely to mention
our target classes. This filtering results in a dataset with
around 20% of the original data, and we refer to it as
Flickr200K. We use 10%, 20%, 50%, 100% data from both
datasets, and report average precision on VOC 2007. We see
from Fig. 9 that as training data increases, mAP increases
accordingly. To estimate model potential, we fit a square
root function to the rightmost four points in the figure and
use it to estimate 54.4 mAP at 1 million samples.

Qualitative results on COCO. We provide qualitative
examples on the COCO val set, in Fig. 6 and Fig. 8. We com-
pare EXACTMATCH and our EM+TEXTCLSF side-by-side
in Fig. 8. Our proposed method EM+TEXTCLSF provides
better detection results than the baseline EXACTMATCH.
Thus, we conclude that it has squeezed more useful and
precise information than the EXACTMATCH baseline.

4.4 Impact of filtering noisy captions

Not all nouns in captions are object words, and not all
object words are mentioned in the caption: for example, an
image with caption “guests are sitting at a table during a
wedding” will show object “table”, no object “wedding”,
and additional objects (e.g. plates). The purpose of Sec. 3.1 is
to determine which image-caption pairs contain significant
alignment that would allow us to extract quality pseudo
training labels at the image level. As discussed in Sec. 1,
this is an alternative to our EM+TEXTCLSF (Sec. 3.2). The
motivation for this alternative is that it does not require
labels for training the text classifier. Thus, our goal is for
homogeneity scoring to improve our detection results with
EXACTMATCH, EM+EXTENDVOCAB or EM+GLOVE, not
with EM+TEXTCLSF. Results with weighting on top of
EM+TEXTCLSF are still shown, but marked with gray shad-
ing, in Tabs. 5, 6, 7, and 8.

Ranking captions by potential purity of objects men-
tions. We test to what extent homogeneity can be used to
estimate if a caption contains clean labels. We use both cap-
tions and labels in COCO to compute a ground-truth ranking
of images by the overlap between caption and object label
words. We use the EXACTMATCH and EXTENDEDMATCH
methods to compute the overlap, and rank images by pre-
cision (fraction of caption nouns that are also object labels).
We then use our method to also compute an approximate
ranking of images by the αHOM scores, calculated indi-
vidually for image and paired captions (Eqs. 3), as well as
their difference. Finally, we compute the correlation between
ground-truth rankings and our methods’ rankings, using
Kendall’s τ and Spearman’s ρ. If the correlation is high, our
method is a good indicator of how well-aligned a caption
and object labels are, thus how likely it is that weakly-
supervised detection will succeed if we extract labels from
this particular caption.

We also compute approximate ranks using two baselines.
HESSEL [40] computes visual concreteness for a word using
the purity of images co-occurring with this word. We rank
images by the average concreteness of nouns in their paired
captions. ALIKHANI [39] collects annotations for the type
of relation between an image and its caption, including
“visible” (the most direct relation) and other less direct ones
(e.g. “story”). We train a classifier using image and captions
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GT Ranking Pred Ranking Image Label
ρ τ ρ τ

EXACTMATCH

HESSEL 0.100 0.067 0.293 0.182
ALIKHANI -0.081 -0.054 0.348 0.229
HOM-IMAGE 0.088 0.058 0.382 0.230
HOM-TEXT 0.058 0.038 0.326 0.212
HOM-DIFF -0.003 -0.003 0.003 -0.001

EXTENDMATCH

HESSEL 0.043 0.029 0.229 0.142
ALIKHANI -0.009 -0.007 0.376 0.251
HOM-IMAGE 0.130 0.086 0.388 0.225
HOM-TEXT 0.179 0.120 0.341 0.223
HOM-DIFF 0.177 0.118 0.053 0.037

TABLE 4: Ranking images and object categories by how well
captions overlap with the true image-level labels. Higher
correlations are better. The best number per GT ranking is
bolded. HOM-IMAGE is the best performer overall.

and the annotations from [39]. It outputs the probability of a
caption being visible, and we sort images by their captions’
average visibility.

We also rank object categories: by their concreteness scores
for HESSEL, by average visibility of images containing this
category for ALIKHANI, and by average αHOM values of
images containing this category for our methods. In ground-
truth rankings EXACTMATCH and EXTENDEDMATCH, ac-
curacy of category prediction (i.e. fraction of images where
category c is correctly predicted) is used.

