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Abstract

Though significant efforts such as removing false claims and
promoting reliable sources have been increased to combat
COVID-19 “misinfodemic”, it remains an unsolved societal
challenge if lacking a proper understanding of susceptible on-
line users, i.e., those who are likely to be attracted by, be-
lieve and spread misinformation. This study attempts to an-
swer who constitutes the population vulnerable to the on-
line misinformation in the pandemic, and what are the ro-
bust features and short-term behavior signals that distinguish
susceptible users from others. Using a 6-month longitudinal
user panel on Twitter collected from a geopolitically diverse
network-stratified samples in the US, we distinguish different
types of users, ranging from social bots to humans with var-
ious level of engagement with COVID-related misinforma-
tion. We then identify users’ online features and situational
predictors that correlate with their susceptibility to COVID-
19 misinformation. This work brings unique contributions:
First, contrary to the prior studies on bot influence, our anal-
ysis shows that social bots’ contribution to misinformation
sharing was surprisingly low, and human-like users’ misin-
formation behaviors exhibit heterogeneity and temporal vari-
ability. While the sharing of misinformation was highly con-
centrated, the risk of occasionally sharing misinformation for
average users remained alarmingly high. Second, our findings
highlight the political sensitivity activeness and responsive-
ness to emotionally-charged content among susceptible users.
Third, we demonstrate a feasible solution to efficiently pre-
dict users’ transient susceptibility solely based on their short-
term news consumption and exposure from their networks.
Our work has an implication in designing effective interven-
tion mechanism to mitigate the misinformation dissipation.

Introduction
Even before the WHO declared COVID-19 a pandemic with
accompanying “massive infodemic”, the issues of COVID-
19 misinformation and how it ramifies with the pandemic
has been one of the foci for the science community, in-
dustry, public health professionals, and the general public.
Abundant media and research reports have shown how the
surge of misleading and false information spreading on-
line triggered a wide range of socially harmful behaviors
(Ognyanova et al. 2020; Bridgman et al. 2020) that can jeop-
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ardize the trust of authority sources, effectiveness of the epi-
demic control measures and further impact all sectors of a
society. While a significant research effort has been spent
on cutting the supply of misinformation – e.g., to fact-check
or detect misinformation (Ball and Maxmen 2020), unless
completely effective, cutting the supply alone will not solve
the problem (Ball and Maxmen 2020). To intervene misin-
formation dissipation, there is a critical need in understand-
ing users’ (mis-)information behaviors.

Recent literature has shed light on the online misinforma-
tion phenomena. Several studies found that social bots are
the main actors who spread low-credibility content, manip-
ulated social media users’ opinions and swayed democratic
processes such as Brexit referendum and the US 2016 elec-
tion (Shao et al. 2018; Ferrara et al. 2016; Bessi and Fer-
rara 2016). Apart from the bot influence, Grinberg et. al.
(Grinberg et al. 2019) discovered that a handful of “super-
sharers” and “superconsumers” accounted for nearly 80%
of fake news spread and consumption on Twitter during the
past US presidential election. These studies together painted
a picture of the key drivers in the fake news and misinfor-
mation campaigns that may influence political discourse and
behaviors. In public health domain, the interlinking among
misinformation and infectious diseases, such as the relation-
ship with anti-vaccine attitude and other misconception, has
been examined in other epidemics (Burki 2019). Since the
COVID-19 outbreak, several studies have highlighted the ill
effect of belief in false claims and its stemming on human’s
social and behavioral characteristics – for example, people
with particular cognitive tendency and sociopolitical identi-
ties may be more vulnerable to misinformation (Lazer et al.
2020; Grinberg et al. 2019; Guess, Nyhan, and Reifler 2020).
Despite the rich literature, there is still no clear picture for
how misinformation penetrates the ordinary users’ informa-
tion processing in the life during a pandemic. Rather than
focusing on a particular role such as bots or super-users, we
seek to understand what distinguish users who are actively
engage with misinformation from those less or rarely.

Who – bots or ordinary humans – constitutes the popu-
lation vulnerable to the online misinformation in the pan-
demic? To inform the design of timely intervention, can we
answer this without knowing their cognitive tendencies and
sociopolitical identity? Relying on observable social media
traces, we focus on three research questions:



• RQ1. To what extent do ordinary humans, compared to
bots and super users, contribute to the COVID-19 misin-
formation spread? How do individuals engage with mis-
information differently?

• RQ2. What are the robust features that distinguish sus-
ceptible users from those who have been resilient against
the misinformation exposure?

• RQ3. Can users’ susceptibility to COVID-19 misinfor-
mation captured by time-varying, situational factors? To
what extent we can identify users’ risk of sharing misin-
formation purely depend on short-term behavior traces?

To answer these RQs, we constructed a list of news
sources flagged by journalists, fact-checkers and academia,
and curated a longitudinal user panel on Twitter that were di-
verse in geography in United States. Our study period about
COVID-19 misinformation covered the first 6 months of
this pandemic. Our data also traced a user’s timeline back
to pre-pandemic period in order to understand the associ-
ation between a user’s past behaviors and misinformation
engagement during this pandemic. Based on our data, we
conducted a comprehensive analyses that compared user ac-
counts by type (bots v.s. human-like users), by human-like
users having different levels of misinformation engagement
(RQ1) and behavioral characteristics (RQ2). Furthermore
we exploited state-of-the-art deep learning models to per-
form real-time prediction purely based on short-term traces
(RQ3). This work brings several unique contributions:
• Analysis of misinformation engagement among the

ordinary users. Contrary to the prior studies on bot in-
fluence, our analysis shows that social bots’ contribution
to the misinformation sharing was surprisingly low, and
majority of bots did not maliciously disseminate misin-
formation. On the other hand, human-like users’ engage-
ment with misinformation exhibit heterogeneity, where
the sharing of misinformation was highly concentrated,
but the risk of occasionally sharing and retweeting mis-
information for average users remained alarmingly high.

• Distinctive features correlated with users’ susceptibil-
ity. We identify features that distinguish users who are
susceptible from those resilient to misinformation. Com-
plementary to existing work, our results highlight the po-
litical sensitivity, activeness in tweeting and responsive-
ness to emotionally-charged content among susceptible
users to COVID-19 misinformation.

