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ABSTRACT

Social media content routinely incorporates multi-modal design to

covey information and shape meanings, and sway interpretations

toward desirable implications, but the choices and impacts of using

both texts and visual images have not been sufficiently studied. This

work proposes a computational approach to analyze the impacts

of persuasive multi-modal content on popularity and reliability,

in COVID-19-related news articles shared on Twitter. The two as-

pects are intertwined in the spread of misinformation: for example,

an unreliable article that aims to misinform has to attain some

popularity. This work has several contributions. First, we propose

a multi-modal (image and text) approach to effectively identify

popularity and reliability of information sources simultaneously.

Second, we identify textual and visual elements that are predic-

tive to information popularity and reliability. Third, by modeling

cross-modal relations and similarity, we are able to uncover how

unreliable articles construct multi-modal meaning in a distorted,

biased fashion. Our work demonstrates how to use multi-modal

analysis for understanding influential content and has implications

to social media literacy and engagement.
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Figure 1: Our method performs article popularity and reli-

ability classification using multi-modal cues. We highlight

salient regions for the model’s predictions using a gradient-

based visualization technique [41]. In this example, our

model associates the star in the Chinese flag, along with

part of the title that has negative tone, with the tweeted ar-

ticle being unreliable. On the other hand, the forehead of a

WHO officer (B. Aylward) and a part of the tweet text have

been associated with the article being popular.

(WWW ’22 Companion), April 25–29, 2022, Virtual Event, Lyon, France. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3487553.3524647

1 INTRODUCTION

From campaigns to advertising, social media content routinely

incorporates multi-modal design choices that combine texts and

images to effectively covey information, shape meanings, and sway

interpretations toward desirable implications. Compared to textual

and linguistic analyses, how the different compositions of written

https://doi.org/10.1145/3487553.3524647
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words and visual elements were created and disseminated on so-

cial media has not been sufficiently studied. This work situates

in the context of prevalent online misinformation in the ongoing

COVID-19 pandemic. Increased isolation and the anxiety about the

pandemic drastically changed our lives – particularly, the increased

use of social media can result in fast spreading of false content,

make users more susceptible to misinformation, and create unique

challenges to detect and debunk untruth [47]. This study attempts

to reveal how the subtle multi-modal content elements are associ-

ated with the propagation of information from online news outlets

that manipulate facts or shape misinterpretations.

In this work, we focus on two aspects of persuasive information,

popularity and reliability. While inferring content reliability alone

may seem enough to identify problematic content and prevent its

spread, popularity is another aspect yet often overlooked. Besides

allowing us to investigate content creation strategies to persuade

the audience and propagate misinformation, estimating content

popularity can also help with timely debunking and prevention

of the spread of misinformation. For example, one can prioritize

content estimated to become popular for manual fact-checking,

when slow and costly expert evaluation is a part of the process.

Popularity and reliability of news articles shared on social media

have been studied before as separate topics. Efforts on predicting

popularity of news articles often rely on hand-crafted content fea-

tures [1, 2, 34] and early engagement statistics [4, 27, 56]. Prior

work focuses on textual content, and does not investigate in what

way accompanying visuals contribute to popularity, even though

modern media is often multi-modal. However, work in media stud-

ies and communication theory suggests images play a critical role

in conveying meaning and are a powerful rhetoric tool [8, 30, 33].

In contrast to text, images are eye-catching and concisely paint a

rich context. For instance, images can imply associations between

people and qualities [18, 48], and use juxtaposition or contrast to

suggest desirable properties or undesirable outcomes [55]. Because

images are powerful, they can both make content popular, and also

carry out an agenda and mislead. Since most news sources use

special meta-tags to specify which image should be shown with

the shared article on social media (e.g. Twitter), analyzing their

target-specific imagery may help us better understand the relative

contribution of visuals in COVID-19 (mis-)information on these

platforms. However, to the best of our knowledge, no prior work

examines popularity of COVID-19-related imagery.

Prior work on predicting reliability, on the other hand, focuses on

detecting fake news using article content [13, 36] and social context
features [29, 32, 39, 43, 52, 53, 57]. Nevertheless, detection methods

that employ social context heavily rely on meta-data beyond the

content itself. For example, network-based models (e.g. [32, 57])

utilize social network graphs which usually requires extensive data

collection, pre-processing and computation efforts. Models that

make use of user-based features (e.g. [43]) do not generalize well

onto spreaders who have little to no previous social interaction.

Finally, efforts that utilize multi-modal content (image and text) suf-

fer from lack of interpretability, and fail to explain the link between

reliability and high-level concepts in the input.

Using data collected from social media pertaining to the COVID-

19 crisis, we attempt to characterize the elements of persuasion. In

this work, “persuasion” refers to the communication tactics man-

ifested as multi-modal (textual or visual) elements which articles

use to reach their audiences and convey a particular message. We

use popularity as a proxy measure of persuasiveness, and reliability

relates to the agenda, i.e. the purpose of the persuasion (agenda

to convey accurate or misleading information). We examine both

popularity and reliability of COVID-related content, where “pop-

ularity” is captured by how frequent an article shared on social

media, and “reliability” refers to the credibility of the online news

outlets previously identified in prior work [11]. We seek to answer

the following questions:

• RQ1: To what extent do textual and visual signals in a tweet

predict the popularity and reliability of news articles shared

on social media?