We show the results in Tab. 4. HOM-IMAGE is the best
performer overall, outperforming the alternatives in 3 cases
(vs 2 for HOM-TEXT, 2 for HESSEL, and 1 for ALIKHANI).
We observe that the image ranking obtained by HESSEL is
more correlated with the ground-truth ranking acquired by
EXACTMATCH. However, it fails to sustain its performance
when ground-truth image ranking is EXTENDMATCH, prob-
ably due to not being able to capture visual concreteness for
synonyms of object categories. In this setting, HOM-TEXT is
the best. In the label ranking task, HOM-IMAGE is the most
correlated ranking overall.

Detection results using image-caption filtering. We use
a limited 30,000 image-caption subset from COCO train2017
split for training, assuming a setting of restricted computa-
tion resources and training time. We keep the most useful
examples while removing the others. We use the metric of
homogeneity (Sec. 3.1.2) to measure the image-caption rele-
vance. The higher this metric, the better alignment between
the both modalities, and more likely the captions describe
the visual objects in detail. HOM-IMAGE and HOM-TEXT
use αHOM

(I) and αHOM
(T ) to filter examples, respectively. We

use random sampling of 30K examples as a baseline.
Tab. 5 shows the results. We see the performances of

EXTENDVOCAB and GLOVE are improved using the filtered
training data. If we use a random selection of 30K examples,
the performances are 36.7% and 38.6% respectively. Using
image homogeneity score (HOM-IMAGE, αHOM

(I) ) for filtering
improved these methods by 9% (40.1% v.s. 36.7%) and 7%
(41.3% v.s. 38.6%). The TEXTCLSF column is shaded in gray
because we do not expect a boost in performance from
filtering. TEXTCLSF had already explained the gap between
the image and text thus is not sensitive to the improved
filtered training data. However, this text classifier requires
a small number of ground-truth labels. In contrast, HOM-
IMAGE and HOM-TEXT with GLOVE achieve competitive

Im-cap scoring
Label inference EXTENDVOCAB GLOVE TEXTCLSF

Random (30K) 36.7 38.6 40.4
HOM-IMAGE (30K) 40.1 41.3 40.5
HOM-TEXT (30K) 40.4 40.8 39.9

TABLE 5: Comparing the filtering strategies with the ran-
dom sampling baseline, using AP (in %) on VOC 2007
test. Both filtering mechanisms improve results under for
EXTENDVOCAB and GLOVE pseudo label inference. Gray
cells indicate we do not intend or expect improvement
compared to no filtering.

Im-cap scoring
Label inference EXTENDVOCAB GLOVE TEXTCLSF

No weighting (118K) 42.5 40.5 43.1
HOM-IMAGE Weighting (118K) 43.5 42.6 42.2

TABLE 6: Evaluating the caption weighting strategy, using
AP (in %) on VOC 2007 test.

results to TEXTCLSF with Random, but do not require any
labels. Thus, homogeneity can be used to determine which
captions provide strong supervision for object detection,
without the need for any ground-truth labels. We omit
HESSEL, ALIKHANI and HOM-DIFF in Tab. 5 because their
overall performance in Tab. 4 does not exceed HOM-IMAGE,
while ALIKHANI also requires image-caption relation labels.

Results using image-caption weighting. One weakness
of the filtering approach is that it requires a hard cutoff
of the dataset examples. In comparison, weighting applies
a soft “cutoff” to the data. It never drops data, thus is
data-efficient. We use αHOM

(I) as the per-example weighting
factor γ to weigh the pseudo image-level labels extracted
from different image-caption pairs in Eq. 9.

Comparing Tab. 6 to Tab. 5, we see that even with a good
filtering strategy, e.g., HOM-IMAGE Filtering (30K), using
30K “clean” training examples is still inferior than training
on the full COCO dataset (No weighting 118K)), for two
of the three label inference methods (columns). However,
if we apply the HOM-IMAGE weighting on the loss, the
performance (HOM-IMAGE Weighting 118K)) is improved
(43.5% v.s. 42.5%, 42.6% v.s. 40.5%, i.e. 2-5% gain), except for
TEXTCLSF which requires annotations. This is an impor-
tant finding with important ramifications for multimodal
learning. Approaches to learn visual representations have
benefited greatly from widely available web/video data,
and our method suggests how the useful signal and noise
in such data can be distinguished to boost the quality of
the learned representations, without requiring annotations.
We note that EXTENDVOCAB with weighting is comparable
(only 1% better) to TEXTCLSF with no weighting.

