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ABSTRACT
CNNs have emerged as powerful techniques for object recognition.
However, the test performance of CNNs is contingent on the simi-
larity to training distribution. Existing methods focus on data aug-
mentation to address out-of-domain generalization. In contrast, we
enforce a shape bias by encouraging our model to learn features that
correlate with those learned from the shape of the object. We show
that explicit shape cues enable CNNs to learn features that are robust
to unseen image manipulations i.e. novel textures with the same se-
mantic content. Our models are validated on Toys4K dataset which
consists of 4179 3D objects and image pairs. To quantify texture
bias, we synthesize dataset variants called Style (style-transfer with
GANs), CueConflict (conflicting texture & semantics), and Scram-
bled datasets (obfuscating semantics by scrambling pixel blocks).
Our experiments show that the benefits of using shape is not subject
to specific shape representations like point clouds, rather the same
benefits can be obtained from a simpler representation such as the
distance transform.

CCS CONCEPTS
• Computing methodologies → Learning settings; Regulariza-
tion; Supervised learning.
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1 INTRODUCTION
Recognition in humans is perceived as a composition of structure
and abstraction [30]. From a distance, it is easier to recognize the
structure as an animal, rather directly discerning differences as a
horse or a zebra. Similarly, if a child sees a green elephant, they
may still recognize it as an elephant by abstracting the object of
its immediate atypical attributes. Thus, the role of structure and
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abstraction is fundamental to object recognition [1]. In fact, classical
methods of object recognition utilized structure and abstraction by
incorporating the shape of the object [6, 20, 37]. Studies of cognitive
psychology [23, 31] suggest that shape cues play a dominant role
over color and texture for inference in category membership.

CNNs [22, 41] have achieved impressive performance across sev-
eral challenging tasks by composing non-linear functions capturing
appearance information, without using the shape of the object explic-
itly. In earlier works [21, 24], the gains in performance have been
attributed to the ability of deeper layers to learn complex representa-
tions of shape. However, recent studies [12] exhibit CNN's failure
in presence of adversarial perturbations. This contradicts the earlier
shape hypothesis: If deeper layers were able to learn structure of
the object, CNNs would not have been susceptible to these minor
perturbations. Geirhos et al. [10] suggest that CNN's impressive
success builds on taking shortcuts, instead of arriving at the intended
solution. These shortcuts allow CNNs to achieve high gains on the
training data, often leading to surprising outcomes and unexpected
results for out-of-domain generalization. Related studies show that
CNNs have high texture bias and low shape bias [16, 19]. Given
the wide acceptance of CNNs, the problem of intentional perturba-
tions is crucial, especially when CNNs are applied to safety-critical
real-world problems.

In this paper, we advocate that learning the shape of an object pro-
vides a more stable representation compared to purely CNN-based
ones. We argue that shape is the inherent invariant for categorization
across all domains. Fig. 1 presents this idea visually. Humans can
recognize the object despite the difference in texture and appear-
ance for Original, Style, & CueConflict images. But such robust
shape-based recognition is not as easy for machine learning algo-
rithms [12]. We refer to the consistency of shape across the variations
as a shape-invariant, and propose explicit shape cues to find an in-
variant representation, which remains constant even after diverse
transformations of the object.

Briefly, our method works as follows. By using contrastive loss
between the input image and its corresponding shape, we enforce
shape-bias combining the benefits of both—learning from the appear-
ance of input images and their corresponding shapes. The framework
utilizes shape explicitly during training to learn better image rep-
resentations. However, shape data is not required for inference. In
order to utilize shape efficiently, it is important that shape repre-
sentation captures salient information such as gradients and surface
contours. These attributes are captured by point clouds (PC), mesh
and voxel grids, however the availability of 3D data is expensive and
often not guaranteed. We introduce a simpler notion of shape, a dis-
tance transform (DT) which successfully captures local perceptual
information (as shown in Fig. 2) bypassing any complex interface
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Figure 1: The dataset variations we use for evaluation. We expect a model robust to texture bias to perform well on Style and
CueConflict, but poorly on Scrambled.

and costly sensors. We show both PC and DT obtain robust image
representations for out-of-domain generalization.

We demonstrate the advantage of proposed explicit shape bias
over methods that capture shape implicitly through data augmenta-
tions. We test across different machine learning tasks (Unseen im-
ages, Unseen instances and Unseen categories) taking into account
supervised and unsupervised scenarios in the Toys4K dataset [40]
(Fig. 4) without necessitating any retraining on new dataset distri-
butions such as Style or CueConflict. In summary, this paper makes
the following contributions:

• By using contrastive loss between the input image and its
corresponding shape, we enforce a shape bias to learn better
image representations, robust to unseen image manipulations.

• We break the correlation between objects' shape and their
natural texture by synthesizing variants of the original Toys4K
dataset, and evaluate the susceptibility of a model to local
texture by evaluating on Scrambled images.