• Predictive models for identifying future risk from
short-term behavior traces. Given that our analysis
suggesting the transient nature of users’ dynamic misin-
formation behaviors, we propose a feasible solution, us-
ing an interpretable deep learning approach, to identify
the future risk of misinformation sharing solely based on
users’ weekly behavioral and exposure traces.1

Related Work
COVID-19 Infodemic. To fight against the infodemic, re-
searchers have been working to study the spread of misin-
formation on social media (Hameleers, van der Meer, and

1Codes at https://github.com/picsolab/COVID-misinfo

Brosius 2020; Papakyriakopoulos, Serrano, and Hegelich
2020; Memon and Carley 2020), the prevalence, predictors,
causes, and consequences of belief in COVID-19 false state-
ments or/and conspiracy theories (Lazer et al. 2020; Roozen-
beek et al. 2020; Uscinski et al. 2020). It was found that cit-
izens from US, UK, Netherlands and Germany experienced
relatively high levels of mis-/disinformation – 4.88/4.46 on
a 7-point scale – during the first stage of this pandemic
(Hameleers, van der Meer, and Brosius 2020). Although
platforms’ moderation practices were effective in reducing
false claims, certain issues (e.g, timeliness, magnitude and
moderation bias) were identified (Papakyriakopoulos, Ser-
rano, and Hegelich 2020). Studies have also shown that a
substantial proportion of respondents indicated that they be-
lieve COVID-19 conspiracy theories, for example, Lazer
et al. show that 7%-22% of US respondents believe 11 false
claims about COVID-19 (e.g., coronavirus is created as a
weapon in a Chinese lab, only older people get COVID-19),
Roozenbeek et al. show that 22–23% respondents in UK,
26% in Ireland, 33% in Mexico and 37% in Spain agreed
that coronavirus was engineered in a laboratory in Wuhan.
Such susceptibility might lead to undesirable consequences
as studies have suggested that belief in false claims is neg-
atively related to vaccine acceptance and self-reported com-
pliance with guidelines (Roozenbeek et al. 2020; Lazer et al.
2020; Bridgman et al. 2020). Our work is different from
prior work in several aspects: first, our study leverages large-
scale social media traces instead of survey data to examine
online users’ susceptibility, second, our study is not limited
to the several most popular COVID-19 conspiracy theories,
instead we study the broad spectrum of online COVID-19
misinformation; third, our work considered a broad spec-
trum of online actors including bots, superusers and average
users to understand to what extent and how (strategies) they
contributed to misinformation spread.

The Fake-News Phenomena on Social Media. Fake
news on social media has become a public concern. Existing
work that are most related to ours include bots/trolls influ-
ence in promoting unreliable contents (Ferrara et al. 2016;
Ferrara 2020; Badawy, Lerman, and Ferrara 2019), and pre-
dictors for users’ susceptibility, e.g., such as demographics,
socio-psychological attributes, political learning, news di-
ets (Grinberg et al. 2019; Allcott and Gentzkow 2017). It
has been found that bots occupy a relatively high proportion
(nearly 15%) of Twitter accounts in 2016 US presidential
election (Varol et al. 2017; Bessi and Ferrara 2016), they
are more active in posting and likely to mention influential
accounts to promote low-quality content, therefore succeed
to spread information into human population (Shao et al.
2018). In addition to bots, studies have suggested that cer-
tain types of human users are more vulnerable to misinfor-
mation, i.e., people who are older (Grinberg et al. 2019),
less educated (Allcott and Gentzkow 2017), maintaining a
more conservative news diet or/and supporting Trump (Grin-
berg et al. 2019; Guess, Nyhan, and Reifler 2020). Con-
trary to prior work concerning bot impact, this study finds
that humans (not bots) have been heavily engaged with
COVID-19 misinformation on Twitter. This finding echos



a recent study (Silva et al. 2020), indicating that 8.5% were
bots among those who tweeted COVID-19 misinformation,
however, this study discarded all duplicated retweets which
might fail to account for bot activities in resharing COVID-
19 misinformation. Furthermore, we observed that humans
exhibited heterogeneity in their misinformation behaviors
in terms of volume, strategies and temporal dedication. Re-
garding susceptibility predictors, our results highlight the re-
sponsiveness of susceptible users to emotionally- and polit-
ically charged content.

Combating Mis-/disinformation. The computing com-
munity is engaging in the design of advanced methods to
automatically combat mis-/disinformation on social media,
including bot detection (Ferrara et al. 2016), fake news de-
tection (Shu et al. 2017) and cascade intervention (?). Bot
detection systems can be divided into three classes: tech-
niques based on social network, systems leveraging human
intelligence, and machine learning models based on discrim-
inative features (Ferrara et al. 2016). However, the deploy-
ment of bot detection systems is undermined by the demand
of significant amount of user-level information, and the chal-
lenge to account for bots’ continuously changing behaviors
(Ferrara et al. 2016). Fake news detection techniques typ-
ically leverage information from news contents (texts, im-
ages and videos) and social contexts (user profiles, post re-
sponses, social networks) (Zhou et al. 2019). A major issue
is that fake news are constantly being produced in large scale
following emerging and time-critical events, therefore easily
spread to large audience without early warning or/and be-
ing fact-checked. Cascade intervention leverages the under-
standing of diffusion dynamics to monitor a small set of in-
fluential nodes or intercept certain propagation paths to limit
the spread of misinformation, yet it requires an overview of
social network graphs. Contrary to prior efforts, we propose
a different task to battle misinformation, i.e., to proactively
foresee a user’s near-future susceptibility by solely using its
short-term behavior traces. Our aim is to develop a situa-
tional and social-aware tool to catch up risk early before
misinformation are further shared to larger population. For
this purpose, we develop a model exploiting state-of-the-art
deep learning techniques, which is able to capture the corre-
lations of domains as well as dynamics of news ecosystem
leveraging users’ temporal cosharing/coexposure behaviors.

Data & Study Design
This section describes our data collection and processing, as
well as crucial definitions and measurements.

Data
Flagged News Sources. We adopted a list of flagged
news sources as proxy of misinformation following sugges-
tions by prior work (Lazer et al. 2018), since using fact-
checked articles might end up biasing towards a small set of
“popular” or/and “fact-checkable” news stories. Our flagged
news source dictionary was constructed by referring to two
datasets. (i) We first included the news sources curated by
MediaBias/FactCheck (MBFC hereafter) under two cate-
gories – conspiracy-pseudoscience and questionable sources

(accessed on April 19, 2021), where the the conspiracy-
pseudoscience category “may publish unverifiable informa-
tion that is not always supported by evidence”, and the ques-
tionable source “exhibits one or more of the following –
extreme bias, consistent promotion of propaganda/conspira-
cies, poor or no sourcing to credible information, a complete
lack of transparency and/or is fake news.” We used the most
updated version of MBFC news sources in April 2021 (prior
to our paper submission), to included the most up-to-date
information about websites that published COVID-19 mis-
information during our study period.2 (ii) We also included
several pre-existing lists of websites (Grinberg et al. 2019),
including three sets of publishers released by fact-checkers
and journalists (i.e., published by Buzzfeed News, Politifact,
and FactCheck.org), and two sets of problematic domains
labelled by scholars (Guess, Nyhan, and Reifler 2018; Grin-
berg et al. 2019). Following Grinberg et al., we only included
the domains if labeled as black, red or orange as these colors
reflected annotators’ stronger affirmation regarding a flawed
editorial process (e.g., little regards for the truth, negligent or
deceptive). In total, there were 1528 flagged news sources in
our dictionary, and 527 of them appeared in our tweet data.