Results using large corpus pretraining. We conduct a
study on the impact of vision-language pretraining, which
has gained popularity for both VQA and cross-modal re-
trieval [25], [26]. However, no previous study had shown
where such pre-trained models can also improve fully- or
weakly-supervised object detection (except Zareian et al.
[66] which use bounding boxes for some object categories).
Our pre-training pipeline is shown in Fig. 10. We evenly
distribute anchor boxes (different in scales and locations)
across the image and treat each anchored visual region as
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Fig. 10: Vision-language pretraining for weakly-supervised
object detection. The inputs to the BERT-Tiny model are
positional embeddings (E0, E1, ...) and token embeddings
(proposal features (E[IMG0], E[IMG1], ...) and word embed-
dings (Etyping, Eon, ...)).

Im-cap scoring
Label inference EXTENDVOCAB GLOVE TEXTCLSF

No weighting, no pretraining 42.5 40.5 43.1
+Weighting 43.5 42.6 42.2
+Pretraining 43.9 41.5 43.6
+Pretraining, +weighting 42.5 42.0 42.6

TABLE 7: The impact of large corpus pretraining, measuring
AP (in %) on VOC 2007 test. Both pretraining and weighting
help, but weighting uses no external data.

a visual token. We then concatenate the visual tokens to
the caption tokens, forming a sequence: “[CLS] [v1] [v2] ...
[SEP] [t1] [t2] ... [SEP]”, where the “[v]” and “[t]” are the
visual and textual tokens, respectively. “[SEP]” is a special
token to separate sequences, and “[CLS]” is the special clas-
sification token. We use the FastRCNN features and word
embeddings to represent visual and text token embeddings,
respectively. Then, we contextualize the sequence features
using two self-attention layers (each with 128 hidden units).
Finally, we add a linear classification layer on top of the
“[CLS]” representation to predict a 0/1 value denoting if
the image implies the caption’s semantic meaning (match-
ing). Besides the image-caption matching modeling, we also
process the masked language modeling optimization. We
randomly (with a probability of 15%) replace a text token
with “[MASK]” and require the model to reconstruct the
token, given the visual and text contexts. The visual model
is the same as Sec. 3.4, while we use BERT-Tiny to initialize
the text token embeddings and the self-attention layers.
We use the Adam optimizer [54] with a batch size of 5, a
learning rate of 1e-5, a weight decay of 1e-8, and we trim
the maximum gradient norm to 1.0. Based on the above
pre-training setting, we trained for 600K steps, roughly 1
epoch on the Conceptual Captions dataset. The training
costs around 44 hours on 5 GeForce GTX1080Ti GPUs, using
Tensorflow distributed training [58]. After pretraining the
model using Conceptual Captions, we process the weakly
supervised object detection training using the COCO images
and texts and evaluate on the VOC07.

Tab. 7 shows the results. We see that pretraining im-
proved the baseline by 3% (43.9% v.s. 42.5%), 2% (41.5%
v.s. 40.5%), 1% (43.6% v.s. 43.1%). In the only pseudo label
inference setting that requires neither a hand-defined vo-
cabulary of synonyms, nor object labels, namely GLOVE,
our weighting achieves stronger results than pretrain-
ing. For EXTENDVOCAB, pretraining and weighting achieve

Im-cap scoring
Label inference EXACTMATCH TEXTCLSF

(A) ImageNet pretraining in detection:
No weighting 18.1 27.2
HOM-IMAGE Weighting (Triplet w/ IN PT) 24.7 18.8
HOM-IMAGE Weighting (Triplet) 24.0 25.5
(B) No ImageNet pretraining in detection:
No weighting 2.38 3.02
HOM-IMAGE Weighting (Triplet) 2.99 2.75

TABLE 8: Weighting on Conceptual Captions, using AP (in
%) on VOC 2007 test set. Triplet models are trained on the
COCO dataset. Weighting improves results across dataset
boundaries. Gray cells indicate we do not intend or expect
improvement compared to no weighting.

comparable results. Pretraining can be seen as a state-of-
the-art method akin to Zareian et al. [66], as a way to
use vision-language data, which could be alternative to
our EM+TEXTCLSF. However, pretraining uses the external
and large 3.3M Conceptual Captions dataset, while our
EM+TEXTCLSF only uses the 118K COCO captions. Given
inconclusive gains from pretraining over weighting (some-
times worse, sometimes better), and its large cost, it is not
warranted in our setting. Applying both pretraining and
weighting did not further boost results.