• We show the efficacy of the explicit shape bias across different
un-/supervised tasks without need of retraining on new dataset
distributions.

• We demonstrate the advantages of a 2D distance transform
to capture shape and show that both this simpler shape rep-
resentation, and 3D point clouds, are useful to inject shape
bias.

2 RELATED WORK
Generalization CNNs have been shown to be over-reliant on textu-
ral information in images [28]. Therefore, CNNs can classify tex-
tures even when object structure is absent [9]. Thus, the impressive
results on ImageNet is attributed to texture cues rather than learning
shape of the object [16]. Naturally, even the most trivial (often inten-
tional) perturbations in texture degrades the performance of CNNs
drastically [12]. Over the past years, there have been several data
augmentation techniques such Stylized-ImageNet [11], Mixup [51],
CutMix [50], AugMix [15] which address this discrepancy in per-
formance. Mummadi et al. [32] suggests that the improvement on
corruption-robustness by data augmentation, may not always lead to
shape-bias. Our work has similar motivation as in domain general-
ization [5, 18, 25, 44] which guide CNNs to be robust against novel
domains. In contrast to data augmentation & domain generalization
methods, we use an explicit shape bias as regularization for learning
robust representations. We aim for a shape-invariant model which
uses shape-cues explicitly such that the learned representation is
consistent across domain boundaries.

Shape Extraction Early research in shape modeling extract shapes
as closed boundary edges which have been studied extensively us-
ing Fourier descriptors [2, 27], medial axis transform [3], skele-
tons [8], bone graphs [29], shock graphs [4, 39], AMAT [42], and
flux graphs [36, 47]. Skeletons are imperfect as they often contain
spurious branches that do not correspond to actual parts of the object.
Narayanan et al. [33] used shock graphs with GNNs for graph-based
shape transformation of input image to replace standard CNNs. On
the contrary, we investigate if shape cues can be used to enhance clas-
sical CNNs. Appearance representations are ubiquitous in computer
vision, and therefore we deliberately address alignment of image-
to-shape feature representations via contrastive learning. However,
analyzing the efficacy of different shape extraction techniques is
outside the scope of this work.

Shape-Texture Bias Recent works have addressed texture-bias
in CNNs by training on uninformative-styled datasets [11, 32] (i.e.
breaking correlation between identity and natural texture of the ob-
ject), mixing feature statistics between image instances [52], using
gradient information [49] and by aliasing [43]. Li et al. [26] show
that augmenting the dataset with conflicting shape and texture cues
can improve CNN performance. In this paper, we focus on utiliz-
ing shape to find an invariant representation rather than discarding
texture-cues. Recently, Stojanov et al. [40] used shape to improve
generalization to novel object categories in the same source domain.
Inspired from this work, we refine and expand the advantages of
using shape for generalization to unseen image manipulations (novel
domains) over a variety of tasks in machine learning (Fig. 4). We use
contrastive learning to achieve shape-regularized feature represen-
tations in order to alleviate the texture bias in CNNs. We show that
shape invariance can be derived by using a 2D distance transform
rather than the more costly 3D point cloud data used by Stojanov et
al. [40].

3 USING SHAPE FOR CLASSIFICATION
Our work focuses on utilizing shape invariance to alleviate texture
bias in CNNs. Shape is interesting especially due to it robustness

Figure 2: Visualization of distance transform (DT) computed
for original objects in the Toys4K dataset (images shown first,
then DTs). The distance transform captures the skeleton and
boundary of an image in a compact representation.
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Figure 3: (Left) ResNet18 (𝑓𝑣) is trained to learn image features using the shape-bias loss. A pretrained ResNet18 (𝑓𝑠 ) is used as
feature extractor for 2D distance transforms. Different categories are depicted by distinct shapes ( , , ) in the latent space. (Red
denotes shape features. Blue denotes image features. (Right) The shape-bias loss is composed of 3 losses, (a) mean squared error (b)
pairwise loss and (c) contrastive loss. In addition, we use cross-entropy loss (for supervised learning). Blue dotted lines denote distance
minimization. Red dotted lines denote distance maximization.

towards noise caused by changes in illumination, scale, and style.
Even though the idea of using shape invariance is intuitive, the
importance of shape is shadowed by the tremendous success of
appearance-based methods, and the challenges of capturing shape
information in the complex representations learned by CNNs [16,
19].

Consider the objective of obtaining a mapping 𝑀: 𝐼 → IR𝐶×1
where 𝐼 denotes image domain, and𝐶 denotes the number of classes.
We can approximate the optimal function 𝑀 using a computationally
convenient embedding form, 𝑓 , which extracts representations 𝜖

from images. 𝜖 is optimal feature for classification, which may (or
may not) capture shape. We hypothesize there is an implicit feature 𝑠,
which can capture shape holistically. In practice, inferring a function
𝑓 ∗ that uses shape invariance 𝑠 explicitly, is not enforced in machine
learning. Rather, one looks for 𝑓 which is generally associated with
optimal classification. The problem can be viewed as having two
extreme ends leading to appearance-only and shape-only models,
both leading to inferior generalization.