User Panel Construction. To identify users contributed to
COVID-19 information sharing, we first referred to a pub-
lic data of COVID-19 Twitter IDs between January 28 and
April 24 2020 (Chen, Lerman, and Ferrara 2020). To obtain
a user panel that were diverse in geography and ideological
context, we selected four cities (with a population larger than
250K people) spanning from liberal to conservative based on
conservatism scores estimated by (Tausanovitch and War-
shaw 2014), including San Francisco CA, New York City
NY, Houston TX and Nashville TN.3 To understand users’
social network properties, we randomly selected 100 seed
users in each city, and snowball their friends to construct a
social network. Specifically, the seeds were guaranteed to be
active human accounts – i.e., they were not detectable bots or
organizational accounts (detected using tools discussed be-
low) and they had posted at least two URLs prior to April 24,
2020. We ensured that half of the seeds shared a proportion
larger than 60% of URLs from flagged sources while the
other half shared less than 40% URLs from those sources,
so as to capture both resilient and susceptible users (formal
definitions can be found in section ). Starting from the seeds,
we obtained up to 5000 users IDs they have been following
(known as their “friends”) as of June 2020. This step was run
for two steps (therefore two-step snowball sampling) and re-
sulted in more than 9.5 millions unique user IDs. We kept
the accounts having at least one friend and one follower in
the social network to make our panel in a reasonable size
and facilitate our subsequent social network analyses. Then

2We manually checked MBFC’s analysis reports for flagged
websites and found at least 143 websites were labeled by MBFC
to be the sources spreading COVID-19 misinformation.

3These four cities were chosen to achieve a trade-off between
diversity and availability of user samples. Our user distribution
across cities looks similar to the distribution obtained from the
above public COVID-19 data crawled using keywords (Chen, Ler-
man, and Ferrara 2020).



we crawled the most recent 3000 tweets posted by each user
as of June 2020. In order to exclude accounts that were cre-
ated after outbreak to be used to run COVID-19 related cam-
paigns, we only kept users who registered their accounts be-
fore November 1 2019. We also removed inactive accounts
who have not posted any tweets between December 1 2019
and June 1 2020. To guarantee we cover a user’s complete
activities after outbreak, we only kept users whose oldest
tweet in our data was published prior to December 1 2019.
Eventually, we ended up with 531,865 users and approxi-
mately 1.4 billions tweets.

Location Extraction. We extracted users’ locations based
on the location field within a user object. We matched the
text against a list of cities, counties, states and city/state ab-
breviations in the US. For example, we extracted location
“Winslow, Arizona” from the text “on a corner in Winslow,
Arizona,” and “NYC, NY” from the text “NYC, New York.”
In total, 287,784 users didn’t disclose any city or state in-
formation, 244,081 users provided state information and
168,788 users provided city information.

COVID-19 Tweets. As our study is in the COVID-19 con-
text, we particularly identified COVID-19 tweets by search-
ing for any of the COVID-19 related keywords constructed
in (Chen, Lerman, and Ferrara 2020) within text, URLs,
hashtags, mentions and screen names.

URL Expansion. Many users leveraged shortened links
to share long URLs to maintain the maximum number of
characters for posts. For the URLs included in COVID-
19 tweets, we followed all redirects and obtained the final
website domain. But for the URLs in COVID-19 irrelevant
tweets, it would be impractical to expand them all within a
reasonable time period. Therefore, we recovered a subset of
shorted URLs from known URL shorteners to the original
domains (e.g., “youtu.be” to “youtube.com”, “wapo.st” to
“washingtonpost.com”), and merged with long URLs to be
used in our subsequent analysis.

Definitions and Measurements
Defining Study Period. As described in data section , our
data traces a user’s data before outbreak as well as during the
first 6 months of this pandemic until early June 2020. Since
the first human cases of COVID-19 were reported to be iden-
tified in Wuhan, China in December 2019, which triggered
large-scale online discussion on social media ever since, we
defined December 1 2019 to June 1 2020 as our COVID-19
misinformation study period Pcov . We considered the time
prior to December 1 2019 as pre-pandemic period Ppre.

Defining Susceptible/Resilient Users. We rely on the
sharing activities of users to study misinformation engage-
ment, defining a share as publishing a post (e.g., tweet,
retweet, quote or reply) that included a URL redirecting to
a page outside of Twitter. A single post consisting of five
external URLs would be counted as five shares. If the post
were an original tweet, we would have five original shares.
If one contained URL were from one of the flagged sources,
we would call it a problematic share; We generally called
URLs from unflagged sources as other shares. Accordingly,

a susceptible user is defined as an account who had at least
one problematic share, and a resilient user as who didn’t
share any URLs from flagged sources. Furthermore, we in-
troduced a susceptibility adherence metric as level of en-
gagement with content from flagged sources, measured by
the number of problematic shares. If restricting our scope
to COVID-19 tweets, we have COVID-19 sharers, COVID-
19 problematic shares, COVID-19 susceptible and resilient
users. We will omit the term “COVID-19” in subsequent
discussion if no special instruction. In summary, there are
265,859 sharers – 88,160 are susceptible and 177,699 are
resilient, who made 5,515,408 shares – 560,788 are prob-
lematic shares and 4,954,620 other shares.

Identifying User Types. We utilized a machine learn-
ing tool called Humanizr (McCorriston, Jurgens, and Ruths
2015) to automatically identify organizational accounts
(e.g., institutions, corporations etc). In total, 764 organiza-
tional accounts were located and excluded in our analysis.
In order to further distinguish bot-like and human-like ac-
counts, we used a bot detection tool system Botometer to as-
sign a continuous score to each user (Varol et al. 2017). To
avoid time misalignment, our Botometer analysis was con-
ducted immediately after we had collected Twitter user IDs
between June 14 and July 9.

Estimating News Medias Bias. We inferred a news me-
dia’s political alignment by aggregating four distinct but
overlapping datasets: two lists of news sources containing
500 and 224 sites from prior research (Bakshy, Messing, and
Adamic 2015; Grinberg et al. 2019), a list of 1658 news me-
dias labeled by Allsides.com, and a list of 312 news sites cu-
rated by MediaBias/FactCheck. Specifically, Grinberg et al.
and Bakshy, Messing, and Adamic assessed a media’s po-
litical alignment as the proportion of registered Republicans
and Democrats who engaged (exposed or shared) with the
source, thus a continuous score (-1 is most left, +1 right) is
assigned to each website. Allside’s media bias were obtained
through a hybrid approach including editorial review, blind
survey, third-party analysis and independent research. Me-
diaBias/FactCheck’s ratings were average scores by consid-
ering aspects including biased wording/headlines, factual/-
sourcing, story choices and political affiliation. The later two
use categorical labels (left, left-center, center, right-center
and right). In order to address the inconsistency of four lists,
we employed an iterative imputation method “missForest”
to impute missing values in four datasets (Stekhoven and
Bühlmann 2012). In total, there were 2163 news medias in
our analysis.