• RQ2: What textual and visual elements are predictive of

the popularity and reliability of shared news? How can we

identify the predictive signals?

• RQ3: How does the combination of textual and visual ele-

ments in unreliable and reliable sources differ?

To address these questions, we first develop a multi-modal ap-

proach using visual and textual cues from news-sharing tweets.

We learn a shared feature space optimizing jointly for both pop-

ularity and reliability classification tasks, and use this space to

visualize parts of the input that are salient (informative) for the

model’s predictions, as well as to show how these salient parts

change across two tasks and their classes. We finally formulate a

cross-modal retrieval task to discover whether reliable and unre-

liable sources combine visual and textual elements differently to

construct multi-modal meaning.

Our work is the first empirical study that analyzes the popularity

and reliability aspects of multi-modal persuasive COVID-19-related

content using amulti-task approach. Ourmethod outperforms other

multi-modal baselines on both popularity and reliability prediction

tasks. We find that multi-modal data better enables detection of

misleading or popular content, but the relative importance of visual

and textual features varies: for instance, visual features are more

important for reliability classification. One important finding is that

unreliable content constructs multi-modal meaning in a biased and

distorted fashion, as the results show that a multi-modal represen-

tation model trained on unreliable articles does not translate well to

reliable ones. Finally, articles from unreliable sources often feature

visuals or mentions of national symbols, certain lab/medical equip-

ment, charts, and comics. Our work can be used in high-school

curricula to develop critical media literacy skills, to gauge bias in

publicly funded news media, or to construct balanced presentation

of news in search engines and social media feeds.

2 RELATEDWORK

Multi-modal learning on general data. A plethora of recent

work investigates the ways of integrating information from differ-

ent modalities for tasks such as image captioning [20, 24, 60], but

while captioning assumes the same objects are shown and men-

tioned, this is rarely the case in news articles where images and text

serve complementary roles. We discuss multi-modal approaches

for the tasks relevant to our problem setting, below.
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Popular Unpopular Total

Red 934 1,149 2,083 (8.0%)

Orange 2,163 1,917 4,080 (15.7%)

Yellow 5,187 5,181 10,368 (39.8%)

Green 4,457 4,958 9,415 (36.1%)

Satire 80 32 112 (0.4%)

Total 12,821 13,237 26,058 (100%)

Table 1: Number of articles in our collection by domain cod-

ing [11] and popularity. [11] uses Red, Orange, Yellow and

Green to denote the tendency of news sources to elicit fake

news and misinformation (Red being the highest) and Satire
to denote self-describing satirical sources. Red, Orange and
Green are used in experiments.

Reliability and bias prediction. Predicting reliability of news arti-

cles on social media has seen interest in recent years, especially after

the 2016 elections [35]. Some work requires manual fact-checking

data from experts at the article-level granularity [42, 44], which is

costly, slow and not scalable. Thus, [14] shifted the attention to

source reliability. Following their approach, we use source-level reli-
ability labels given in [11] for the articles in our dataset. Prior work

has mostly examined cues from text and social context. [36] per-

forms fake news detection using hand-crafted content features (e.g.

number of paragraphs). [43] combines implicit (e.g. age, political

orientation) and explicit (e.g. registration time, follower count) user

features for fake news detection. Research efforts on bias prediction

and persuasion in visual content is relatively recent and limited.

[18, 19, 48, 59] examine how politicians’ portrayal can be used to

predict personal qualities, electability, and bias of the news source.

[48, 58] predict political ideology from images that politicians share

on social media or that news articles choose to include. However,

none of this work pertains to the COVID-19 crisis. The COVID-19

topic poses a challenge in that it is fairly narrow, thus the type

of imagery will be limited, and the same images might often be

reused and thus not be discriminative. Finally, multi-modal learning

has also been used to analyze social media. [15, 16] fuse features

and statistics from different modalities using an attention mech-

anism to perform rumor detection. [21] learn a feature space to

capture explicit correlations between image and text by employing

a multi-modal variational autoencoder. [54] learn event-agnostic

multi-modal features for fake news detection performing event dis-

crimination as an auxiliary task. [28, 51] utilize recent multi-modal

transformer architectures to detect hateful memes. In contrast to

these works, we use multi-modal cues in a multi-task setting to

perform article popularity and reliability classification tasks, in the

unique context of COVID-19 misinformation. Importantly, these

works only perform classification, but do not examine the elements
of misinformation. In other words, they do not explain which parts

of images/text are important, do not reveal the associations between

high-level visual concepts (e.g., a star) and reliability, and crucially,

the different ways images and text are combined to convey meaning.

We show our approach outperforms [21]’s.

