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Abstract

Existing cross-modal retrieval methods assume a
straightforward relationship where images and text contain
portrayals or mentions of the same objects. In contrast,
real-world image-text pairs (e.g. an image and its caption in
a news article) often feature more complex relations. Impor-
tantly, not all image-text pairs have the same relationship:
in some pairs, image and text may be more closely aligned,
while others are more loosely aligned hence complemen-
tary. In order to ensure the model learns a semantically ro-
bust space which captures nuanced relationships, care must
be taken that loosely-aligned image-text pairs have a strong
enough impact on learning. In this paper, we propose a
novel approach to prioritize loosely-aligned samples. Un-
like prior sample weighting methods, ours relies on estimat-
ing to what extent semantic similarity is preserved in the
separate channels (images/text) in the learned multimodal
space. In particular, the image-text pair weights in the re-
trieval loss focus learning towards samples from diverse or
discrepant neighborhoods: samples where images or text
that were close in a semantic space, are distant in the cross-
modal space (diversity), or where neighbor relations are
asymmetric (discrepancy). Experiments on three challeng-
ing datasets exhibiting abstract image-text relations, as well
as COCO, demonstrate significant performance gains com-
pared to recent state-of-the-art models and sample weight-
ing approaches.

1. Introduction

We live in a multimodal world. Modern media use this
multimodality to better convey stories: the same overall
topic is expressed in text, images, video, audio, etc. How-
ever, the modalities (e.g. images and text) tell different
parts of the story. For example, the text might describe the
atrocities of Russia’s attack on Ukraine, while the image
illustrates one aspect, the suffering of a refugee child sep-
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Figure 1. Image-text pairs weighed by importance: we priori-
tize loosely-aligned image-text pairs. One of our metrics empha-
sizes images corresponding to similar texts (shown with black ar-
rows) which are not similar in visual space (distances shown with
red/blue arrows). The “Israeli flag” image-text pair will be priori-
tized because the semantic neighbors are highly diverse visually.

arated from his father. Given the enormity of multimodal
data on the web, intelligent systems must reason across
modalities. The basic step is constructing a shared semantic
space such that images and text corresponding to the same
concept neighbor each other. However, to model complex
multimodal media, cross-modal methods must understand
not just the value (close/not) but also the nature of the rela-
tionship between the co-occurring image and text.

Most cross-modal retrieval approaches assume the align-
ment between image and text is literal, e.g. the image shows
an airplane in the sky and the caption describes that air-
plane. This makes sense when the purpose of a caption is to
provide the exact same content as the image, e.g. to serve a
visually-impaired user. However, in real-world media (e.g.
blog posts or news articles), the type of relationship between
image and text in a pair will vary. Some image-text pairs



will have a direct relation, with objects in the image directly
corresponding to words in text, as in Fig. 1 (a) where the
caption describes the features of the laptop shown. How-
ever, in another pair, the image may illustrate aspects of
the text, complement it by providing extra context, or fig-
uratively underscore a textual point. For example, Fig. 1
(b) shows children holding Israeli flags to illustrate a report
about a political event in Israel. Simple cases like (a) can
be matched relatively easily and provide strong training sig-
nal, but samples with a less direct relation (b), may be more
challenging and thus informative. Without proper care, the
latter samples (Israeli flag) will be drowned out by the easier
cases.

To address this problem, we dynamically weigh each
image-text pair within a training batch. We model the re-
lationship between images and text, as well as their sur-
rounding samples, by measuring the extent to which the im-
age and text modalities come from a diverse or discrepant
neighborhood. We refer to texts that are close in text em-
bedding space (and their co-occurring, paired images) as
“semantic neighbors.” We measure the diversity of each
sample’s semantic neighbors. Samples score high on di-
versity if they have (1) semantic neighbors with dissimi-
lar visual embeddings in the joint cross-modal space, or (2)
dissimilar textual embeddings in the joint space, for texts
that are originally semantic neighbors. High diversity in
the joint space for semantic neighbors could imply that the
same semantic concept shares multiple visual expressions,
i.e. these are samples where the relationship between image
and text is abstract and they should be prioritized in cross-
modal learning. We also measure the sample’s neighbor-
hood discrepancy by computing the distance of the sample
to the semantic neighbors of its semantic neighbors. This
tests for symmetry of the sample-to-neighbor relationship,
both within and across modalities. If a sample is far from
the neighbors-of-its-neighbors, this could indicate the sam-
ple is more likely to have multiple senses, much like sam-
ples with high diversity. We illustrate our two weighting
cues in Fig. 2. We also propose a mechanism to combine
the diversity and discrepancy metrics.