We deal with the two problems implied above as follows. In lieu
of deriving the underlying shape domain from 3D point cloud data,
we approximate it using the more accessible 2D distance transform.
We encourage models to learn both appearance and shape simultane-
ously in a contrastive manner, which has a regularizing effect and
achieves superior generalization performance.

3.1 Shape Representation
An intuitive shape representation are 3D point clouds (PC) [40]. We
use this representation as a variant of our method. PC is fed directly
into DGCNN [46] for processing. However, PC data is not available
for most computer vision tasks. Thus, we also consider shape data
to be in the form of a distance transform (DT) computed from the
input image. First, a mask is used to identify non-background pixels,
then DT is computed over the masked images. DT (often referred
as Euclidean DT) has positive values inside the object computed

using different radii of dilation. Fig. 2 shows a visualization for DT
computed for different objects.

DT is a widely used technique in shape analysis [7], but our pro-
posed use of DT for recognition and representation learning via a
contrastive loss is novel. DT simulates a convenient and succinct
representation of shape without any significant computational over-
head. To compute a shape representation, we train a ResNet18 on DT
and DGCNN on PC for supervised classification. The trained model
is used as a feature extractor to compute the shape representation
for each instance. We extract multiple features by sampling im-
ages (different views) for the instance. Finally, we compute a mean
shape representation for each instance. The image-based model is
encouraged to learn a representation similar to the pre-trained shape
features as shown in Fig. 3. Note that these shape features are not
updated while training image-based models.

3.2 Shape Bias Loss
Appearance feature representations are ubiquitous, so we deliber-
ately address alignment of image-to-shape feature representations.
We rely on two losses used in prior work [40], and a contrastive loss
which has not previously been used to bridge appearance and shape
representations. We first minimize the pointwise squared Euclidean
distance between the shape features and corresponding image fea-
tures. For a minibatch B,

L𝑚𝑠𝑒 =
∑
𝑘∈𝐶

√√√
1
𝑛𝑘

𝑛𝑘∑
𝑗=1

(
𝜙𝑣
𝑗
− 𝜙𝑠

𝑗

)2
(1)

where 𝐶 denotes the number of classes1, 𝑛𝑘 denotes the number of
images in each class, 𝜙𝑣 denotes image feature and 𝜙𝑠 denotes shape
feature.

1For notation, we use the term ‘classes’ to denote the target labels for a classification
task. We use ‘categories’ to denote objects in Toys4K dataset. The number of classes
need not necessarily be equal to number of categories, especially in a low-shot setting.
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Figure 4: We evaluate shape bias loss across all three axes - images, instances and categories of Toys4K dataset. Each block along the
category axis is an object, say airplane, boat and crab. Each category has multiple instances, e.g. yellow, purple and brown airplanes
& each instance has multiple views along the image axis.

A pointwise loss is not sufficient as it fails to capture intra-class
compactness against inter-class differences. An additional loss con-
strains the pairwise distances between image representations of
object instances to be same as the pairwise distances of the learned
shape representations.

L𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 =∑
𝑘∈𝐶

√√√√√√ 1
𝑛𝑘

𝑛𝑘∑
𝑗=1
𝑗≠𝑗 ′

(
𝜙𝑣
𝑗
− 𝜙𝑣

𝑗 ′

)2
− 1
𝑛𝑘

𝑛𝑘∑
𝑗=1
𝑗≠𝑗 ′

(
𝜙𝑠
𝑗
− 𝜙𝑠

𝑗 ′

)2 (2)

where𝐶 denotes the number of classes, 𝑛𝑘 denotes the number of
images in each class, 𝜙𝑣 denotes image feature and 𝜙𝑠 denotes shape
feature. These losses originally appeared in Stojanov et al. [40],
but unlike their formulation, we implement both the losses L𝑚𝑠𝑒

and L𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 in a stratified manner i.e. the image-to-shape loss is
computed within a given class to ensure that the model is forced to
minimize distances for shapes within the same class.

We further align image-to-shape features by incorporating a con-
trastive loss, InfoNCE [13] with an easy-semihard miner [48]. We
choose the image feature 𝜙𝑣 as an anchor and a shape feature 𝜙𝑠 is
chosen as a positive sample or negative sample depending on class
label.