Content popularity prediction. Some work models engagements

on social media and number of page views [4, 27, 56]. Other meth-

ods purely rely on content, hypothesizing it is the ultimate drive

Popular Unpopular Total

Reliable 3,066 (.004, .010) 3,097 (.0, .0) 6,163

Unreliable 3,097 (.003, .008) 3,066 (.0, .0) 6,163

Total 6,163 6,163 12,326

Table 2: Number of articles by reliability and popularity in

the experiment dataset. Descriptive statistics of popularity

measure P within each group reported as (mean, stdev).

for popularity. For example, [2] use textual features such as topic,

sentiment and named entities mentioned in the article. [34] shows

article titles reveal strong signals for popularity but its dataset is

limited to two news sources. Some recent work investigates pop-

ularity of a specific type of content such as images [9, 61, 63] and

videos [3, 17, 50]. Most of these works, except [3, 61], are uni-modal

(visual) only, not multi-modal. Our work learns from multi-modal

cues to predict article popularity, within a multi-task framework,

from content only and no meta-data, using a dataset of 95 news

sources. We experimentally compare against [3] and demonstrate

superior performance.

3 DATASET

Our dataset is constructed using a list of pandemic-related tweets

curated by Chen et al. 2020 [5], and reliability coding of news do-

mains proposed in Grinberg et al. 2019 [11]. In their work, Grinberg

et al. 2019 use red, orange, yellow and green to denote likelihood

of news sources to spread misinformation, and satire to denote

self-described satirical sources. After we retrieve tweet objects

for tweets given in [5], we only keep tweets that include a link

to one of the domains in [11]. After data collection, we obtain a

set of articles 𝑆 = {𝐴1, 𝐴2, ..., 𝐴𝑁 } where each article 𝐴𝑖 is rep-

resented as a set of tweets which shared that particular article.

Lastly, we crawl article URLs to retrieve their titles and images.

We specifically check for twitter:title (og:title as fallback)

and twitter:image (og:image as fallback) meta-tags since they

are utilized by the news source to denote the title and the image

to appear within a news-sharing tweet. We will share the URLs of

images and the split into reliable/unreliable tweets and images as

an extension of [5]’s dataset.

Popularity labels: The first task we want our model to perform

is binary article popularity classification. Thus, we come up with a

popularity measure which makes use of retweet and like counts of

tweets that shared the same article (raw popularity), and follower

counts of authors posted those tweets (audience size):

P𝐴𝑖
=

∑
𝑡 ∈𝐴𝑖

𝑡retweet + 𝑡like
[∑𝑡 ∈𝐴𝑖

Q(𝑡
author

)] + _ (1)

where 𝑡retweet and 𝑡like denote number of retweets/likes for tweet

𝑡 in set 𝐴𝑖 , Q the number of followers of a Twitter user, and _ is a

smoothing constant to prevent the score from being inflated when

audience count is small. The top 20% articles are taken as popular
and the bottom 20% are taken as unpopular. All popular articles have
a popularity measure P greater than zero, and P for all unpopular
articles is zero.

Choosing 𝝀: Setting the right value for _ is important as it

affects the calculated P values and thus the set of popular articles
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Figure 2: (A) Multi-task architecture for multi-modal popularity and reliability classification. Features from both modalities

extracted through convolutional layers are fused to perform both tasks simultaneously. (B) Cross-modal relation modeling.

Visual and text features from the same article are embedded in a metric space to understand how image-text composition

varies in un/reliable articles. Note: The feature extraction module does not share weights between the two architectures.

(top 20%). One should expect that, with an appropriate choice of _,

the distribution of audience size in popular articles and in articles

that gained some popularity (i.e. P > 0) should be similar as the

former is a subset of the latter. Otherwise, the chosen _ could be

favoring articles with small/large audience as having higher P.

After experimenting with different values, we set _ to 10
4
as it

makes these two article sets’ audience distributions similar.
1

Reliability labels: Data points are also assigned binary reli-

ability labels. To this end, domain codings in our data collection

need to be collapsed into two categories: reliable and unreliable.
After a careful review of [11]’s domain labeling strategy, we strip

yellow and satire sources out as they cannot be perfectly associ-

ated with eliciting misinformation. We consider articles from green

sources as reliable, and articles from either red or orange sources

as unreliable. Lastly, we undersample reliable articles to balance

our experiment dataset, and split it into fixed train/val/test with

70/10/20 ratio. Even after undersampling, our dataset is still much

larger than [62] (2,017 vs 12,326 articles). Table 1 shows the number

of articles that fall into each category in our data collection (before

reliability label assignment) and Table 2 shows descriptive statistics

of the experiment dataset. We use the latter in the classification

experiments to answer RQ1&2, and a subset of the initial data col-

lection (Table 1) in the cross-modal relation experiments to answer

RQ3.

4 MODELS

Popularity and reliability classification.We describe our multi-

task architecture (see Fig. 2A) to perform the binary popularity

classification (T1) and source reliability classification (T2) tasks

simultaneously given inputs:

• 𝑨𝒕 𝒊𝒕 𝒍𝒆
𝒊 : Title of the article in the generated preview,

• 𝑨𝒕𝒘𝒆𝒆𝒕
𝒊 : Concatenated user-generated content of top-5 tweets

(retweet+like) sharing the article; we oversample if |𝐴𝑖 | < 5,

• 𝑨
𝒊𝒎𝒂𝒈𝒆
𝒊 : Image of the article in the generated preview.

1
The audience distribution is highly skewed (mean: 430,381, median: 13,824 within

the initial 69,591 articles, and mean: 686,180, median: 52,743 among the 48,562 articles

that gained at least one like or retweet.