Our main contribution is a method of learning visual-
semantic embeddings on challenging data consisting of ab-
stract, loosely-aligned image-text pairs with complemen-
tary information in each modality. Our approach can be
easily integrated into standard ranking losses. We per-
form detailed experimental analysis on three datasets that
exhibit abstractness, namely GoodNews [4], Politics [28],
and Conceptual Captions [25]. We also evaluate on a
retrieval dataset with well-aligned images and captions,
namely COCO [17]. We discover that diversity is very help-
ful for the abstract datasets, while discrepancy is more help-
ful for the literal COCO dataset. We outperform six recent,
state-of-the-art approaches by a large margin. Importantly,

four of these prior approaches are sample weighting strate-
gies.

2. Related Work
Connecting vision and language. Most visual-semantic
embedding (VSE) approaches learn a joint visual-text space
where the distance between embedded samples reflects their
semantic relationship [34]. Following the early deep VSE
models [10, 20], research has focused on improving the
learning objectives [13, 30], and explored different ways
to fuse image and text representations [23, 37], includ-
ing through cross-modal attention [22]. We use a tradi-
tional, well-understood two-stream visual semantic embed-
ding framework trained via a ranking loss, following recent
work [1, 7, 31, 39]. However, our contribution is agnostic to
backbone model architecture.
Retrieval losses. The most commonly used loss for learn-
ing cross-modal embeddings is triplet loss [24], but others
have also been proposed [5, 11]. Triplet loss can be chal-
lenging to train [15] due to the difficulty of choosing in-
formative dissimilar samples. Many have exploited hard
negative mining [9, 38], while others have tackled issues
stemming from negative sample choice [36], e.g. by push-
ing multiple negatives away [26] or facilitating learning us-
ing easy negatives [35]. Other approaches [8, 40] rely on
the use of classification labels or metadata, e.g. to ensure
negatives in the triplet belong to different classes than the
positive. Unlike these, our approach only uses the supervi-
sion of image-text co-occurrence. Our method exploits the
structure of the image and text unimodal spaces by compar-
ing their structure. [32] uses a related idea, but relies on the
presence of five captions per image, which is not applicable
for most datasets we consider.

Most related to our approach is [29] which uses two
within-modality triplet losses to constrain texts which are
semantic neighbors (those close in a pre-trained text embed-
ding space) and their paired images, to be close in the joint
space. [29] explicitly impose structural constraints on the
space which may be too strict in some cases. In contrast,
we emphasize samples without imposing structural condi-
tions on the learned space. Moreover, our method does not
consider all samples equally important, which allows the
model to prioritize its efforts towards challenging samples.
We significantly outperform this work in all settings, and
show large gains on the Conceptual Captions dataset which
has both closely- and weakly-aligned image-text pairs, as
shown in [2].
Sample weighting. Rather than hard negative mining,
some methods (including ours) use a soft sample weight-
ing. Some methods, like [33], are general and can be ap-
plied to different settings including classification and re-
trieval. While we compare against [33], we primarily fo-
cus on and compare against sample weighting methods spe-



cific to cross-modal retrieval, such as [3, 18, 21]. In [21],
positive samples which violate the margin but are still cor-
rectly retrieved are weighted less, while others incur a larger
penalty. [18] use sample weights to address hubness (a phe-
nomenon where a small number of embeddings remain un-
desirably close to many others), such that samples which
are hubs receive more attention. Our weights are designed
to improve the semantic properties of the learned space by
emphasizing samples where the relation between image and
text is abstract, not necessarily “hard” samples. This is
an important distinction, because some “hard” samples in
large-scale datasets are likely to be noisy; we found using
hard negative mining prevented methods from training suc-
cessfully on several of the challenging datasets we tested
on. To isolate the effect of outliers, [3] estimate density by
computing the correlation between samples from different
modalities. In contrast, we look at the discrepancy between
semantic and visual proximity, rather than density.

3. Approach
We propose two metrics to capture the degree of abstract-

ness of an image-text pair. Both metrics rely on the sample’s
neighborhood, both within and across modalities. One met-
ric, DISCREPANCY, relies on the relationship of a sample
to its neighbors-of-neighbors. Because it is a sample-to-
neighbor comparison, we consider this method a simpler,
first-order technique. Another metric, DIVERSITY, consid-
ers the relation of the sample’s neighbors to other sample
neighbors, and we refer to it as a second-order technique.
In our experiments, we discover that the simpler first-order
technique (DISCREPANCY) is more appropriate for sim-
pler datasets like COCO, while the second-order technique
(DIVERSITY) works best for more abstract datasets.