L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 =
∑
𝑘∈𝐶

1
𝑛𝑘

(
𝑛∑
𝑖=1

− 𝑙𝑜𝑔

(
𝑒𝜙

𝑣
𝑖
·𝜙𝑠

+/𝜏∑𝑀
𝑗=0 𝑒

𝜙𝑣
𝑖
·𝜙𝑠

𝑗
/𝜏

))
(3)

where, 𝐶 denotes the number of classes, 𝑛𝑘 denotes the number
of images in each class, 𝜏 is a temperature hyperparameter, and the
sum in the denominator is over one positive and 𝑀 negative samples.
𝜙𝑣 and 𝜙𝑠+ need not be extracted from the same input image, but
𝜙𝑠+ should be a shape feature of the same class as 𝜙𝑣 . Optimizing
InfoNCE loss between image and shape features maximizes mutual
information between the image and its contextual shape. As the role
of query-key pairs is very significant in the InfoNCE loss, mini-
mizing this loss with image-shape pairs imbibes invariance in the
learned representations by maximising the similarity between image
and shape representations. For a given image feature 𝜙𝑣

𝑖
(anchor),

the easy semi-hard miner [48] finds 𝑀 hardest shape features such
they are further away from the selected positive shape feature 𝜙𝑠+.

The final shape bias loss is:

L𝑠ℎ𝑎𝑝𝑒−𝑏𝑖𝑎𝑠 = _𝑚 ·L𝑚𝑠𝑒 + _𝑝 ·L𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒

+ _𝑐 ·L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒
(4)

During training, L𝑠ℎ𝑎𝑝𝑒−𝑏𝑖𝑎𝑠 is minimized along with cross-
entropy loss. The coefficients were computed empirically using hy-
perparameter optimization i.e. (10, 1, 0.01, 0.001) for (L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 ,
L𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦 , L𝑚𝑠𝑒 , L𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 ) respectively. For Unseen cate-
gories, the training and test partitions have distinct categories. Thus,
to classify novel categories, we use nearest neighbour with pre-
trained ResNet as feature extractor to compute mean feature for
each category. The model is evaluated by varying the number of
new categories (𝑘-way) and the number of images used to compute
prototype for a category (𝑘-shot) [45] using a pre-trained ResNet. It
is important to note that at inference, the model doesn't have access
to shape features rather only images are fed for classification.

4 EXPERIMENTS
We test if our proposed shape bias boosts image classification com-
pared to a variety of baselines (Sec. 4.1), under Unseen images,
Unseen instances of an object (Sec. 4.2) and Unseen categories
(Sec. 4.3). We compare two forms of shape domains, PC and DT
(Sec. 4.5). We find that PC are superior over other methods for the
Unseen images and Unseen instances, while DT are especially suc-
cessful for Unseen categories. Finally, we evaluate if contrastive
learning is beneficial in aligning the image-to-shape feature repre-
sentations (Sec. 4.6).

Datasets and Metrics We evaluate our models on the recent
Toys4K dataset [40] for image classification. The dataset consists of
3D shape point cloud data as well as image renders of 4,179 object
instances in 105 categories. We partition the dataset into 70:15:15
splits as train, validation and test. We depict the evaluation tasks
in Fig. 4. First, we test model's ability to generalize to unseen im-
ages. The dataset partitions are disjoint, but they contain the same
categories and instances. Next, we test along the instance dimension
such that dataset partitions has the same categories, but the partitions
have disjoint instances, called unseen instances. Finally, we test gen-
eralization to unseen categories. The tasks are arranged in increasing
order of complexity assessing higher levels of generalization.

We further evaluate robustness of different models on unseen im-
age manipulations i.e. novel textures with the same semantic content.
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Table 1: Evaluation of shape-biased models (names in bold) on unseen images. As SIN requires finetuning with pretraining on Style,
we follow the same procedure for our shape-biased models (bottom).

Modality Toys4K Style Cue Conflict Average Scrambled
Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↓

Original Images 93.48 ± 0.12 15.09 ± 0.41 36.52 ± 0.51 48.36 16.26 ± 0.58
Edge Images 88.87 ± 0.19 21.73 ± 0.58 47.17 ± 0.41 52.59 8.84 ± 0.74
STDNN [26] 75.07 ± 0.38 31.23 ± 0.36 40.15 ± 0.47 48.82 9.25 ± 0.41

InfoDropout [38] 90.36 ± 0.14 5.58 ± 0.10 38.15 ± 0.24 44.70 11.95 ± 0.18
MixStyle [52] 92.41 ± 0.12 19.68 ± 0.46 20.12 ± 0.48 44.07 15.33 ± 0.68

DistanceT Biased 86.79 ± 0.21 29.93 ± 0.49 38.01 ± 0.55 51.58 13.77 ± 0.61
PointCloud Biased 92.21 ± 0.20 31.49 ± 0.45 40.82 ± 0.46 54.84 9.86 ± 0.41

SIN [11] 87.94 ± 0.20 80.81 ± 0.27 37.96 ± 0.46 68.90 12.38 ± 0.59
DistanceT Biased 89.62 ± 0.15 80.27 ± 0.30 41.19 ± 0.48 70.36 8.47 ± 0.43