As the language used in article titles is likely different than in

tweets (e.g. tweets are more informal), we hypothesize these two

should not share the word embedding space. We train two separate

Word2Vec [31] models offline using article titles (𝜙) and tweet texts

(𝜓 ). Both Word2Vec models embed a token into a 128-D space

(𝜙,𝜓 : 𝑋 → 𝑅128). Finally, we represent titles and tweet texts as

a sequence of Word2Vec embeddings, preserving token order and

padding with ®0 ∈ 𝑅128 to the length of the longest sequence. Our

model employs [22]’s Text-CNN architecture on top of these 128-D

representations. Concisely, our textual feature extractors (G,H )

employ 1-D filters of size {3, 5, 7}, 128 filters for each. We apply

max-pooling over filter outputs, resulting in one scalar per filter,

and feature extractors G : 𝐴𝑡𝑖𝑡𝑙𝑒 → 𝑅384 and H : 𝐴𝑡𝑤𝑒𝑒𝑡 → 𝑅384.

We compare to alternative text representations in Sec. 5. For images,

we employ ResNet-50 [12] pre-trained on ImageNet [7] as feature

extractor (F : 𝐴𝑖𝑚𝑎𝑔𝑒 → 𝑅2048). We concatenate text and image

modalities to perform T1 (popularity) and T2 (reliability prediction)

using two classification branches (Fig. 2) and a multi-task binary

cross-entropy loss:

L(\ ) = L𝑇1 (\ ) + L𝑇2 (\ ) (2a)

L𝑇1 (\ ) = −
∑︁

𝑦𝑝 log(𝑝𝑝 ) + (1 − 𝑦𝑝 ) log(1 − 𝑝𝑝 ) (2b)

L𝑇2 (\ ) = −
∑︁

𝑦𝑟 log(𝑝𝑟 ) + (1 − 𝑦𝑟 ) log(1 − 𝑝𝑟 ) (2c)

where 𝑦𝑝 ∈ {0, 1} and 𝑦𝑟 ∈ {0, 1} denote ground-truth popularity

and reliability labels respectively, and 𝑝𝑝 = 𝑝 (𝑦𝑝 = 1 | \ ) and
𝑝𝑟 = 𝑝 (𝑦𝑟 = 1 | \ ) denote predictions.

The intuition for using convolutions for text is that popularity

and reliability may be inferrable from local patterns in the text.

Thus, learning convolutional filters that match these patterns may

be easier than modeling the entire text autoregressively. We show

in Sec. 5 that our method outperforms both [3] and [21], which use

bi-directional LSTM for text encoding. Convolutions also facilitate

our interpretation of pattern importance.

We train our model with an initial learning rate of 1 × 10
−4

and

decrease it by ×0.1 if validation loss does not improve in the last
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T1: Popularity T2: Reliability

Image+Doc2Vec-

Fusion

63.1% (± .010) 61.9% (± .010)

Image+Doc2Vec-GRU 65.0% (± .008) 63.4% (± .009)

Bielski & Trzcinski [3] 69.8% (± .009) 73.1% (± .009)

Khattar et al. [21] 70.3% (± .032) 69.2% (± .009)

Ours (single-task) 70.8% (± .008) 78.0% (± .009)

Ours (multi-task) 71.2% (± .008) 78.0% (± .008)

Table 3: Comparison of classification performance (mean

accuracy, ± standard error) between our multi-task architec-

ture and other baselines. The best method is shown in bold,

and the second-best is underlined.

four epochs. We use early stopping to terminate training if the vali-

dation loss does not improve in the last six epochs.We use the Adam

[23] optimizer with default parameters of 𝛽1 = 0.9, 𝛽2 = 0.999.

Cross-modal relation modeling. We next describe our architec-

ture (Fig. 2B) for learning a cross-modal embedding space wherein a

paired (belonging to the same article) visual and textual data resides

closer than an unpaired one. This embedding enables analysis of the

link between modalities in terms of the message they convey, and

the different ways in which multi-modal meaning is constructed in

articles with different labels. We employ an ImageNet pre-trained

ResNet-50 followed by a linear transformation as the image em-

bedding branch (F : 𝐴𝑖𝑚𝑎𝑔𝑒 → 𝑅512) and two Text-CNNs followed

by a concat and a linear transformation as the text embedding

(G : 𝐴𝑡𝑖𝑡𝑙𝑒 ×𝐴𝑡𝑤𝑒𝑒𝑡 → 𝑅512). Outputs of these branches are then

L2-normalized to place embeddings on the surface of a 512-D unit

hypersphere. To optimize our model, we minimize an N-pairs loss

[46]:

L =
∑︁

𝐴𝑖 ,𝐴𝑗 ∈minibatch, 𝑖≠𝑗

L𝑡𝑟𝑖𝑝 (𝐴𝑖 , 𝐴 𝑗 ) (3a)

L𝑡𝑟𝑖𝑝 (𝐴𝑖 , 𝐴 𝑗 ) = [∥F (𝐴𝑖𝑚𝑎𝑔𝑒

𝑖
) − G(𝐴𝑡𝑖𝑡𝑙𝑒𝑖 , 𝐴𝑡𝑤𝑒𝑒𝑡

𝑖 )∥2 (3b)