3.1. Training objective

Let D = {I,T} represent a dataset of n image-
text pairs, where I = {x1, x2, . . . , xn} and T =
{y1, y2, . . . , yn} represent the set of images and text, re-
spectively, and yi is text co-occurring with image xi (the
two are semantically related). We refer to (xi, yi) as pos-
itive pairs and either (xi, yj ̸=i) or (xj ̸=i, yi) as negative
pairs. In order to compare and retrieve across modali-
ties, we seek a common manifold M. A convolutional
network f : I → M is used to project images into
the joint space, while a recurrent network g : T → M
projects text. We use the notational shorthand f (x) =
x ∈ RK×H and g (y) = y ∈ RK×H , where K is
the number of embeddings per sample and H is the di-
mension of the learned manifold. Most prior methods as-
sume K = 1 but this may be too stringent when im-
age and text have multiple meanings. Recently [27] pro-
pose a polysemous embedding model (PVSE), where ev-
ery image and text are represented by K embeddings en-
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Figure 2. Our two weighting cues. The top shows neighbors in the
original semantic space, with green arrows connecting the query
to the nearest neighbor. Blue links show co-occurring images and
text; thicker links show pairs whose scores we wish to compute.
Red links connect images which are semantic neighbors, but their
visual embeddings are far in the joint cross-modal space (high di-
versity). Images corresponding to neighbors-of-neighbors in text
space, which are far in the joint space, have high discrepancy. We
use diversity and discrepancy weights to compute the α scores in
Eq. 1; this figure shows computation of αX only.

couraged to be diverse; we adopt this formulation for all
methods compared. When comparing two samples, we
use the maximum cosine similarity across all K2 pairs:

s(xi, yi) = max
(k1,k2)∈{1,...,K}×{1,...,K}

〈
xik1

∥xik1
∥2
,

yik2

∥yik2
∥2

〉
:

RK×H × RK×H → R. For notational simplicity, we omit
the reference to the K embeddings in the remaining text.

We assume the same pairwise ranking objective (triplet
loss) as other recent VSE methods [3, 9, 18, 27], but intro-
duce a weighting constraint to emphasize semantically in-
formative samples. We optimize a sample-weighted bidi-
rectional n-pairs [26] triplet loss LRANK given by:

LRANK =
1

2N2

( ∑
xi∈IB

∑
yj∈TB

αi[ s(xi, yj ̸=i)− s(xi, yi) +m ]+

+
∑

yi∈TB

∑
xj∈IB

αi[ s(xj ̸=i, yi)− s(xi, yi) +m ]+

)
(1)

where m is the margin, [·]+ = max(0, ·) and IB , TB are im-
ages and text, respectively, within a minibatch of samples.
We introduce a per-positive-sample weight αi, given by our
method. All methods and baselines (except where noted)
use this loss to train, but vary in how αi are computed.
Limitations of hard negative mining: Traditional VSE
methods give all samples equal weight within a minibatch.
To facilitate learning, most recent methods [9, 27, 32] also
perform hard negative mining, where only the most chal-
lenging negative sample is used (e.g. max

j
s(xi, yj ̸=i)).

While this makes sense in common captioning datasets
with strong, literal image-text alignment, we found it pre-
vented models from successfully training on more challeng-
ing datasets. When using hard negatives, the problem be-
comes too hard since many negative image-text matches
are plausible, even if technically incorrect. Moreover, re-



lying only on hard negatives makes the model more vulner-
able to noise, which is present within the webly-harvested
datasets we consider. [33] propose a compromise solution,
where negatives are sampled with probability inversely pro-
portional to their distance from the anchor (i.e. hard neg-
atives are more likely, but other samples are also not ne-
glected). We found this approach did not yield competi-
tive results on the datasets we tested. [21] proposes a soft
(weighted) semi-hard negative mining approach to enable
learning, which we outperform.

3.2. Measuring semantic neighborhood discrepancy

In order to emphasize informative, weakly-aligned
image-text samples, we first must detect and weight them.
We first consider the relationship of the query sample to
its neighborhood: a first-order metric. We discover each
image-text pair’s semantic neighbors in text, Ω(T), follow-
ing [29]’s implementation. We compute neighbors in text
space because the text domain provides the cleanest seman-
tic representation of the image-text pair. Let Ψ(Ω(yi)) ={〈

x′
in
, y′in

〉}N

n=1
represent the semantic nearest neighbor

function over Ω(T), where
{〈

x′
in
, y′in

〉}N

n=1
denotes the set

of the N neighbors of ⟨xi, yi⟩ and ⟨xi, yi⟩ /∈ Ψ(Ω(yi)).
Note that semantically neighboring images

{
x′
in

}N
are not

necessarily visual neighbors of xi.
Because our formulation is equivalent for both im-

age/text neighbors, we let si represent a sample from either
domain but require samples si and sj come from the same
domain. We examine the relation: si ∈ Ψ(Ω(Ψ (Ω(si)))),
i.e. whether a sample is a semantic neighbor of its semantic
neighbors. For images, this amounts to using the ground-
truth text paired with the image. This criterion quanti-
fies whether the surrounding space is compact or grid-like,
which would result in a symmetric-like neighborhood rela-
tion, and high similarity of neighbors in the joint space. See
Fig. 2 (right). Images/texts with high discrepancy may have
multiple meanings or may be used figuratively.