PointCloud Biased 84.81 ± 0.22 74.41 ± 0.31 37.28 ± 0.46 65.50 6.54 ± 0.24

For each of these tasks, we create Style and CueConflict corruption
variants of Toys4K dataset, following Geirhos et al. [11]. To generate
Style dataset we carry out style-transfer on images using AdaIN [17]
with paintings [34] as texture images, and set the stylization co-
efficient 𝛼=0.5. CueConflict images have conflicting texture and
semantics. To this end, we first use a non-parametric example-based
image quilting to construct a texture image [35] from a random
image from the Toys4K dataset. The texture image is used to fill the
silhouette of the original image. For both Style and CueConflict, the
label assigned to final image is same as that of original image. As
shown in Fig. 1, the labels assigned is same as the original image
i.e. apple and banana respectively, even though the texture may be
atypical. Following Mummadi et al. [32], we evaluate a model's sus-
ceptibility to local texture-bias. We obfuscate the semantics of the
original image by scrambling pixel blocks. A model which properly
captures object semantics and shape shouldn't classify the image as
the original object because mere presence of texture segments should
not correspond to existence of the object. To evaluate robustness to
unseen image manipulations, in most experiments we focus on zero-
shot generalization i.e. we evaluate a model's robustness without any
retraining on any of the Style, CueConflict and Scrambled datasets.

4.1 Methods Tested
To evaluate shape-texture bias, we compare with recent baselines
which claim to improve the shape bias in deep learning models.
We also compare our approach to data augmentation techniques to
explore if the inclusion of explicit shape bias has advantages over
improvement on corruption robustness. We choose ResNet18 [14]
as the default architecture for all models. Original Images repre-
sent an off-the-shelf ResNet18 trained on on the original Toys4K
as a baseline. Edge Images represent the performance of ResNet18
trained on Canny edge maps of the input image (𝜎 = 1). DistanceT
Biased is the proposed shape-biased model, which uses DT of the
input image as shape data. PointCloud Biased is another variant
of our shape-biased model, which uses PC corresponding to the
input image (available in Toys4K) as shape data. STDNN [26] pro-
poses soft label assignment and combination of stylized images from
random classes to learn a debiased network. We compare STDNN

for Unseen images & Unseen instances but not in the low-shot set-
ting for Unseen categories as their proposed technique uses label
information. Similar to STDNN, MixStyle [52] proposes to com-
bine stylized images in an implicit manner by mixing instance-level
feature statistics of training samples. InfoDropout [38] alleviates
texture information from the image by adopting a Dropout-like al-
gorithm based on local self-information in the image i.e. regions
containing more contrasting and distinctive information than their
surroundings. SIN [11] is trained on stylized images and then fine-
tuned on the original dataset keeping the feature backbone intact.
The work is driven by style transfer [9] which was used to generate
uninformative-styled images which can be in-turn used to elimi-
nate over-reliance on common texture of objects for classification.
For comparison to other baselines (such STDNN, InfoDrop and
MixStyle), we evaluate model performance without any retraining.
However, to have a fair comparison to SIN, we create variants of
our two proposed shape-biased models where we follow the same
procedure, i.e. finetuing on Toys4K preceded by pre-training on
Style. We do not include this model in the low-shot setting, where
the model sees disjoint set of classes in training and inference.

4.2 Can shape-bias enhance supervised models?
Domain generalization is primarily associated with recognizing
novel data distribution during inference. Going beyond, we combine
atypical distributions such as Style and CueConflict with various
tasks as shown in Fig. 4. Tables 1 and 2 show the results on Unseen
images and Unseen instances respectively. Unseen images emulate
a general machine learning setting, where we expect the model to
generalize to novel views if it has already seen the object during the
training phase. In contrast, Unseen instances emulates a harder task:
the model may have seen a yellow Wright flyer, but is expected to
recognize a purple jet. As the models have very diverse performance
on Style and CueConflict datasets (Tables 1 and 2), we evaluate ro-
bustness by observing the mean accuracy across the Original, Style
and CueConflict variations.

First, in the top of Tables 1 and 2, we note that the performance
of ResNet trained on Original Images drops from 93.48% to 15.09%
and 70.70% to 8.79% for Unseen images and Unseen instances on
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Table 2: Evaluation of shape-biased models (names in bold) on unseen instances. As SIN requires finetuning with pretraining on Style,
we follow the same procedure for our models (bottom).

Modality Toys4K Style Cue Conflict Average Scrambled
Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↓

Original Images 70.70 ± 0.01 8.79 ± 0.24 33.98 ± 0.27 37.82 13.09 ± 0.84
Edge Images 70.12 ± 0.02 18.75 ± 0.59 42.27 ± 0.40 43.71 10.35 ± 0.94
STDNN [26] 62.78 ± 0.64 30.30 ± 0.56 38.65 ± 0.55 43.91 9.75 ± 0.37

InfoDropout [38] 68.59 ± 0.29 8.75 ± 0.34 33.44 ± 0.32 36.93 12.03 ± 0.34
MixStyle [52] 70.51 ± 0.08 14.26 ± 0.51 35.16 ± 0.05 39.98 13.09 ± 1.05

DistanceT Biased 58.44 ± 0.60 21.56 ± 5.74 36.56 ± 0.57 38.85 7.03 ± 0.46
PointCloud Biased 68.95 ± 0.18 33.20 ± 0.81 35.55 ± 0.32 45.90 7.42 ± 0.59