− ∥F (𝐴𝑖𝑚𝑎𝑔𝑒

𝑖
) − G(𝐴𝑡𝑖𝑡𝑙𝑒𝑗 , 𝐴𝑡𝑤𝑒𝑒𝑡

𝑗 )∥2 + 𝛼]+

where L𝑡𝑟𝑖𝑝 denotes the triplet loss [40] commonly used for

learning cross-modal representations. For each article in a mini-

batch, we take the article image (𝐴
𝑖𝑚𝑎𝑔𝑒

𝑖
) as anchor, paired text

(𝐴𝑡𝑖𝑡𝑙𝑒
𝑖

, 𝐴𝑡𝑤𝑒𝑒𝑡
𝑖

) as positive and all other article texts (𝐴𝑡𝑖𝑡𝑙𝑒
𝑗

, 𝐴𝑡𝑤𝑒𝑒𝑡
𝑗

)

from minibatch as negatives (hence N-pairs), and accumulate the

loss for each negative that violates the margin 𝛼 . We use the same

hyperparameters and training strategy as for popularity and relia-

bility classification, and set the margin 𝛼 to 0.5.

5 EXPERIMENTS

We describe the experiments conducted in order to answer our

research questions with empirical evidence.

RQ1:Multimodal prediction of popularity and reliability. The

first experiment aims to verify the appropriateness of the archi-

tecture we use, by comparing it with several other multi-modal,

single-task baselines described below. We train two instances for

each baseline, one for each task.

• Image+Doc2Vec-Fusion: Uses 128-D Doc2Vec [26] em-

beddings for article title and tweet texts, then fuse them with

the image feature for classification, similar to [48].

• Image+Doc2Vec-GRU: Employs two GRU [6] cells, Title-

GRU and TweetGRU, as write function for messages passed

from document embeddings to the image feature, then uses

the average final GRU states to classify.

• Bielski&Trzcinski [3]: A popularity classificationmethod

that uses self-attention on visual and textual features before

fusion.

• Khattar et al. [21]: A reliability classification method

that learns cross-modal correlations at the bottleneck layer

of a multi-modal variational autoencoder.

Table 3 summarizes the results. We observe that learning task-
specific document representations (as done by [3], [21] and our

method), instead of using task-agnostic document embeddings (Doc2Vec

is trained on our data but in unsupervised fashion), leads to better

exploitation of the textual modality and stronger performance for

both tasks. Our method is the best single-task method for both

tasks, outperforming prior art, in part due to the use of convolu-

tions (discussed previously). The success of our model addresses

RQ1 and indicates that popularity and reliability can indeed be

estimated from content alone (textual and visual features) with

reasonable accuracy, without needing to rely on meta-data (net-

work features). We also observe our proposed multi-task approach

improves T1 accuracy by 0.4%, indicating that even though these

two tasks seem unrelated, optimizing them jointly enables learning

more informative feature representations.

RQ2: Predictive signals from texts and images. We conduct

another experiment to identify which source(s) of information are

useful in predicting article popularity and source reliability. We use

the single-task version of our architecture, i.e. Ours (single-task),

to see each input’s effect separately for each task. Results in Table

4 show that tweet text is the most important source of information

for popularity classification, while title and image are significantly

weaker (see appendix for hashtag/mention effect experiment). One

possible explanation could be that articles may share very similar

titles and images regardless of popularity as all of them are related

to the same topic, COVID-19. For example, images that portray the

US President holding a news conference can be found on both sides

of popularity.

On the other hand, while the article title is the most important

input for source reliability, all inputs carry useful signals. Adding

tweets to the inputs improves performance over title only by 3.6%,

and adding the image adds an additional 3.4% in accuracy. These

results may indicate news sources have a unique way of conveying

information through images and titles, and this distinction persists

among user-generated content shared along with articles.

Experiments in this section answer RQ2, concluding that tweet

text and article title are the most important sources of information

for T1 and T2, respectively.
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T1: Popularity T2: Reliability

Image only 54.2% (± .008) 62.2% (± .009)

Title only 54.8% (± .008) 71.0% (± .009)

Tweet only 70.6% (± .008) 67.2% (± .010)

Title + Tweet only 70.7% (± .009) 74.6% (± .008)

Image + Title + Tweet 70.8% (± .008) 78.0% (± .009)

Table 4: Importance of inputs for popularity (T1) and reli-

ability (T2). The method with the best accuracy is bolded,

second-best is underlined, and third-best is italicized.

Figure 3: Per-token attention scores in example titles, scores

sorted in descending order of unreliability importance. Fig-

ure best viewed in color, zoom. See appendix for original

titles.

Visualizing important regions. One advantage of having a multi-

task architecture is that one can pinpoint important parts of the

inputs for each task within the same model, because the exact

same input representation is used to perform different tasks. In this

work, we combine Grad-CAM [41] and SmoothGrad [45] to visual-

ize important regions for the model’s predictions and show how

these regions change across tasks and their classes (popular/not,

reliable/not).