Generalization of weighting on Conceptual Captions.
The results described thus far in this subsection all apply
filtering or weighting over COCO captions. The weighting
model was trained on COCO, so in this part, we test the
generalization of the weighting model, by applying it on
the Conceptual Captions subset described in Sec. 4.1. Note
that when applying weights to the captions, the gradient
magnitude is reduced. Thus, rather than retuning the learn-
ing rate, we apply scaling to the weights such that the sum
of weights over all samples remains the same as in the
unweighted version. We include the result in Tab. 8. Part
(A) uses ImageNet pretraining in extracting visual features
for detection (Sec. 3.3), while part (B) does not. The second
and third rows in (A) differ in the use of an ImageNet-
trained backbone for the image-text model (trained with
triplet loss). As before, our focus is on weighting improving
the performance of the EXACTMATCH method. We observe
that our weighting model does generalize to Conceptual
Captions. On EXACTMATCH, we achieve a 33-37% boost
in performance when using weighting (compared to no
weighting) in (A), and 26% in (B). Thus, on Conceptual
Captions, the impact of weighting is even more significant
than in Tab. 6. TEXTCLSF is 10% better than EXACTMATCH
with weighting (=27.2/24.7-1) but requires some labels.

Simplified computation of weights. The results in Tab. 8
replace the use of PVSE [21] to compute an image-text joint
embedding, with a much simpler model trained with triplet
loss and no attention. Thus, the gains from weighting that
we achieve are not due to the complexity of PVSE.

Image-caption pairs with high/low scores. In Fig. 11, we
show examples of image-caption pairs from each of COCO,
Conceptual Captions, and MIRFlickr1M, that achieved high
or low homogeneity scores. Among COCO samples, images
with low homogeneity scores are usually more complex
than ones with high scores, and mentioned concepts may
be abstract (“symbols”, “stop and go”, “display”, “fabrics”).
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a person riding a wave on top 

of a surfboard

a traffic light showing the 

symbols for stop and go

a display of fabrics in different 

colors and patterns

H
ig

h
L

o
w

a pizza sitting on top of a white 

plate next to a bowl of fries

COCO Conceptual Captions MIRFlickr1M

a model walks down the runway 

during the fall fashion show

athletic young woman training 

with green ball in the gym

the man took to facebook to 

show what a bottle of water can 

do if left in a hot car

an extra double ensuite room for 

extra or visiting guests

biscuit cat kitten cute 2008 cat dog shelter death kill 

euthanize euthanasia

akshay marc matthew joyson nisha

srikant jothi christmas 2007 mckees

rocks img8687 diabetes diabetes365

karmannghia volkswagen car 

automobile chrome vintage retro 

signage logo font typography red shiny

Fig. 11: Image-caption pairs with high homogeneity scores on the top, and low scores on the bottom.
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Fig. 12: Analysis of our basic network and OICR compo-
nents on VOC 2007. Comparison of the performance of our
model and OICR VGG M after iterative refinement.

On Conceptual Captions, high-scoring pairs describe the
content in a literal fashion, and many objects are mentioned.
In low-scoring pairs, mentioned objects are not present (e.g.
“man”) or present objects are not mentioned (e.g. the bed).
On MIRFlickr1M, the high-scoring images mention object
categories, while the low-scoring ones are significantly more
abstract or non-object-like. Thus, we qualitatively showed
that the homogeneity scores measure the relevance and
redundancy between the image and text modalities, in terms
of ability to extract object labels. Homogeneity helps to rule
out less useful examples to better train a detector.

4.5 Verifying WSOD with ground-truth image labels
We finally show the performance of our method in the clas-
sic WSOD setting where clean image-level labels for training
are available and do not need to be inferred. These results
validate the method component in Sec. 3.3. Our goal is not to
exceed the very latest WSOD models, but to perform on par
with recent ones. Note that all methods tested in this section,
including ours, use ground-truth image-level labels, but differ
in terms of architectures and WSOD techniques. We refer
to our method here as a WSOD variant, to distinguish
it from the main focus of our work on using language
supervision (which is not utilized here). Also note that the
multi-scale training and test time augmentation mentioned
in our Sec. 3.4 are widely adopted in WSOD. We verified
that all baseline methods in this section use them. Thus, our
comparisons to the SOTA methods in this section are fair.

Results on PASCAL VOC. For each image, we extract
object categories from all the ground-truth bounding boxes,
and only keep these image-level labels for training, discard-
ing box information. For VOC 2007 and 2012, we train on

5,011 and 11,540 trainval images respectively and evaluate
on 4,952 and 10,991 test images. We report mean Average
Precision (mAP) at IoU > 0.5, and compare against multiple
strong WSOD baselines, in Tab. 9. The WSOD variant of our
model performs on par with or better than the baselines on
both VOC 2007 and 2012.