SIN [11] 70.12 ± 0.40 61.72 ± 0.21 36.91 ± 0.35 56.25 10.35 ± 0.89
DistanceT Biased 71.48 ± 0.21 64.84 ± 0.21 35.35 ± 0.13 57.22 9.38 ± 0.54

PointCloud Biased 73.24 ± 0.46 73.05 ± 0.16 40.62 ± 0.01 62.30 15.82 ± 0.56

the Style dataset respectively. This severe drop in accuracy suggests
that high performance gains in off-the-shelf CNNs are limited to
datasets with similar texture characteristics as the training dataset.
Despite not having the benefit of advanced techniques such as soft
labels (STDNN [26]), self-information (InfoDrop [38]), or mixing
feature statistics (MixStyle [52]), training a ResNet on edge maps
provide a relatively stable model as it suppresses variations in texture
and enhances boundary information explicitly. However, using edge
maps is not effective in case of Style images, which corrupts the
edge information of original images. In contrast, PC-biased model
achieves much better overall performance. The DT-biased model
achieves significant improvements over Edge-based ResNet on Style
images in Table 1 and on both Style & Scrambled images in Table 2.
We can infer that augmenting the feature space by deliberate align-
ment of image-to-shape feature alignment leads to discriminative
embedding space robust to unseen image manipulations. We also
observe that gaps between DT and PC are small in multiple settings,
e.g. Style (1.56%) and CueConflict (2.81%) in Table 1, CueConflict
(1.01%) and Scrambled (0.39%) in Table 2.

We evaluate the performance on Scrambled images to judge the
susceptibility of a model to local texture by obfuscating semantics
(lower performance is better). We observe that PC-biased models are
less susceptible to recognize the object for unseen images while DT-
biased models are more suitable for unseen instances. The results
suggest that incorporating shape bias leads to relatively robust fea-
tures which can capture shape holistically and can thus bear atypical
transformations of the original object.

Figure 5: Average performance on Original, Style and CueCon-
flict datasets for unseen categories

At the bottom rows of Tables 1 and 2, we observe that SIN is
able to perform efficiently on Style images but at a significant cost
of training the model again on the Style images. This would not be
feasible at scale. Following the same procedure as adopted by SIN,
we retrain our shape-biased models i.e. PC-biased and DT-biased
models, and see these models achieve better accuracy than SIN in
many settings, indicating that inclusion of shape bias can improve
effectiveness of deep learning models. DT performs better than or
comparable to PC on Toys4K, Style and CueConflict in Table 1
(bottom).

4.3 Can shape bias aid in learning new categories?
Table 3 compares the performance of shape-biased models to alterna-
tive methods on Unseen categories. Fig. 5 provides a visual summary
of Table 3 by indicating the mean value across Original, Style and
CueConflict datasets. Observe that the DT-biased model outperforms
all the baselines in all settings for Unseen categories as shown in
Fig. 5, and PC-biased model follows subsequently. However, for
5-shot setting the performance of PC-biased model is very similar
to Original images. We observe that benefit of shape bias is more
prominent for 1-shot both for DT as well as PC. The evidence clearly
demonstrates the significance of using shape for rapidly learning
novel categories from limited examples, even with unseen image
manipulations.

Unlike Unseen images and Unseen instances, we observe that
Edge-based ResNet has inferior performance to ResNet trained on
Original images. Thus, rejecting all the texture hampers performance.
Edge-based ResNet can be viewed as an extreme shape-biased model.
Observing the performance on Original images and Edge images,
we can infer that the extreme ends of appearance and shape lead to
inferior generalization.

4.4 Can shape-bias aid in generalization?
In domain generalization, the target domain has distinct characteris-
tics in contrast to the training datasets. To corroborate the advantages
of the proposed image-to-shape feature alignment, we evaluate the
robustness to texture variations on the PACS dataset. A good model
should be able to capture the object even from distinctive domain
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Table 3: Evaluation of shape-biased models (names in bold) for mitigating texture bias on unseen categories. Shape bias boosts
performance in almost all settings on the original Toys4K and all manipulated versions. 𝑘-shot denotes number of images (supports)
used for prototype and 𝑘-way denotes number of unseen categories at inference.