Formally, let Ψ(Ω(Ψ (Ω(si)))) =
{
s′′in

}N2

n=1
represent

the set of the semantic neighbors of si’s semantic neigh-
bors. Let s′′i = [s′′i1 , s

′′
i2
, . . . , s′′iN2

]⊺ denote the matrix of
size N2 ×H of the embeddings of the neighbors of neigh-
bors, and V = s′′i si is the matrix-vector product of the sam-
ple’s neighborhood and the sample (size N2 × 1). We use
the f : I → M and g : T → M projections of image and
text into the joint space. Then, the semantic discrepancy
score ΥDIS

i and corresponding scaled score αDIS
i of si is:

ΥDIS
i = ΓDIS× 1

N2

N2∑
r=1

V(r)

(2)
αDIS
i = λ× eΥ

DIS
i∑B

j=1 e
ΥDIS

j

(3)

where r indices V’s entries, B is the minibatch size, λ is a
scaling constant (see implementation details), and ΓDIS ∈

{1,−1} is a switching parameter, which controls whether
more weight is given to more (1) or less (−1) similar sam-
ples, respectively (we show ΓDIS = −1 is superior in ex-
periments). The final attention vector is given by stacking
sample weights: αDIS = [αDIS

1 , αDIS
2 , . . . , αDIS

B ].
We compute αDIS for the image and text domains sep-

arately (i.e. si = xi or si = yi), then combine the two
vectors by addition: αDIS = softmax

(
αDIS

X +αDIS
Y

)
,

or by taking their absolute difference: αDIS =
softmax

(∣∣αDIS
X −αDIS

Y

∣∣); we show the latter is superior
in Tab. 3. The weights can now be directly used in Eq. 1 to
weight samples by the semantic discrepancy measure.

In early experiments, we also tested combination via
multiplication, or taking the larger (max) score; both per-
formed worse than summation. We also experimented
with measuring the relation between a sample and its di-
rect neighbors, not neighbors-of-neighbors, and obtained
inferior results. The cost for computing neighborhoods is
small because we dynamically cache sample embeddings
into a memory bank while training. Finding semantic neigh-
bors occurs once using a pre-trained text embedding model.
Thus, computing α weights is efficient as it only requires
multiplication.

3.3. Measuring semantic neighborhood diversity

We next present our second-order method. We observe
that semantic concepts with non-literal portrayals are likely
to be visually diverse. For example, a piece of text about
“patriotism” could be paired with an image of a flag, an
eagle, army servicepeople, a crowd of protesters, etc. In
contrast, images paired with the caption “a bowl of apples
on a table” would likely be much more visually similar.

We measure the diversity of the semantic neigh-
bors in both the image and text domains, Let s′i =
[s′i1 , s

′
i2
, . . . , s′iN ]⊺ denote the N×H matrix of embeddings

of the neighbors of si found via Ψ, and U = s′is
′⊺
i com-

pute the pairwise similarities between all semantic neigh-
bors through cross-product. We compute the semantic di-
versity score ΥDIV

i for si as follows:

ΥDIV
i = ΓDIV × 1

N2

N∑
r=1

N∑
c=1

U(r,c) (4)

where r, c index over the rows and columns of U = s′is
′⊺
i

and ΓDIV ∈ {1,−1}. We finally enforce that all ΥDIV
i in

a minibatch form an attention-like vector αDIV as follows:

αDIV =
[
αDIV
1 , αDIV

2 , . . . , αDIV
B

]
, (5)

αDIV
i = λ× eΥ

DIV
i∑B

j=1 e
ΥDIV

j

(6)



3.4. Combination methods

We explore two methods for combining our two pro-
posed weighting strategies. The first combination approach
is standard, and can be expressed as follows:

αCOMB−V AL
i = λ× softmax

(
β̂ ∗ΥDIV

i + γ̂ ∗ΥDIS
i

)
(7)

where the combination {β̂, γ̂} is chosen on a validation
set, with {β, γ} ∈ {{1, 1}, {1, 2}, {2, 1}, {1, 3}, {3, 1},
{1, 4}, {4, 1}, {1, 5}, {5, 1}}.