Grad-CAMuses gradient information to build class-discriminative

localization maps. It calculates an importance score for each feature

map by performing global average pooling on back-propagated

gradients and then takes linear combinations of forward feature

Top-10 Tokens

Popular boris, , hanks, mail, johnson, vp, , , declares,

Unpopular wuhan, smartnews, toll, yahoo, positive, chinese,

worldtruthtv, research, report, lines

Reliable stay, social, hong, home, face, wearing, workers, que,

safe, care

Unreliable wire, caller, mail, donald, hedge, aag, president,

mike, bernie, white

Table 5: Top-10 tweet tokens in each task class.

maps using their importance scores. To prevent rapid gradient fluc-

tuations within local structures, SmoothGrad computes a stochastic

approximation to Gaussian smoothing by averaging gradients for

multiple noisy versions of the input. As our feature extractors for

textual inputs are also CNNs, we use the same technique to visualize

important parts of the input text.

For article titles (Fig. 3), we observe that sentence fragments

which can be associated with oppression (e.g. “censoring” and “sup-

press” in [e, g]), conspiracy (e.g. “china falsified”, “secretly” and

“spying,” in [a, c, d]), decline in economic activity (e.g. “shares crash”

and “sales crash” in [f, h]) or ridiculing and portraying COVID-19

as a hoax (e.g. “billion-jillion” and “might lower” in [b, i]) become

important for classifying an article as unreliable. On the other hand,

China-related tokens are linked to unpopularity (e.g. “Wuhan”,

“China”, “Chinese” in [c, f, g]). Interestingly, our model puts very

little attention on title when classifying an article as reliable or

popular, and relies on other inputs.

Next, Fig. 4 shows smoothed Grad-CAM output for 18 article

images. For each image, from top to bottom, we show important

regions for classifying an article as popular, unpopular, reliable,

and unreliable, respectively. In the top row, we show images with

Chinese flag [a-d], charts [e-g], and comics [h-i]. We observe that

stars in Chinese flag are used to predict these images coming from

unreliable sources [a-d]. In [e-g], charts are consistently associated

with unreliability and often with popularity, signaling that unreli-

able sources use chart visuals while talking about economic impact

of the pandemic and these visuals attract the audience. Similarly in

[h-i], comics are associated with being both popular and unreliable,

revealing another successful strategy used by unreliable sources to

make their articles more noticeable when shared on Twitter.

In the second row of Fig. 4, we show images with 3-D models of

coronavirus [j-k], pipettes and needles [l-o], and large texts [p-r],

all associated with being unreliable. In [l-o], however, pipettes and

needles are also tied to popularity, probably because the types of

unreliable articles these images can belong to (e.g. anti-vaccine,

COVID being lab-made) draw people’s attention more easily.

Finally in Table 5, we report the 10 tweet tokens with largest

average attention score in each task class. Results show that while

prevention-related tokens are associated with the shared article

being reliable, political tokens are mostly tied to being unreliable.

It is also clear that certain emojis indicate article popularity.

RQ3: Difference in cross-modal relationship between reliable

and unreliable domains. The social media posts we examine

construct meaning from multiple modalities, i.e. tweet, title and
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Figure 4: Salient image regions for predicting different classes (popular/not, reliable/not), highlighted with smoothed Grad-CAM.

A combination of signs and symbols were observed in images from unreliable sources, e.g., national symbols [a-d], charts [e-g],

comics [h-i], 3-D models of coronavirus [j-k], pipettes and needles [l-o], and large texts [p-r].

image. We next examine how the textual and visual components

relate to each other, and how their relationship differs between
reliable and unreliable samples. We learn two separate cross-modal

embedding spaces (using Fig. 2(B) but different training data) for

each domain: one using only reliable (green) and another using

only unreliable articles (red, Table 1). These models allow us to

compare similarity across modalities (e.g. find the text that most

closely matches an image). Rather than absolute performance of

these models for cross-modal retrieval, we are interested in how

they generalize across domains. If a model trained on domain A

performs poorly when the test domain is switched from A to B, this

may be because domain A contains a distortion or bias the model

can exploit.

Table 6 shows the results. Regardless of which domain we train

on, performance is inflated when the training and test domains are

the same, and drops when testing on a different domain (drop shown

in the last column). However, this performance drop is much larger

when training on red (unreliable) articles—performance drops dras-

tically when the test domain switches from red to green, i.e. the

model does not generalize to the green (reliable) domain. On the

other hand, cross-domain performance decrease is much smaller for

the model trained on green articles. Thus, the image-text association
in the unreliable domain is much less general compared with that in

Test Domain

Red Green Cross-domain diff.

T
r
a
i
n
D
o
m
a
i
n

Red

3-way: .516 3-way: .471 −.045 (−8.72%)
5-way: .363 5-way: .317 −.046 (−12.67%)
10-way: .215 10-way: .174 −.041 (−19.07%)

Green

3-way: .489 3-way: .493 −.004 (−0.81%)
5-way: .338 5-way: .346 −.008 (−2.31%)
10-way: .198 10-way: .207 −.009 (−4.35%)

Table 6: 𝐾-way cross-modal retrieval test results. Numbers

in parentheses indicate relative gain/loss for cross-domain

testing.

the reliable domain. In other words, the image-text association

in the unreliable domain is more biased. This finding relates to

RQ3. We complement it with another measurement and discussion

in the next section.