(a) Model performance on the original Toys4K dataset

Modality 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way 1-shot 20-way 5-shot 20-way
Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑

Original Images 62.97 ± 0.34 78.62 ± 0.26 49.38 ± 0.25 66.82 ± 0.21 37.54 ± 0.15 55.15 ± 0.15
Edge Images 59.36 ± 0.36 72.87 ± 0.29 44.74 ± 0.24 59.44 ± 0.21 32.92 ± 0.15 46.68 ± 0.14
MixStyle [52] 38.31 ± 0.30 47.97 ± 0.29 25.55 ± 0.18 33.62 ± 0.19 16.73 ± 0.10 23.18 ± 0.11

InfoDropout [38] 57.82 ± 0.33 75.62 ± 0.27 43.98 ± 0.24 63.74 ± 0.21 33.17 ± 0.47 52.11 ± 0.45
DistanceT Biased 70.93 ± 0.34 84.08 ± 0.23 57.80 ± 0.25 74.19 ± 0.19 45.67 ± 0.17 63.19 ± 0.14

PointCloud Biased 63.09 ± 0.34 77.82 ± 0.26 49.53 ± 0.24 66.37 ± 0.20 37.90 ± 0.15 54.80 ± 0.14

(b) Model performance on Style images

Modality 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way 1-shot 20-way 5-shot 20-way
Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑

Original Images 32.79 ± 0.28 39.11 ± 0.30 22.20 ± 0.19 26.46 ± 0.19 15.14 ± 0.11 17.73 ± 0.12
Edge Images 37.87 ± 0.26 43.43 ± 0.25 23.20 ± 0.15 28.23 ± 0.15 14.22 ± 0.08 18.15 ± 0.08

InfoDropout [38] 28.24 ± 0.20 30.82 ± 0.22 15.57 ± 0.11 17.19 ± 0.12 8.55 ± 0.19 9.51 ± 0.21
MixStyle [52] 32.83 ± 0.25 39.51 ± 0.25 20.18 ± 0.15 24.90 ± 0.14 12.13 ± 0.08 15.61 ± 0.08

DistanceT Biased 39.64 ± 0.26 45.21 ± 0.24 25.70 ± 0.15 30.71 ± 0.15 16.40 ± 0.09 20.36 ± 0.09
PointCloud Biased 38.44 ± 0.25 43.24 ± 0.23 25.52 ± 0.15 30.23 ± 0.16 16.68 ± 0.09 20.54 ± 0.19

(c) Model performance on Cue-Conflict images

Modality 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way 1-shot 20-way 5-shot 20-way
Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑

Original Images 47.55 ± 0.37 65.65 ± 0.33 34.10 ± 0.24 51.29 ± 0.24 23.89 ± 0.15 38.24 ± 0.15
Edge Images 46.14 ± 0.30 56.25 ± 0.27 31.55 ± 0.19 41.16 ± 0.19 20.72 ± 0.11 27.99 ± 0.11
MixStyle [52] 26.89 ± 0.21 30.41 ± 0.22 15.56 ± 0.12 18.14 ± 0.13 9.26 ± 0.07 10.89 ± 0.07

InfoDropout [38] 39.94 ± 0.25 49.53 ± 0.27 26.32 ± 0.16 35.12 ± 0.17 17.39 ± 0.29 24.93 ± 0.33
DistanceT Biased 59.32 ± 0.31 68.95 ± 0.25 45.21 ± 0.22 56.59 ± 0.19 33.46 ± 0.14 44.91 ± 0.13

PointCloud Biased 52.08 ± 0.31 62.90 ± 0.27 38.04 ± 0.21 48.95 ± 0.19 26.72 ± 0.12 36.60 ± 0.12

(d) Model performance on Scrambled images

Modality 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way 1-shot 20-way 5-shot 20-way
Acc. ↓ Acc. ↓ Acc. ↓ Acc. ↓ Acc. ↓ Acc. ↓

Original Images 38.93 ± 0.33 54.06 ± 0.33 24.79 ± 0.20 38.68 ± 0.23 15.55 ± 0.12 26.60 ± 0.13
Edge Images 32.88 ± 0.23 36.91 ± 0.23 19.16 ± 0.13 22.65 ± 0.13 10.86 ± 0.07 13.20 ± 0.07
MixStyle [52] 29.01 ± 0.23 34.68 ± 0.22 16.86 ± 0.13 20.95 ± 0.13 9.61 ± 0.07 12.47 ± 0.07

InfoDropout [38] 35.59 ± 0.25 42.04 ± 0.26 21.84 ± 0.15 26.88 ± 0.16 12.87 ± 0.27 17.02 ± 0.29
DistanceT Biased 27.36 ± 0.19 28.16 ± 0.18 15.35 ± 0.11 15.75 ± 0.10 8.53 ± 0.06 8.73 ± 0.05

PointCloud Biased 28.88 ± 0.21 30.47 ± 0.02 16.80 ± 0.12 17.97 ± 0.11 9.65 ± 0.07 10.37 ± 0.06

capturing a wide variety of domains. The images typically used as
training datasets are reflective of a real-world setting in computer
vision. Therefore, we choose the Photo domain for training. The
trained model is expected to capture abstract objects even if the do-
main is maximally distinct from real-world picture because the shape
of the object is still consistent. We use the Art paintings, Sketch and
Cartoon domains for evaluation. Fig. 6 shows that the DT-biased
model achieves best average accuracy on these abstract domains,