Identifying Right/Left-leaning Hashtags. Twitter users
include hashtags in their user profile descriptions to con-
nect with ideologically similar users and express support for
movements/politicians. We extracted the most popular hash-
tags that were present in at least 100 users’ descriptions. We
identify a hashtag as ideologically relevant if it either sup-
ports or criticizes political leaders, their statements and cam-
paigns (#trump, #maga, #bluewave). To label a hashtag, we
used Twitter’s search engine to retrieve relevant tweets, peo-
ple, photos and videos, then examined the top ten results in
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Figure 1: Prevalence of social bots estimated by varying bot
score thresholds (A-C). Upper bars indicate separation of
humans v.s. bots (left) and shares attributable to them (right).
Lower bars indicate separation of benign v.s. malicious bots
and shares attributable to them.

each of those categories. In total, there were 83 right-leaning
and 69 left-leaning hashtags used in our analysis.

Analysis & Results
This section reports our analysis and experimental results for
three research questions.

RQ1. To What Extent and How Differently Users
Engage with Misinformation?
Bots’ Contribution. First, we computed the proportion of
social bots among all COVID-19 sharers. Following prior
studies (Varol et al. 2017; Grinberg et al. 2019), we labelled
bots at thresholds 0.5 and 0.7: an account was considered to
be a bot if its Botometer score were above 0.5 or 0.7. We
added another threshold at 0.8 to achieve a posterior prob-
ability of 50% (implying that with half chance an account
having a score ≥ 0.8 is a bot) for sensitivity test. Fig. 1
reveals that at threshold 0.5 approximately 10.3% of misin-
formation sharers are bots, who are responsible for 13.1%
of problematic COVID-19 shares. The proportion of bots
is even smaller – 2.5% and 0.6% – if setting threshold to
0.7 and 0.8, accordingly the percentage of associated shares
drops to only 2.7% and 0.7%. Furthermore, we calculated
the decomposition of different types of bots – malicious v.s.
benign. A bot was considered to be malicious if it had at
least one problematic share, otherwise benign. We find that
a large proportion of bots are actually benign – the fraction
is 55.8% at threshold 0.5, 64% at threshold 0.7 and nearly
76.5% at threshold 0.8. By examining the decomposition of
shares made by the two bot types, we find that benign bots
are more active than malicious ones in sharing: at thresh-
old 0.5, malicious bots only account for 16.7% of all bot
shares while benign bots are responsible for up to 83.8% of
all bot shares; The activity difference is even larger when in-
creasing the threshold to 0.8, i.e., 9.3% of shares (note that
not all of them are problematic shares) are from malicious
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Figure 2: Concentration of misinformation engagement.
Empirical cumulative distribution functions (ECDF) for
number of shares in original tweets (A), number of shares in
both original posts and retweets (B), degree and PageRank
in retweet network (C,D). The x-axis represents the percent-
age of users responsible for a given percentage (y-axis) of
cumulative values. Purple (gray) lines represent problematic
(other) shares.

bots while nearly 90.7% shares from benign bots (therefore
not problematic). To summarize, we find that in the COVID-
19 context the prevalence of social bots among problem-
atic sharers is relatively low, and surprisingly benign bots
account for a very large fractions of presence and sharing
activities. These findings in turn suggest that not bot but hu-
mans were mainly engaging with misinformation during our
study period.

Superusers’ Contribution. In subsequent analysis we ex-
cluded bot-like accounts using the lowest threshold 0.5 to
guarantee that the remaining human sample do not con-
tain bots. To test our hypothesis that the engagement with
COVID-19 misinformation is heavily concentrated on a
small fraction of core sharers, we computed four distinct
metrics – number of original shares, number of shares, the
degree centrality and PageRank in retweet network. The
retweet network was constructed as follows: if a user A
retweeted B’s post that was COVID-19 related and con-
tained external URLs, we connected a directed edge from A
to B. The former two metrics capture a user’s level of shar-
ing activity, while the latter two characterize a user’s influ-
ence in information spread. It is revealed that merely 1% of
susceptible users account for almost 75% of original shares
(Fig. 2A), and 10% of susceptible users account for 75%
of shares (Fig. 2B). Fig. 2C,D show that super influencers
are present in COVID-19 retweet network – if we consider
degree and PageRank as indicators of “wealth”, a 1% of top-
ranked susceptible users hold 50% and 60% of the cumula-
tive wealth in the sample. The concentration phenomenon is
more pronounced in problematic sharing (purple) compared
to the sharing of other contents (gray).
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Figure 3: Dividing susceptible users into four levels. (A)
Distribution of number of problematic shares and four lev-
els L1-L4. (B-C) ECDF for the percentage of shares rela-
tive to COVID-19 tweets and the percentage of problematic
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Heterogeneity of Humans’ Misinformation Behaviors.
The preceding analysis suggests that users engaged with
COVID-19 misinformation at different levels. We further-
more answered the question: how different are users who
are strongly adherent to flagged sources, i.e., high-adherent
users, compared to those who are weekly adherent? For this
purpose, we divided susceptible human-like users into four
levels: L1 included top 1% users who had the largest number
of problematic shares, L2 between 1% and 10%, L3 between
10% and 50%, and L4 between 50% and 100%. We found
that nearly half of susceptible users only shared no more
than two problematic URLs, raising the alarm that the risk
of occasionally being exposed to or/and sharing misinforma-
tion is relatively high (Fig. 3A). Fig. 3B,C reveal that strong-
adherent users (in contrast to weak-adherent users) have a
stronger preference in using URLs when posting COVID-19
tweets, as the percentage of shares normalized by the num-
ber of COVID-19 tweets is relatively high (Fig. 3C); They
have a stronger interest in sharing information from flagged
sources as the percentage of problematic shares normalized
by number of shares is relatively high (Fig. 3D). Specifically,
we studied their differences in four aspects as follows.
(1) News source partisanship. We computed the average
and standard deviation of political scores of news sources
shared by a user. A larger (smaller) score indicates that the
user likes to share news from right-leaning (left-leaning) me-
dia sources, a larger (smaller) standard deviation implies that
the user has broader (narrower) range of news preferences
regarding politics. Fig. 4A,B show that high-adherent users
are more likely to consume right-leaning news sources and
hold narrower political news diet compared to individuals
from L3-L4 groups.
(2) Sharing tactics. We measured three possible tactics in
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Figure 4: Consumption of news media for L1-L4 users. (A)
Average political score of consumed news media. (B) Stan-
dard deviation of political scores.
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Figure 5: Tactics used in sharing COVID-19 misinformation
for L1-L4 users. (A) ECDF for precent of original shares.
(B) Percent of users who included hashtags and mentions in
problematic shares.