Effects of the basic network and OICR. The perfor-
mance gain of our model comes from two aspects: (1) a
more advanced detection model backbone architecture and
(2) the online instance classifier refinement (OICR). Fig. 12
shows the performance of the WSOD variant of our method
and that of Tang [8] (OICR VGG M), both refining for 0,
1, 2, 3 times. With no (0) refinement, our basic network
architecture outperforms the VGG M backbone of Tang et
al. by 27% in mAP. But the basic architecture improvement
is not sufficient to achieve top results. If we use OICR to
refine the models 1, 2, or 3 times, we gain 24%, 29%, and
30% respectively while Tang achieve smaller improvement
(22%, 28%, and 29% gains).

Results on COCO. We train the WSOD variant of our
model on the 118,287 train2017 images, using the image-
level ground truth labels. We report mAP at IoU=.50:.05:.95
and mAP@0.5, on the 20,288 test-dev2017 images. We
compare to a representative fully-supervised detection
model [1]; “Faster Inception-V2” [59] which is our WSOD
variant’s supervised detection counterpart (using bounding-
box annotations), and a recent WSOD model, PCL-OB-G
Ens + FRCNN [16]. As demonstrated in Tab. 10, our model
outperforms the WSOD model by 15% in terms of mAP, but
as expected, the gap between with the supervised method
is still large due to the disparate supervision strength.

5 CONCLUSIONS

We showed how we can successfully leverage naturally aris-
ing, weak supervision in the form of captions. We amplify
the signal that captions provide by learning to bridge the
gap between what human annotators mention, and what
is present in the image. We also learn how to weigh the
contribution of different captions as supervision, based on
the expected alignment between the image and caption. In
the future, we will extend our method to incorporate raw
supervision in the form of spoken descriptions in video.
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VOC 2007 results:
OICR VGG16 [8] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
PCL-OB-G VGG16 [16] 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5
TS2C [7] 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3
OICR Ens.+FRCNN [8] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0
PCL-OB-G Ens.+FRCNN [16] 63.2 69.9 47.9 22.6 27.3 71.0 69.1 49.6 12.0 60.1 51.5 37.3 63.3 63.9 15.8 23.6 48.8 55.3 61.2 62.1 48.8
Ours 68.7 49.7 53.3 27.6 14.1 64.3 58.1 76.0 23.6 59.8 50.7 57.4 48.1 63.0 15.5 18.4 49.7 55.0 48.4 67.8 48.5
VOC 2012 results:
OICR VGG16 [8] 67.7 61.2 41.5 25.6 22.2 54.6 49.7 25.4 19.9 47.0 18.1 26.0 38.9 67.7 2.0 22.6 41.1 34.3 37.9 55.3 37.9
PCL-OB-G VGG16 [16] 58.2 66.0 41.8 24.8 27.2 55.7 55.2 28.5 16.6 51.0 17.5 28.6 49.7 70.5 7.1 25.7 47.5 36.6 44.1 59.2 40.6
TS2C [7] 67.4 57.0 37.7 23.7 15.2 56.9 49.1 64.8 15.1 39.4 19.3 48.4 44.5 67.2 2.1 23.3 35.1 40.2 46.6 45.8 40.0
OICR Ens.+FRCNN [8] 71.4 69.4 55.1 29.8 28.1 55.0 57.9 24.4 17.2 59.1 21.8 26.6 57.8 71.3 1.0 23.1 52.7 37.5 33.5 56.6 42.5
PCL-OB-G Ens.+FRCNN [16] 69.0 71.3 56.1 30.3 27.3 55.2 57.6 30.1 8.6 56.6 18.4 43.9 64.6 71.8 7.5 23.0 46.0 44.1 42.6 58.8 44.2
Ours 74.2 49.8 56.0 32.5 22.0 55.1 49.8 73.4 20.4 47.8 32.0 39.7 48.0 62.6 8.6 23.7 52.1 52.5 42.9 59.1 45.1

TABLE 9: Average precision (in %) on the Pascal VOC test set using ground-truth image-level labels. The top shows VOC
2007 and the bottom shows VOC 2012 results. The best single model is in bold, and best ensemble in italics.

Methods Avg. Precision, IoU
0.5:0.95 0.5

Faster RCNN [1] 21.9 42.7
Faster Inception-V2 [59] 28.0 -
PCL-OB-G VGG16 [16] 8.5 19.4
PCL-OB-G Ens.+FRCNN [16] 9.2 19.6
Ours 10.6 23.4

TABLE 10: COCO detection using ground-truth image labels,
with supervised models at the top, best WSOD in bold.
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