The second combination is more interesting as it ex-
plores statistics about the distribution of αDIV and αDIS

scores per dataset. To combine the scores for a particular
sample, we use the mean and standard deviation of the dis-
tribution of the corresponding score over the whole dataset:

αCOMB−STAT
i = λ× softmax

(
µDIV ∗ σDIV ∗ΥDIV

i

+ µDIS ∗ σDIS ∗ΥDIS
i

)
(8)

where µ = mean(αi, . . . , αn) and σ = stdev(αi, . . . , αn).
The intuition for the second approach is that the contri-

bution of each measure should be proportional to the mean
diversity/discrepancy in the dataset. The more challenging
the dataset according to a metric, the larger the contribu-
tion of this metric, for an individual sample’s relative im-
portance in the cross-modal retrieval loss. We also weigh
samples proportional to standard deviation according to the
given metric (diversity or discrepancy); larger dataset fluc-
tuations (stdev) according to the metric indicates this metric
is more discriminative of the challenge of cross-modal re-
trieval for this particular pair. This approach is less compu-
tationally intensive as it does not require a sweep for {β̂, γ̂}.
We show the mean/stdev statistics per dataset in Table 1,
where we observe the means for GoodNews and Politics
are larger than for COCO.

Note that while we present combination methods as an
intuitive extension for our two single-metric methods, ar-
riving at a good combination entails significant engineering
(e.g. β, γ tuning) and is not our focus.

3.5. Implementation details

All methods use ResNet-50 [14] initialized with Ima-
geNet features for images, and Gated Recurrent Units [6]
for text, with hidden state size 512. All layers train in these
networks. All methods and baselines are built on top of
PVSE [27]; we select K per dataset on the validation set,
with optimal values shown in Tab. 1. The margin m is set to
0.1. Images are scaled to 224x224 and augmented with ran-
dom horizontal flipping. We use Xavier initialization [12]
on all non-pretrained learnable weights. GRUs are initial-
ized with 200D word embeddings learned on the dataset on

COCO GoodNews Politics ConcCap
K (PVSE) 3 5 9 7

λ 196 160 96 196

β̂ 1 4 3 3
γ̂ 4 1 1 1

µDIV * σDIV 0.04 0.01 0.01 0.01
µDIS * σDIS 0.03 0.03 0.06 0.01

µDIV 0.3173 0.3979 0.6279 0.1569
σDIV 0.1156 0.0136 0.0123 0.0753
µDISC 0.2705 0.3986 0.6309 0.1182
σDISC 0.1068 0.0676 0.0885 0.0742

β = 5, γ = 1 0.4922 0.7842 0.4734 0.6649
β = 1, γ = 5 0.4850 0.7803 0.4722 0.6406

Table 1. Hyperparameters chosen or computed, and (last two
rows) extreme settings evaluated for OURS-COMBINED-VAL on
a small subset of the training set, avg over I→T, T→I.

which they are applied. We perform L2 normalization on
embeddings produced by each model. We use Adam [16]
with minibatch size of 32, learning rate 1.0e-4 (decayed by
a factor of 10 after every 5 epochs of no decrease in val
loss), and weight decay 1e-5. We use a train-val-test split
of 80-10-10 for all datasets. We use [29]’s implementation
for computing semantic neighborhoods on text embeddings,
which uses [19] to efficiently compute approximate nearest
neighbors for Ψ; we use N = 200 neighbors. We proba-
bilistically sample at most 1000 neighbors at a time from
s′′i in Eq. 2. We cache embeddings from the prior epoch for
efficient computation of Eqs. 2 and 4. We use the valida-
tion set to pick λ per dataset; because of the summation in
Eq. 1, λ should be at least equal to the batch size, but larger
values could bring improvements by increasing the impact
of the triplet loss in PVSE’s [27] multitask loss. We show
the impact of Γ = ±1 for all methods in Tab. 3.

4. Experimental Validation

Baselines. We compare our weighting strategies, OURS-
DIVERSITY, OURS-DISCREPANCY, and their combina-
tions, to five very recent methods. We chose these meth-
ods because they are either appropriate for more abstract
image-text matching, or because they also compute weights
for samples. Thus, we explicitly test the quality of the sam-
ple weights that our method computes.
• PVSE [27] is a recent cross-modal retrieval method with

multi-head self-attention, which computes multiple em-
beddings to account for polysemy.

• THOMAS [29] uses semantic neighborhoods to compute
within-modality losses.

• HAL [18] is a sample weighting cross-modal retrieval
method which up-weighs samples likely to be the clos-
est sample to multiple queries.

• MITHUN [21] weighs samples based on hardness (us-
ing ranks of matching images/text, larger values denoting
worse match hence more challenging sample).