sharing misinformation: (i) proactively introducing exter-
nal misinformation into Twitter; (ii) exploiting hashtags –
particularly left/right-leaning hashtags – to increase visi-
bility of the shared misinformation; (iii) mentioning other
accounts – particularly Democratic or Republican leaders
(senators and house representatives) – while sharing mis-
information. For (i), Fig. 5A reports the fraction of origi-
nal shares relative to all problematic shares, suggesting that
L1 users were more likely to introduce misinformation into
Twitter, whereas more than half of L3-L4 individuals simply
reshared the misinformation that had already existed. For (ii-
iii), we calculated the percentage of individuals within each
of the groups who had included certain hashtags or men-
tioned others in any of their problematic shares (Fig. 5B).
We found that L1 users were prone to include hashtags
– especially right-leaning hashtags – to increase visibility,
whereas this association is not observed in the usage of left-
leaning hashtags; Users rarely mentioned others while shar-
ing misinformation, there is no significant association ob-
served between mentions and misinformation engagement.
(3) Social network characteristics. We investigated to what
extent high/weak-adherent users were located at important
positions in retweet networks. Fig. 6A shows that L1 users
have larger values of degree in retweet network (similar
pattern is also observed for PageRank, we omit its plot to
save space), suggesting that high-adherent users played a
more successful role in spreading information into social
network. One might suspect that perhaps they have more au-



dience or/and were retweeted more often. So we compared
the number of followers (Fig. 6B) and calculated the aver-
age number of times being retweeted per problematic share
for users in L1-L4 groups (Fig. 6C). We found that high-
adherent users didn’t hold much structural advantages based
on followers count, but they were more successful in misin-
formation diffusion process as L1 users were retweeted most
often among all groups, approximately 80% of L3-L4 users
were not even retweeted by anyone in our data.
(4) Exposure of misinformation from social friends. Be-
fore a user shares a URL at time t, they might have seen
the same URL from their friends’ tweets shared at an ear-
lier time t′ (t′ < t). We considered a potential exposure
for an ego user to be any tweet shared by one of his/her
friends, that includes the same URL he/she has shared. If
multiple matches were found, we consider the most recent
one ∆t = t − t′ < τ and break down the range of τ into
different values (τ = 1, 6, 12, 24, 48, 72, and > 72 hours).
If a share is successfully matched to a preceding exposure
(PE), we call it a PE share, otherwise a non-PE share. We
then consider the fraction of PE shares, i.e., the number of
shares of type c that has a PE / the number of all shares of
type c, for c ∈ {problematic, non-problematic}.

Although a matched preceding exposure does not suffi-
ciently imply a causal influence of sharing, this analysis al-
lows us to capture the patterns of temporal ordering of ex-
posure and sharing behaviors. Fig. 7A reports the percent-
age of PE shares for both types of shares (problematic and
non-problematic) at different τ ’s. It shows that problem-
atic shares from ego users, compared to non-problematic
shares, are more likely to have a PE from friends, suggesting
that misinformation might prone to spread through follow-
followee relationship than reliable information (Vosoughi,
Roy, and Aral 2018). Fig. 7B,C shows the percentage of PE
shares (τ ≥ 0) for problematic and non-problematic respec-
tively, breaking down by L1-L4 users. Both figures suggest
that average users (L2-L4) were more likely to reshare in-
formation from PE from their friends than L1 users.
(5) Temporal variation of misinformation engagement.
Individuals’ misinformation behaviors exhibited temporal
variation, i..e, a user might share problematic URLs in cer-
tain weeks while not in others. We consider a user’s sta-
tus during a week as SH if he/she shared misinformation,
and NS if didn’t share any misinformation. Then we cal-
culated the proportion of users in each of L1-L4 groups
flip status across consecutive two weeks over a 3-month
period between March and May. We find that on average
L1 users have the highest tendency to maintain SH status
(70%±15%), while L4 users have the highest tendency to
maintain NS status (80%±4%). In contrast, L2/L3 users
were more likely than L1/L4 users to change status, for ex-
ample, 14%-17% of them flipped their status while this num-
ber is only 5% for L1 and 10% for L4.
Overall, we find that users who heavily engaged with misin-
formation were more likely to share conservative websites,
more active in introducing misinformation into the platform
rather than simply forwarding it, and more strategic in pro-
moting its spread. Average users, in contrast to those who
heavily engaged with misinformation, have a tendency to

0%

25%

50%

75%

100%

100 102 104

degree in retweet network

%
o

f 
u

s
e

rs

A

0%

25%

50%

75%

100%

102 105
108

# of followers

%
o

f 
u

s
e

rs

B

0%

25%

50%

75%

100%

0 1 10 100 1000

# of retweets per share

%
 o

f 
u

s
e

rs L1

L2

L3

L4

C

Figure 6: Social network properties for L1-L4 users. (A)
ECDF of a user’s degree in retweet network. (B) ECDF of
an individual’s followers counts. (C) ECDF for the number
of retweets per problematic share.
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Figure 7: Exposure analysis from social context. (A) Frac-
tion of shares that had a preceding exposure for both prob-
lematic and other-type information. (B) Fraction of prob-
lematic shares that had a preceding exposure for L1-L4
users. (C) Fraction of non-problematic shares that had a pre-
ceding exposure for L1-L4 users.

reshare information after their friends’ sharing. The risk of
occasionally sharing misinformation for average users re-
mained high.

RQ2. Discriminative Features
RQ1 overviews to what extent as well as how various ac-
tors engaged in spreading misinformation, which reveals the
heterogeneity among the susceptible population. In RQ2, we
particularly zoom into the major subset of ordinary suscepti-
ble users, investigating the contexts and behaviors – in con-
trast against resilient users – to better understand the predic-
tors that correlate with being susceptible to misinformation.

Comparison Groups. To obtain a panel of ordinary indi-
viduals we first excluded organizational accounts, bots (at
threshold 0.5), and superusers (L1 group), we kept accounts
with city information to further guarantee they are genuine
users. We then further cleaned our samples by removing IQR
outliers (in terms of friends count, followers count and num-
ber of tweets posted per day). We limited our samples to
those who have posted at least 10 tweets in Ppre, 10 tweets
in Pcov and 4 COVID-19 shares. We examined each pan-
elist’s misinformation behaviors in Ppre and Pcov to assign
two types of labels accordingly. There are 63,371 users in
our final penal – 15,830 of them are COVID-19 suscepti-
ble among which 77% were pre-pandemic susceptible, and
47,540 COVID-19 resilient among which 65% were pre-
pandemic resilient. For brevity, we denote COVID-19 sus-
ceptible/resilient users as CSUs/CRUs, pre-pandemic sus-
ceptible/resilient users as PSUs/PRUs below.