providing empirical evidence that it is able to capture shape from
natural images which is robust to corruptions like paintings and
cartoons. Edge-based ResNet has superior performance on Sketch
dataset, due to similarity between Sketch and Edge images, but it
shows an inferior performance on other domains. The experiment
provides empirical evidence that rejecting texture completely may
hamper generalization. Rather, a model should use both appearance
and shape for better generalization.
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4.5 Distance Transform vs. Point Cloud
As explained in Section 3.1, we compute a mean feature representa-
tion for each instance, by averaging over multiple shape represen-
tations (computed over different views) of the same instance. PC
provides a permutation-invariant representation for spatial structure.
As DGCNN processes PC data directly, it extracts features which are
invariant to viewpoint. However, DT is subject to viewpoint. There-
fore, shape representations computed by DGCNN for PC are much
more discriminative as compared to those computed by ResNet18
for DT. In Unseen images and Unseen instances, cross-entropy is
dominant, and the model focuses on discriminating between the
classes. As PC features are more discriminative, using PC leads to
superior performance as compared to DT. We observe that Point
Cloud-biased model achieves a marginal boost (3.3% and 7.05%
for Unseen images and Unseen instances, respectively) in compari-
son to DT-biased model but at the cost of 3D data acquisition and
processing.

However, the performance on Unseen categories is much more
decisive to understand the advantages of using shape, as a model
with stronger shape bias has a greater potential to recognize new
categories effectively. In a low-shot setting (Unseen categories), the
cross-entropy loss is absent, and the model emphasizes shape-bias
loss i.e. image-to-shape alignment only. We observe that it is easier
to impose constraints on features for contrastive image-to-shape fea-
ture alignment, when both shape and image features are similar, i.e.
both image and DT are extracted via same architecture (ResNet18).
However, aligning image features from two distinct distributions i.e.
image (ResNet18) and PCs (DGCNN) is more challenging. There-
fore, we observe that DT-biased model attains substantial boost

Figure 6: Comparative evaluation of DT-biased model on PACS
dataset. The photo domain is used for training, as it reflects
training datasets in a real-world setting.

Figure 7: Ablation study showing impact of contrastive loss for
PointCloud-biased model for unseen categories task.

Table 4: Ablation study for contrastive loss. Blue cells show the
top-3 models

MSE Pairwise Contrastive Toys4K Style CueConflict Average Scrambled

✓ 0.3208 0.2363 0.2088 0.2553 0.1754
✓ 0.4797 0.1865 0.2940 0.3201 0.2182

✓ 0.4904 0.2296 0.3229 0.3477 0.2288
✓ ✓ 0.4638 0.1815 0.2871 0.3108 0.2238

✓ ✓ 0.5368 0.2291 0.3567 0.3742 0.2505
✓ ✓ 0.4937 0.2008 0.3327 0.3424 0.2430
✓ ✓ ✓ 0.5431 0.2405 0.3600 0.3812 0.2554

in accuracy. The superior performance of the Distance Transform-
biased model in Unseen categories shows that shape information
can be exploited efficiently by using the simpler DT.

4.6 Impact of contrastive loss
In this paper, we present a novel use of contrastive loss for aligning
image-to-shape features motivated by cross-modal contrastive ap-
proaches on text-to-image alignment. To this end, we incorporate
InfoNCE with an easy-semihard miner. Stojanov et al. [40] uses
mean squared error (MSE) and pairwise losses to align image-to-
shape features. However, our experiments (Fig. 7) suggest that such
alignment is not optimal. Therefore, we add contrastive loss to pe-
nalize the relative distance between corresponding image and shape
features directly. As described in Sec. 3, we use image features as
an anchor and shape features as a positive/negative samples with
an easy-semihard miner. We evaluate the impact of contrastive loss
on performance a PC biased model for the Unseen categories task
as shown in Fig. 7. We also conduct exhaustive ablation study to
understand the advantages of individual components in shape-bias
loss as shown in Table 4. We see in Table 4 that the top-3 models in-
clude contrastive loss. Observe that even using contrastive loss alone
(row 3) has a better performance than the model which uses mean
squared error and pairwise loss as suggested by Stojanov et al. [40].
Furthermore, Fig. 7 clearly demonstrates that using contrastive loss
boosts the performance of shape-biased model beyond that which is
attained by MSE and pairwise losses.

5 CONCLUSIONS
In this work, we demonstrated the advantages of using shape bias
enforced via a contrastive loss, in conjunction with classical CNNs.
The benefits of shape invariance is achieved through two representa-
tions, namely 3D point cloud and 2D distance transform. Our models
learn representations robust to unseen image manipulations such as
Style, & CueConflict images. We show our proposed method works
better than existing methods which focus on data augmentation as a
mechanism to encourage a CNN to capture shape. We empirically
demonstrate that using shape-bias leads to superior generalization in
both supervised and unsupervised scenarios without necessitating
retraining on unseen domains. Finally, we show that benefits of us-
ing shape is not restricted to popular representations like 3D point
clouds, rather significant benefits can be extracted using simpler
distance transform for out-of-domain generalization.
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