COCO GoodNews Politics ConcCap
Method I→T T→I I→T T→I I→T T→I I→T T→I Avg

PVSE [27] 0.6541 0.6561 0.8516 0.8526 0.5919 0.6057 0.7138 0.7168 0.7053
THOMAS [29] 0.6552 0.6494 0.8637 0.8667 0.6184 0.6187 0.7379 0.7473 0.7197

HAL [18] 0.6665 0.6845 0.8623 0.8579 0.5919 0.5903 0.7638 0.7685 0.7232
MITHUN [21] 0.6967 0.6950 0.8439 0.8463 0.5792 0.5839 0.7523 0.7497 0.7184
AMRANI [3] 0.6746 0.6756 0.8629 0.8678 0.6117 0.6117 0.7376 0.7356 0.7222

OURS-DISCREPANCY 0.6851 0.6844 0.8751 0.8766 0.6211 0.6228 0.7548 0.7588 0.7348
OURS-DIVERSITY 0.6729 0.6718 0.8774 0.8803 0.6268 0.6366 0.7767 0.7719 0.7393

OURS-COMBINED-VAL 0.7056 0.7013 0.8750 0.8780 0.6285 0.6291 0.7715 0.7723 0.7452
OURS-COMBINED-STATS 0.7062 0.7007 0.8791 0.8782 0.6274 0.6239 0.7714 0.7713 0.7448

Table 2. Retrieval results (top-1 accuracy) for image to text (I→T) and text to image (T→I). The best two methods per task are shown
in bold. Our method’s gains over the baselines are large: the stddev across baselines’ Avg is 0.7%, while our methods’ gains over the
strongest baseline’s Avg are 1.6%, 1.2%, 2.2% and 2.2%. The better of our single-metric methods is underlined.

• AMRANI [3] up-weighs samples where both image/text
in a sample belong to tight clusters.

Datasets. We demonstrate our approach on four large-
scale recent datasets. ConcCap [25] contains ∼3.3M im-
ages with alt-text descriptions for the web. GoodNews [4]
contains ∼466k images and captions from the New York
Times. Politics [28] contains ∼246k pairs of images with
sentences from news articles. COCO [17] contains ∼120k
images with captions. While COCO and Flickr30K are
among the most popular retrieval datasets, both contain
descriptive captions which heavily overlap with the im-
age. We use ConcCap, GoodNews and Politics in place of
Flickr30K, to demonstrate the challenge of retrieval when
there is weak alignment of the image and text. We forego
other datasets, e.g. Wikipedia and XMediaNet, since they
are very small (3k/36k samples).

Metrics and training losses. We evaluate Top-1 accu-
racy on image to text, and text to image matching. Fol-
lowing [29], because image-text alignment in GoodNews
and Politics are very challenging, we use a 5-way multiple-
choice task (1 correct and 4 incorrect options), rather than
rank or recall, to ensure differences between methods are
more visible; with other metrics, all results are low due
to the challenge of the task. A further challenge with tra-
ditional Recall@k over the entire test set is that abstract
retrieval is subjective, i.e. should a method be penalized
since it ranks an image with a scale of justice higher than
Lady Justice for text about justice? The smaller retrieval
tasks reduce the likelihood subjective samples are in each
task. For consistency, we also use a c-way task for Con-
cCap and COCO, but c = 20 for ConcCap and c = 100
for COCO, commensurate with the challenge of retrieval in
these datasets. We did verify that methods’ relative perfor-
mance is the same for Top-1, Recall@3, and Rank (please
see supplementary file). We use a triplet loss as the main
loss for cross-modal retrieval, in all methods. This is the

loss these methods originally used, except for [29] which
showed results with both triplet and angular loss (but the
contribution was not angular loss). For fair comparison,
since most baselines use triplet loss, we use triplet for this
method as well, and include angular results in our supple-
mentary file. For most methods [18, 21, 27, 29] we used the
original authors’ code to compute performance.

4.1. Main result

Our methods outperform prior art: At the top of Ta-
ble 2 are the five state-of-the-art methods. At the bottom
are our two single-metric weighting techniques and their
combinations. The best performers per dataset/task are al-
ways among our methods. Recall HAL, MITHUN and AM-
RANI are sample weighting methods, and each of our sam-
ple weighting methods outperform them on average, and
for most datasets individually. The biggest gains OURS-
COMBINED-VAL achieves are: 6% on ConcCap and 5%
on COCO over PVSE, 5% on COCO over THOMAS, and
5% on Politics over MITHUN. The largest gains of OURS-
DIVERSITY are: 6% on ConcCap over PVSE, 5% on Pol-
itics over HAL and MITHUN, and 4% on ConcCap over
THOMAS and AMRANI.