Features ALL PSU PRU

Prev. suscept. 1.1***

Swing county 0.0 0.1 -0.0
Republican county 0.2*** 0.2*** 0.2**

% leader interact (Rep) 10.0*** 9.5*** 9.1***
% leader interact (Dem) 4.0*** 4.7*** 3.5***
% retweet (Rep) 0.4** 0.3** 0.3
% retweet (Dem) -0.8*** -0.8*** -0.7***
% reply (Rep) -0.5** -0.2 -1.2***
% reply (Dem) 0.6*** 0.4* 0.6**
% mention (Rep) -0.4*** -0.4** -0.2
% mention (Dem) -0.3** -0.2 -0.4**
Sent. reply (Dem) -0.2** -0.1 -0.2*
Sent. reply (Rep) 0.1* 0.1 0.2
Sent. mention (Dem) -0.2*** -0.2** -0.2**
Sent. mention (Rep) 0.1 0.1 0.0
Profile hashtags (R) 1.0*** 0.7*** 2.8***
Profile hashtags (L) 0.4*** 0.3*** 0.5***

# tweets / day 5.9*** 5.7*** 6.3***
% interval < 1 hour 1.7*** 1.3*** 2.7***
% interval > 1 day -1.7*** -2.4*** -0.6*
% tweets incl. hashtags -1.2*** -1.3*** -1.0***
% tweets incl. mentions 0.4*** 0.2 0.7***
% tweets incl. urls 0.2** 0.4*** -0.1
log(#follower/#followee) -0.1** -0.0 -0.2***
Age (months) -0.2*** -0.3*** -0.0
Account verified -0.5*** -0.5*** -0.3***

Positive emotion -0.8*** -1.2*** -0.1
Negative emotion 3.2*** 2.9*** 3.3***

Avg. political score 2.1*** 2.6*** 0.5***

N 44925 25067 19858
AIC 36866 23486 12848
Null deviance 55880 34584 15313
Residual deviance 36802 23424 12786

*p<0.1, **p<0.05, ***p<0.001

Table 1: Coefficients from classifying COVID susceptible
v.s. resilient users among (i) all users, (ii) PSU: the subgroup
who used to be susceptible prior to this pandemic, and (iii)
PRU: the subgroup used to be resilient.

Features. We examined a series of contextual variables.
(D1) Pre-pandemic susceptibility describes whether a
CSU/CRU used to be susceptible or not. (D2) Geopoliti-
cal environment characterizes the political climate of the
county a user lives in using returns of US 2000-2016 presi-
dential elections, e.g., a swing county or not, a Democratic
or Republican county. (D3) Political sensitivity contains a
user’s tendency to interact with political leaders of Repub-
lican or Democratic party, the sentiment expressed in the
interactions with them, as well as the variables indicating
whether a user used left/right-leaning hashtags in profile de-
scriptions. For leadership interaction, we examined the over-
all proportion of interactions with leaders from one party
among all interactions with others, as well as the percent-
age of different types – retweet, mention and reply – among
leadership interactions; for sentiment, we calculated the me-
dian score (between -1 and +1) along with each type of lead-

ership interactions. (D4) Activeness characterizes a user’s
activity pattern from distinct aspects such as tweeting inten-
sity (tweeting rate and intervals), platform engagement (the
proportion of using hashtags, URLs and mentions in tweets,
ratio of followers to followees) and credibility (account age,
verified or not). (D5) Emotions are based on LIWC lexicons
by computing the user-level proportion of tweets containing
tokens from each lexicon category. (D6) News diets cap-
tures the average political alignment score for news sources
consumed by a user. (D7) Social exposure include the frac-
tions of right (political score ≤ -0.2), left (political score ≥
0.2) and neutral friends in social network.

Findings and Insights. Table 1 shows logistic regression
analyses from three models: column “ALL” corresponds to
the model that includes pre-pandemic susceptibility as one
of the predictors, while column “PSU” and “PRU” corre-
spond to the one that classifies CSUs/CRUs among the sub-
group of users who used to be susceptible (PSU) and re-
silient (PRU) prior to this pandemic, respectively. It reveals
that the misinformation engagement was positively associ-
ated with being previously susceptible (D1), coming from
Republican counties (D2) and having conservative news
diets (D6). Interestingly, in overall CSUs are more likely
than CRUs to interact with political leaders from both sides
(p<1e-3) – Democratic and Republican, as well as to in-
sert partisan hashtags (p<1e-3) – both left and right – in
their profile descriptions (D3). When we further examined
interaction types, we found that CSUs have a stronger ten-
dency to reply to rather than to retweet the posts of Demo-
cratic leaders. In terms of sentiment, we observed that CSUs
like to express greater negative sentiment towards Demo-
cratic leaders, particularly when they mention or reply to
a Democratic leader. Regarding activeness (D4), CSUs are
more likely than CRUs to tweet frequently with shorter in-
tervals, have accounts being unverified, but less likely to
include general hashtags in tweets. CSUs have a tendency
than CRUs to tweet with words showing negative emotions
(D5). In terms of social exposures (D7), we found that CSUs
have significantly more right-leaning friends (K-S D=0.56,
p<1e-3), fewer left-leaning (K-S D=0.54, p<1e-3) and neu-
tral friends (K-S D=0.19, p<1e-3) compared to CRUs.

The positive association of sharing misinformation with
conservative news diets, geopolitical environment and so-
cial exposures can be linked to prior literature, as existing
work have shown that conservatives are more likely than lib-
erals to believe conspiracy theories (Enders and Smallpage
2019), tolerate misinformation from politicians (Roets et al.
2019), distrust mainstream news media outlets and heav-
ily consume hyper-partisan right-wing media outlets which
lack fact-checking or editorial norms (Marwick and Lewis
2017). Besides, our findings regarding COVID-19 suscep-
tible users’ overall political sensitivity and negative emo-
tions are in alignment with prior evidence that individuals
who likely to engage with flagged sources are also highly
engaged with political news (Grinberg et al. 2019), and con-
servatives are more attracted than liberals by negativity and
respond to various controversial issues with negative emo-
tions (Inbar, Pizarro, and Bloom 2009). Our study high-



lights the patterns of susceptible users interacting with po-
litical figures from the opposing party: susceptible users are
more likely to reply Democratic leaders instead of retweet-
ing them (avoid endorsement or propagation). Besides, they
choose to write negative words by replying to and directly
mentioning Democratic leaders to express their opinions.
These findings align with prior studies about adversarial in-
teractions against candidates for the U.S. House of Repre-
sentatives (Hua, Ristenpart, and Naaman 2020; Hua, Naa-
man, and Ristenpart 2020), which capture the cases of Twit-
ter users’ hostility using misinformation to attack and to un-
dermine the legitimacy of candidates from opposing party,
and those highly adversarial users express partisanship bias
in their profiles. Furthermore, our results regarding active-
ness features can be explained by the difference in digital
strategies of left/right-wing actors. Studies have shown that
the left tend to directly rely on platforms to distribute mes-
sages, such as “hashtag activism” (Freelon, Marwick, and
Kreiss 2020), by contrast the right believe that the “Big
Tech” platforms are biased against them and they manipu-
late those platforms to amply their messaging to larger au-
dience, e.g., gaming Twitter’s trending topics feature, using
fake accounts, leveraging partisan hashtags to find ideolog-
ically similar users (Marwick and Lewis 2017). Therefore,
CSUs exhibited higher tweeting rate, shorter intervals, ac-
counts being unverified, less general hashtags in tweets but
more partisan hashtags in profiles, compared to CRUs.