We chose 𝐾-way retrieval to test generalization performance, as

in [49], for the following reason. Semantic discrepancy between im-

age and text of an article is generally large (e.g. an article image with

people wearing masks can be paired with several different texts), so

a retrieval quality metric used for semantically well-aligned modal-

ities (e.g. image and its caption), namely Recall@𝐾 , is not suitable

to assess performance. In 𝐾-way retrieval, for a query image, we
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Figure 5: MMD within green, within red, and between green

and red articlesw.r.t. sample size, for image inputs (left), titles

(middle), and tweets (right). Discrepancy within green article

images is significantly smaller than it is within red article

images. On the other hand, we find no significant difference

in within-domain discrepancy for other input types.

choose paired text as positive, and randomly sample 𝐾 − 1 article

texts as negatives, then check whether the positive is the closest to

the query image among 𝐾 . All models get the same negative set for

the same query. The green training set is undersampled to match

the size of the red training set.

Homogeneity of reliable/unreliable content. In the previous

section, we found that unreliable content is more biased and gen-

eralizes worse than reliable content. One hypothesis is that this

bias is due to homogeneity of the unreliable content (i.e. the same

ideas being propagated, so embeddings trained on these do not

generalize to other data). We test this hypothesis by measuring

within-domain homogeneity. We measure how coherent the distri-

butions of tweets, titles and images are in reliable and unreliable

sources using maximum mean discrepancy (MMD) [10]. Given two

sets of observations 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑁 } and 𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑀 }
drawn i.i.d. from two distributions 𝑝 and 𝑞 respectively, empirical

estimate of MMD is computed:

𝑀𝑀𝐷2 [𝑋,𝑌 ] = [ 1

𝑁 (𝑁 − 1)

𝑁∑︁
𝑖

𝑁∑︁
𝑗≠𝑖

𝑘 (𝑥𝑖 , 𝑥 𝑗 ) +

1

𝑀 (𝑀 − 1)

𝑀∑︁
𝑖

𝑀∑︁
𝑗≠𝑖

𝑘 (𝑦𝑖 , 𝑦 𝑗 ) −
2

𝑁𝑀

𝑁∑︁
𝑖

𝑀∑︁
𝑗

𝑘 (𝑥𝑖 , 𝑦 𝑗 ) ] (4)

where we use the Laplace kernel, 𝑘 (𝑥, 𝑥 ′) = 𝑒−𝛼 ∥𝑥−𝑥 ′ ∥
, in our

experiments. We randomly sample 2𝑁 articles from each domain

(reliable or unreliable), divide them into two 𝑁 -sized sets and cal-

culate MMD between these two sets, both of which are from the

same domain. We represent article images with their 2048-D fea-

tures extracted from a ResNet-50 pre-trained on ImageNet, and text

inputs with 128-D Doc2Vec embeddings. We repeat the sampling

process 250 times for each 𝑁 value, and report average MMD.

Figure 5 shows how within-domain MMD changes for different

values of 𝑁 ; small MMD indicates large homogeneity. For 𝑁 =

1, 000, 𝑡-test results show that the image pool of reliable articles is
more homogeneous than of unreliable articles (𝑡 (498) = −7.46, 𝑝 <

0.01). We found no significant difference in homogeneity between

tweet pools of reliable and unreliable articles (𝑡 (498) = 1.17, 𝑝 =

0.24), and between their title pools (𝑡 (498) = −0.34, 𝑝 = 0.74). Thus,

unreliable sources are not more homogeneous than reliable ones,

indicating their bias has another cause.

Findings in this and the previous section answer our RQ3 and

show that unreliable and reliable articles construct meaning in

different ways. However, generalization performance of a metric

learning (embedding) model trained on unreliable articles is much

worse than the one trained on reliable articles, indicating unreliable

articles are distorted and biased. This bias is not because unreliable

articles aremore homogeneous (less diverse and broad) than reliable

ones.

6 CONCLUSION & DISCUSSION

We examined the elements of multi-modal information and mis-

information on social media. We showed that the popularity and

reliability of an article can be inferred with good accuracy from

visual and textual content alone, without relying on expensive

network or user features. We measured the impact of the visual

and textual channels, as well as which segments within them (re-

gions in images, words in tweets and titles) most contribute to the

persuasive power of the articles. For instance, national symbols

and conspiracy-related words become important for classifying

an article as unreliable. We showed unreliable articles use image-

text associations very differently to construct multi-modal rhetoric.

This has an important implication in relevant downstream tasks:

general-purpose image datasets and models cannot be readily used

for combating misinformation in multi-modal content unless ac-

counting for the bias. Our work is a step towards understanding

misinformative COVID-19-related content and demonstrate that

there are differential patterns of textual and visual elements in on-

line misinformation, which suggests media literacy educators and

online platforms should look at multiple modalities that shape user

experience and meaning in the shared media content.

One major drawback of our approach is that it is not able to

associate important regions with high-level semantic concepts.