We also trained models using [33]’s distance-weighted
sampling method with triplet loss. [33] achieves 0.7972
(I→T) and 0.7964 (T→I) on GoodNews, but performed sig-
nificantly worse than PVSE on other datasets (e.g. ∼0.65 on
ConcCap). One possible reason is only one of the k embed-
dings (the closest to the negative) receives training signal
in [27]’s model. An alternative approach would be to dy-
namically select the negative for each of the k embeddings,
but this is a non-trivial extension of [33] and we leave it as
future work.

Discrepancy for literal, diversity for abstract data:
Among single-strategy methods, OURS-DIVERSITY is
stronger on average. As we alluded to in the Approach sec-



tion, different methods are appropriate for the more literal
dataset (COCO) vs the more abstract datasets. In particular,
OURS-DISCREPANCY is the stronger method for COCO,
but OURS-DIVERSITY is stronger for GoodNews, Politics,
and ConcCap. For COCO, the notion of neighborhood is
very precise and dominated by object presence. Thus, what
we wish to capture is how much the captions for similar im-
ages differ; it is sufficient to capture the relation between a
sample and its N neighbors or neighbors-of-neighbors (as
OURS-DISCREPANCY does). In contrast, for all three other
datasets which are the focus of our study, images and cap-
tions are much more diverse, thus examining the relations
between all N2 pairs of neighbors (as OURS-DIVERSITY
does) is useful. We include a detailed discussion of the mo-
tivation of our measures in our supplementary material, as
well as the weight distribution produced by each measure
per dataset. We observe performance correlations with the
weight distributions: small variance for DIVERSITY corre-
lates with strong performance, while the opposite holds for
DISCREPANCY.

Combining discrepancy and diversity boosts results:
Our strongest method on average is OURS-COMBINED-
VAL closely followed by OURS-COMBINED-STATS. Both
combinations outperform both single-metric methods on
COCO, which is the literal dataset where OURS-
DISCREPANCY outperforms OURS-DIVERSITY. The com-
binations outperform the stronger single-metric method
(OURS-DIVERSITY) in several settings on the other
datasets: OURS-COMBINED-VAL outperforms OURS-
DIVERSITY on 2 of the remaining 6 tasks (Politics I→T,
ConcCap T→I), and OURS-COMBINED-STATS outper-
forms OURS-DIVERSITY on GoodNews I→T, Politics
I→T. The weakest performance is on Conceptual Captions,
because OURS-DISCREPANCY performs much worse on
that dataset than OURS-DIVERSITY. This can also be ob-
served from Tab. 1 where we show the difference between
the β = 5, γ = 1 and β = 1, γ = 5 settings for the com-
bination weights. This difference is largest for ConcCap,
consistent with the relative performance of our two meth-
ods in Tab. 2. Thus, while for COCO, GoodNews and Pol-
itics combinations are useful, for ConcCap, using OURS-
DIVERSITY is optimal. We found discrepancy and diver-
sity were very slightly correlated (ρ = 0.0520 Spearman’s
rank), thus the two metrics are complementary.

Difference between combination methods: We present
the scalars β̂ and γ̂ chosen to combine the diversity and dis-
crepancy metrics (Eq. 7) in Table 1. These are generally
similar for GoodNews, Politics and ConcCap, but different
for COCO (larger contribution of discrepancy). Note that
standard deviation across the possible β̂, γ̂ settings was 0.7-
1.3%, i.e. smaller than the gain between most of our meth-
ods and the strongest baseline. We also show the means and
standard deviations of the cosine similarity scores used to

Diversity Discrepancy
Method I→T T→I I→T T→I

Random α 0.5777 0.5780 0.5777 0.5780
Ablation for Γ

Γ = −1 0.6268 0.6366 0.6211 0.6228
Γ = 0 0.6046 0.6020 0.6046 0.6020
Γ = +1 0.6206 0.6226 0.6158 0.6187

Ablation for α combinations from image and text
αX + αY 0.6188 0.6251 0.6130 0.6184
|αX − αY| 0.6268 0.6366 0.6211 0.6228

αX 0.6155 0.6192 0.6058 0.6040
αY 0.6059 0.6113 0.6032 0.6006

Table 3. Ablation on Politics [28]. The first group show results for
Γ = −1/0/+1. The second group shows strategies for combining
the image/text weight vectors (summing vs. absolute difference).
Random and Γ = 0 are method-agnostic so are the same for each.

compute diversity and discrepancy scores, in Tab. 1. We ob-
serve that although the relative magnitude of the calculated
µ∗σ statistics are different than the swept β/γ hyperparam-
eters, the weighting using the statistics works comparably
well. One possible cause is that we swept for β/γ by train-
ing on a subset of the train set for computational reasons.
However, µ ∗ σ are easily calculated on the full train set.
We suspect β/γ may perform better if the full train set were
used to sweep, at the expense of computational overhead.