RQ3. Situational Prediction of Susceptibility
Our results in RQ1 suggest that a user’s susceptible state
keep changing over time (section 4.1.3 (5)), as well as possi-
bly triggered by prior exposure of (mis)information from the
his/her the continuously evolving social environments (sec-
tion 4.1.3 (4)). Therefore, in RQ3 we ask the question: can
we develop an situational, social-aware model to predict a
user’s near-future susceptibility based on his/her recent shar-
ing activities and exposure history from friendships? This
task is particularly crucial in practical settings where we
need to distribute attention resources to at-risk users and
catch up misinformation early before they are further shared
to a larger population.

Prediction Task and Model. In our prediction task, the
target variable takes value 1 if a user, at a certain time point,
shares misinformation (i.e., any URLs from flagged news
sources) in the subsequent 7 days, 0 otherwise. The inputs
include a sequence of website domains shared by the user
during the past 2 weeks, called share sequence. Further-
more, to capture the possible trigger from social context ex-
posure, we also generate another sequence of URLs shared
by its 1-hop friends, called exposure sequence. We devel-
oped an interpretable deep learning model exploiting Trans-
former encoder to process sequential inputs (Vaswani et al.
2017), where the intrinsic interpretability comes from the
design of a linear format, i.e., each domain’s contribution
to the final prediction could be captured by a correspond-
ing coefficient (illustrated in Fig. 8). For comparison we im-
plemented a logistic regression (LR) classifier that takes the
counts of news sources encountered in the past as feature

accuracy precision recall F1

LR 0.69 (3e-3) 0.66 (4e-3) 0.76 (2e-3) 0.71 (3e-3)
CNN 0.71 (3e-3) 0.70 (1e-2) 0.75 (4e-3) 0.72 (1e-2)
GRU 0.71 (5e-3) 0.70 (1e-2) 0.75 (3e-2) 0.72 (1e-2)
Ours 0.72 (4e-3) 0.69 (7e-3) 0.79 (1e-2) 0.74 (4e-3)

Table 2: Model performance with average and standard de-
viation obtained from five trials of experiments.

Figure 8: Contribution heatmap of domains from past share/-
exposure sequences. Darker color indicates larger contribu-
tion, flagged sources are highlighted.

vectors, and two neural network baselines based on CNN
and GRU. A detailed description about our model is in Ap-
pendix (see Fig. 10), experimental settings in Appendix .

Performance and Interpretability. Table 2 reports pre-
diction performance: the overall result suggests that we
are able to make reasonable real-time predictions simply
based on users’ short-term traces; besides, our model and
other neural network baselines outperform the simple LR
classifier. Fig. 8 shows two case study to illustrate the in-
terpretability of our model, as it calculates a contribution
weight to each of the past shared/exposed domains (darker
colors indicates larger weights, yellow highlight indicate if
the news sources are flagged or not). In the first case, no past
problematic shares were observed, but this user was heav-
ily exposed to flagged sources over the past 2 weeks, our
model allocated large attention on flagged domains from ex-
posure (e.g., breitbart.com, thegatewaypundit.com) and on
an unflagged, far-right, pro-Donald Trump cable channel
(oann.com). One might suspect that the model purely gen-
eralizes past behaviors into the future. So we present the
second case, both misinformation share and exposure were
observed, but the model accurately predict a negative la-
bel and allocated large attention to mainstream or centered
sources (washingtonpost.com, houstonchronicle.com, the-
guardian.com, talkingpointsmemo.com). We note that this
model is unaware of any knowledge regarding a domain’s
learning or reliability, it learns domain-domain proximity
through share/exposure sequences which in turn facilitates
future prediction.

Dynamics of Misinformation Ecosystem. Besides the



temporal variation of individuals’ susceptibility, we also ex-
amined the dynamics of misinformation ecosystem through
a domain proximity network. Fig. 9 shows the networks for
three different weeks, the first week of March, April, and
May. Nodes are placed based on their proximities with ev-
ery other node and simultaneously retained at similar loca-
tions across weeks. For the clarity of presentation, only 50%
of nodes 624 (over 6K nodes) with the highest weighted de-
grees are shown. Comparing the snapshot networks, we ob-
serve that, while several most connected nodes seemed to
reappear within similar clusters, there are new nodes emerg-
ing as new cluster centers as well. To see this, we list, on the
top, the top 8 domains with the highest frequency appearing
in users’ sharing history, and also list the most connected do-
mains having the highest degrees at the bottom for each net-
work of the week. We found the bottom lists change rapidly,
suggesting that, week by week, different flagged sites be-
come dominant in the network as they emerged from the
sequences of users’ sharing. We further compute the cor-
relation of the (weighted) degree of nodes across time, and
found only 13-19% correlation (in terms of Spearman’s rank
correlation) between any two consecutive weeks. This result
highlights the changing nature of users’ sharing behavior,
but at the same time demonstrate the feasibility of utilizing
a deep learning framework to capture the emerging flagged
domains that put new risk of misinformation to users.

Discussion
This study estimated the extent to which different user types
contributed to COVID-19 misinformation spread. Our study
suggests that around 90%-99% accounts that spread mis-
information were humans instead of bots, over 50% bots
were benign. This finding partially aligns with recent work
(González-Bailón and De Domenico 2021) indicating that
bots are less central than verified accounts during con-
tentious political events, and our work provides new evi-
dence of bot prevalence in COVID-related misinformation
consumption. Regarding humans’ heterogeneous misinfor-
mation behaviors, strong-adherent users exhibited more ag-
gressive sharing activities and seemed to be more success-
ful in spreading compared to their weak-adherent counter-
parts. The difference might be unsurprising as we antici-
pate users might have different intentions – for example,
strong-adherent users might aim at supplying or/and pro-
moting misinformation for certain purposes, whereas weak-
adherent individuals might be occasionally exposed to mis-
information but easily triggered to further spread misinfor-
mation. We note that, though previous work have shown
concentration of volume in misinformation consumption
(Grinberg et al. 2019; Guess, Nyhan, and Reifler 2018), lit-
tle efforts have been made to fully understand the difference
in intentions of susceptible users, which might lead to the
difference in sharing tactics, temporal dedication and spread
influence.