This requires a vocabulary of these concepts which is very hard

to construct considering our diverse dataset. It is currently not

feasible to compute a table like Table 5 for visual tokens, i.e. some

frequency-based statistic over common patterns appearing in im-

ages. Unfortunately, the state-of-the-art computer vision methods

are insufficient for this task in the space of COVID-related persua-

sion. One strategy for extracting visual tokens could be to run an

off-the-shelf object detection model on article images, then count

how frequently each object category is attended to by each of our

four task classes. However, we found that even large-vocabulary

detection models perform poorly on our data, and miss important

categories (e.g. medical equipment, flags, banners, etc.). Alterna-

tively, to avoid the need for semantic labels, we have experimented

with clustering of visual inputs, but semantic/topical similarity and

visual similarity are quite distinct, and visual similarity models (and

clustering) do not capture the theme of each image. For example,

images of a couple performing partner stunt at a park, a store front,

and a government building are grouped together. Because com-

puting semantically-aware representations for the specific domain

of COVID imagery is a full-fledged ML task, we leave it as future

work.
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A APPENDICES

In this section, we include an extra experiment to identify if hash-

tags/mentions have an effect on tweet texts being highly predictive

for popularity, sample detection results for a set of article images

outputted by a state-of-the-art object detector that builds on well-

cited models [37, 38] and trained on a large dataset [25] with 600

object categories, and original titles for the examples presented in

Figure 3.

Importance of hashtags and mentions. Having seen that tweet

texts carry the most information for popularity classification, one

can suspect that certain mentions and/or hashtags could be corre-

latedwith popularity and themodel might be learning to exploit this

correlation instead of focusing on the underlying message tweet

authors are trying to convey. For example, could it be that articles

shared by tweets mentioning “@realDonaldTrump” are mostly pop-

ular and the model just looks for this cue ignoring the rest? We

perform another experiment to see whether the model exploits such

hashtag and/or mention cues. In this experiment, the single-task

version of our model is trained to perform popularity classifica-

tion using tweet text as the only input. We train separate word

embedding models for each experiment, removing corresponding

elements from training data, as some words might only appear with

certain hashtags or mentions, and this would greatly affect where

that particular word will be embedded in the learned Word2Vec

space.

Table 7 shows trimmingmentions and hashtags out of tweet does

not have a drastic effect on popularity classification performance.

Surprisingly, removing hashtags slightly improves performance.

One possible reason could be that common hashtags appearing

on both sides of popularity (e.g. #COVID19, #coronavirus) may

increase the noise and make the task harder. On the other hand,

removing mentions from tweets causes a slight decrease in perfor-

mance: this causes a loss of contextual information, since referring

to people with their Twitter handles is common practice (e.g. “{@re-

alDonaldTrump | @POTUS} holds a press conference ...” instead of

“President Trump holds a press conference ...”).

T1: Popularity

Tweet w/o hashtags 71.0% (± .009)

Tweet w/o mentions 70.0% (± .008)

Tweet w/o hashtags+mentions 70.2% (± .007)

Tweet only 70.6% (± .008)

Table 7: Change in popularity classification accuracy when

hashtags and mentions are stripped out of tweet text.

Sample of detected objects in article images. One possible strat-

egy to extract visual tokens out of article images would be to apply

an off-the-shelf object detector with a large object dictionary and

group regions attended by our classification model based on their

labels assigned by the detector. However, we have seen that even a

state-of-the-art object detector fails to detect object categories that

seem important in COVID context. Figure 6 shows objects detected

by a state-of-the-art YOLO variant trained on the largest object

detection dataset in the literature, namely Open Images.

Original titles for examples presented in Figure 3 In Figure 3,

we presented 9 example of how attention is distributed among title

tokens for each task. However, we sorted tokens based on unreli-

ability attention score, which breaks the original token ordering

and cause loss of context. We include original article titles of these

examples, in the same order they appear in the figure (a-i).

a. REPORT: US Intelligence Confirms China Falsified Coron-

avirus Death, Case Data

b.What Will the Left Do When a Billion-Jillion Americans

Don’t Die of Coronavirus?

c. Origin of COVID-19 Discovered? China Now Admits To

Secretly Testing Deadly Coronaviruses At Wuhan Facility —

Watch Live

d. Sources: China increases spying on US to control coron-

avirus narrative

e. China Has Been Censoring Coronavirus Information for

Months

f. Under Armour Shares Crash, Blames China

g. Chinese Regime Deploys 1,600 Online Trolls To Suppress

Information On Coronavirus

h. China Mobile Phone Sales Crash Most On Record

i. The Coronavirus Death Rate Might Be Lower Than We

Think

https://arxiv.org/abs/2012.12975
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Figure 6: Detection results for a subset of article images. Solid boxes and attached labels denote the object instances and their

semantic classes detected by a YOLO variant, and dashed boxes denote object instances we expect to be detected. We observe

that flag instances were not detected [A, C, F], even though flag was one of the classes in the object detector’s vocabulary.

Similarly, it fails to detect goggles [B], gloves [B, G] and bottles [E], as well as most of the person instances [B] (all in the

vocabulary). Although both needle [E] and pipette [G] are out of dictionary classes, we anticipated them to be detected given

there are contextually and visually similar objects in the detector’s dictionary.
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