4.2. Ablation results

Next, we verify the contribution of our methods’ compo-
nents, using the Politics dataset as it contains some of the
most abstract image-text relations. We show results in Table
3.

Gamma: We first motivate the choice of directional-
ity for our weighting mechanisms. For OURS-DIVERSITY
and OURS-DISCREPANCY, the weighting could be imple-
mented with the opposite sign (via Γ), e.g. we could pri-
oritize samples that come from homogeneous rather than
diverse regions. From Table 3 (top block), we see that em-
phasizing samples with low homogeneity (high “diversity”),
and asymmetric neighborhoods (high “discrepancy”) per-
form better. The differences between Γ = ±1 on DIVER-
SITY are similar to the standard deviation over the base-
lines. We also trained a model which used all equal weights
(Γ = 0, still scaled by λ) and found it performed even worse
than the suboptimal Γ. Purely random weights performed
worst. Using Γ opposite to the optimal setting still has ben-
efit over uniform weights since it allows the model to focus;
even focusing on easy samples is better than no focus [35].

Combining α scores: In the second block, we explore
how to combine the αX and αY scores. We observe taking
a difference between the two modalities is better, so weights
are larger for samples whose measures differ more across
modalities. This underscores the emphasis on prioritizing
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Figure 3. Retrieval results for OURS-DIVERSITY and AMRANI on Politics.
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Figure 4. Example image-text pairs from
Politics receiving highest/lowest weights
by our measures.

image-text pairs where image and text are different: sam-
ples differing across modalities suggest a complementary,
rather than overlapping cross-modal alignment, while em-
phasizing uniformity or overlap (via sum) performs worse.
Note that using αX and αY individually performed much
worse.

λ: The stdev over settings of scaling parameter λ was
0.5%-1.5%, much smaller than our gains over baselines.

4.3. Qualitative results

Weighted samples: In Fig. 4 we show samples receiv-
ing the highest or lowest weights. For diversity, high-
scoring samples concern abstract subjects in which im-
age and text are complementary (sad woman-“Great De-
pression”, American flag-“collusion”), while low-scoring
ones are more concrete. For discrepancy, we observe cases
where the image-text pairing is more atypical (e.g. foot-
ball players-“immigration”, pride flags-“Valentine’s day”
and “flowers”), while low-scoring ones are more literal
(iceberg-“iceberg”, fire-“wildfires”).

Retrievals: In Fig. 3 we show retrievals using OURS-
DIVERSITY vs. AMRANI on Politics [28]. We bold words
in the text that highly align with the image. For image to
text, our method correctly retrieves texts mentioning “Laura
Ingraham” for the first image, while the baseline retrieves
text mentioning women which aren’t shown. For the second
image, both methods retrieve text about the Middle East, but
ours retrieved text mentioning Christians (which aligns with
the cross in the image). For word to image, our method per-
forms much better for abstract concepts like “justice” (ours
retrieves gavels, balances, and protests, while the baseline
retrieves people related to specific court cases). For “patri-
otism”, ours retrieves flags and protests, while the baseline
retrieves largely irrelevant images.

5. Broader Impacts
Sophisticated cross-modal retrieval techniques have a

variety of applications, including news curation and image
captioning (beyond the literal, descriptive level) for visually

impaired readers. More broadly, understanding the intricate
relationship between images and text has ramifications for
understanding persuasion, as well as bias, in multimodal
news media sources. In particular, if a system can under-
stand that the image included with a particular text actually
contradicts the surface meaning of the text, it may detect
cases of irony and mockery, and thus, detect hateful use
of conventional or social media. How such detections are
used is a matter of policy and not the subject of this pa-
per. Instead, the goal of our work is to enable better, more
nuanced, modeling of image-text relationships. Eventually,
we hope methods like ours will help build more socially
aware systems. We believe that in order to ensure AI sys-
tems do social good rather than harm, they need to under-
stand subtleties, and our method is a step in this direction.

6. Conclusion

Each modality in real-world data often exhibits comple-
mentarity (the degree to which the image and text com-
plement one another), yet most methods assume a paral-
lel alignment. We thus proposed a method for emphasiz-
ing cross-modal samples containing abstract, non-literal re-
lationships which relies on two measures of cross-modal
complementarity. DIVERSITY emphasizes samples whose
neighbors, in image or text space, are diverse in their se-
mantics. DISCREPANCY computes the distance of a sample
to the semantic neighbors of its semantic neighbors (em-
phasizing samples that could have multiple senses). We
perform experiments on three large-scale datasets contain-
ing challenging image-text relations, as well as a standard
cross-modal retrieval benchmark. Our experiments demon-
strate that our method yields substantial performance gains
compared to numerous baselines.
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