Based on our findings of different misinformation behav-
iors among strong-/weak-adherent users, platforms might
consider devising different interventions tailored to differ-
ent subgroups. For example, platforms could adopt disin-
centives policies (Grinberg et al. 2019) to reduce the visi-

bility of content from strong-adherent users (i.e., misinfor-
mation suppliers); on the other hand, platform could proac-
tively deliver fact-checking corrections to weak-adherent
users through their congruent friendships to boost resilience
against misinformation, as our results have shown that av-
erage users have a stronger tendency to be influenced from
friends, prior works also demonstrated political neutral users
likely appreciate corrections of fact particularly when issued
through friendships. (Parekh, Margolin, and Ruths 2020;
Hannak et al. 2014; Margolin, Hannak, and Weber 2018).
Future work should examine the effectiveness of such tai-
lored intervention strategies in limiting misinformation cas-
cades on the platform.

Our observation about political affiliation is consistent
with prior work (Grinberg et al. 2019), which is expected
due to the domain list we partially relied on – more polit-
ical news sites among the list, and more right-leaning sites
among the lower-credibility list. However, instead of focus-
ing on political news, our study focuses on the COVID-
related topics. Moreover, we found that, while CSUs are
more likely than CRUs to be associated with right-leaning
exposures, they tend to interact with both supporting and op-
posing party leaders (though in distinctive ways) as well as
use both left/right-leaning hashtags in profiles. Our results
suggest that, even with this global health issue, CSUs may be
more responsive to politically charged COVID-related con-
tent and interactions. Our observations about emotional re-
actions deviates from the prior study on rumors (Vosoughi,
Roy, and Aral 2018), where no substantial differences were
observed in users’ negative emotional reactions when inter-
acting with false (vs. true) news. Unlike the spread of mis-
information in normal times, our result suggests that during
this COVID crisis, susceptible users may be more respon-
sive to negative-emotional charged problematic content. The
emotional responses were suggested by many crisis/risk lit-
erature (Inbar, Pizarro, and Bloom 2009) but we present the
first large-scale empirical observation. Finally, our observa-
tion about the relationship to pre-existing susceptibility sug-
gests the importance of looking at user susceptibility as a
dynamic and situational status rather than a intrinsic trait.
The proposed model could be deployed in settings where
falsehood or rumors need to be paid attention early before
they become entrenched in public debate, particularly dur-
ing uncertain and critical times like this pandemic.

Our study has limitations. The user panel was obtained
from snowball sampling and through a series of criteria,
which might not be able to reflect the demographics of US
population, the registered accounts on Twitter or other plat-
forms. Another shortcoming comes from the definition of
misinformation at news source level instead of at story level,
along with the construction of source dictionary. Our study
didn’t account for the misinformation that existed outside
of articles/URLs, such as false claims in text, images or
videos, nor did we consider the cases that flagged sources
might publish a mixture of misinformation and true stories.
Besides, the major presence of conservative news sources
in flagged source dictionary might partially explain the as-
sociation between conservative leaning and misinformation
consumption. Our findings of bot prevalence is limited by



Figure 9: Domain proximity overtime. Nodes represent domains with color indicating type (purple: flagged; green: unflagged).
Nodes are placed based on pairwise proximities (derived from embeddings) and simultaneously retained at similar locations
across weeks. Top lists show the most connected domains with the highest frequencies to be shared over the three months,
bottom lists show the most connected domains emerged from the corresponding week.

the bot detection tool. Botometer retrieved the most recent
tweets to assess bot-like behaviors, the scores might be par-
tially based on tweets posted before/after our study period.
Bots are continuously evolving and novel behaviors emerge,
thus our findings to some extent depend on the tool’s ca-
pability in capturing such novel patterns. In addition, our
analyses and prediction of linking online behavioral fea-
tures to the tendency of sharing misinformation are purely
correlational, more work are needed to explain why certain
subgroups of people tend to share misinformation in this
pandemic. Finally, though deep learning models achieved
promising performance in our prediction task, they were not
immune to pre-existing biases in training data, therefore they
might be trained to better capture patterns from dominant
subgroup of users.

Appendix
Deep Learning Model

Figure 10: Deep learning model.

The model was inspired by prior work (Vaswani et al.
2017). In Fig. 10, both inputs – the share sequence X and the
exposure sequence Y – consist of one-hot columns which
could be mapped into embeddings Ex and Ey, respectively.
These embeddings are further encoded by a Transformer en-
coder into corresponding hidden states Hx and Hy. The hid-
den states are in turn used to obtain two coefficient vectors
αx and αy to indicate the contribution weights of domains
from share and exposure sequences. We multiply domain
embeddings with the corresponding coefficients to obtain a
final representation for each input channel. Finally, a final

output layer takes the concatenation of two vectors as input
and outputs a probability ŷ to indicate the probability of fu-
ture susceptibility.

As shown in Fig. 10, the output probability ŷ can be de-
scribed as below:
ŷ = Softmax(Wo[hx,hy] + bo) (1)
= Softmax(Wo[αx ⊙WembX, αy ⊙WembY] + bo), (2)

where Wemb indicates embedding parameter and Wo (bo
is the weight (bias) of output layer, ⊙ means element-wise
multiplication, [·, ·] indicates the concatenation operation of
two vectors. Accordingly, the contribution of domain i at
time t to the final prediction is

CB[t, i] = αx[t] ·Wx
oWemb[:, i], (3)

where Wemb[, i] is domain i’s embedding, and Wx
o is the

weight from Wo corresponding to input channel X.

Experimental Settings
Baselines & Parameters. For our model, the feedforward
dimension is 1024, the number of heads is 4, the number of
encoder layers is 2. For GRU, we used bi-directional mod-
ule to encode information from both channels and then con-
catenated the outputs for the final fully connected layer. The
CNN has a combination of multiple convolution layers (with
distinct filter sizes 2, 3, 4, 5) and max pooling layers. For
all three neural networks, the dropout is 0.8 and the embed-
ding dimension is 64. For the logistic regression classifier,
we used the optimization solver “lbfgs.”

Training Details. We prepared training data based on
COVID-19 shares between March 1 and June 1, 2020. Since
the panel produced a huge amount of data, we randomly
sampled 30K users and we generated share/exposure se-
quences (observed in a 2-week period) and output labels
(obtained in a 1-week period) in a sliding window manner.
Long sequences of shares/exposures were truncated at max-
imum length 50, short sequences were abandoned at mini-
mum length 5. After this procedure, there are 17735 unique
users left and about 73000 samples as our data. The percent-
age of positive samples is 49%. In the training procedure,
we shuffled and randomly split the samples into train 60%,
validation 20% and test 20%. We ran the training procedures
for 5 times and reported the average values and standard de-
viations for evaluation metrics.
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