
Hypernymization of named entity-rich captions for
grounding-based multi-modal pretraining
Giacomo Nebbia

gin2@pitt.edu
University of Pittsburgh

Pittsburgh, Pennsylvania, USA

Adriana Kovashka
kovashka@cs.pitt.edu
University of Pittsburgh

Pittsburgh, Pennsylvania, USA

Figure 1: Our key ideas: an object mentioned using a named entity cannot be well grounded with an image. We thus introduce
two methods to carry out hypernymization on the caption and show better grounding performance between the image and the
hypernymized captions.

ABSTRACT
Named entities are ubiquitous in text that naturally accompanies
images, especially in domains such as news orWikipedia articles. In
previous work, named entities have been identified as a likely rea-
son for low performance of image-text retrieval models pretrained
on Wikipedia and evaluated on named entities-free benchmark
datasets. Because they are rarely mentioned, named entities could
be challenging to model. They also represent missed learning op-
portunities for self-supervised models: the link between named
entity and object in the image may be missed by the model, but it
would not be if the object were mentioned using a more common
term. In this work, we investigate hypernymization as a way to
deal with named entities for pretraining grounding-based multi-
modal models and for fine-tuning on open-vocabulary detection.
We propose two ways to perform hypernymization: (1) a “man-
ual” pipeline relying on a comprehensive ontology of concepts,
and (2) a “learned” approach where we train a language model to
learn to perform hypernymization. We run experiments on data
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from Wikipedia and from The New York Times. We report im-
proved pretraining performance on objects of interest following
hypernymization, and we show the promise of hypernymization on
open-vocabulary detection, specifically on classes not seen during
training.
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1 INTRODUCTION
In recent years, collections of large numbers of image-caption
pairs [5, 27, 30] have made training large (i.e., hundreds of millions
of parameters), general-purpose computer visionmodels [16, 24, 37]
possible. Suchmodels can later be used as building blocks for or fine-
tuned on tasks of interest [29, 40]. The captions in these large image-
text datasets are not manually collected, but “scraped” from existing
sources as they naturally accompany the images (e.g., the alt-text
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HTML field for images crawled from the Internet [5, 27], or text de-
scribing images from Wikipedia [30] or news articles [4, 32]). How-
ever, the use of captions naturally associated with images presents
some challenges: captions can be ill-formed or irrelevant [27], and
they may include named entities (NEs) [27].

NEs represent a challenge when pretraining multi-modal models
because they are rarely mentioned, making it hard for a model to
learn the link between the NE and the corresponding object in the
image. In fact, previous work [30] pointed at NEs as the reason
for sub-par performance of multi-modal retrieval models trained
on NE-rich Wikipedia data and tested on NE-free COCO [21] and
Flickr30K [36].

Some domains contain a large fraction of captions with NEs, and
these NEs require special handling. Captions gathered from the
alt-text HTML field may include few NEs (e.g., only around 25%
of captions in CC12M [5] originally included a NE for a person), but
themajority of captions in domains likeWikipedia and news articles
include NEs (e.g., more than 95% in some news datasets [4, 32]).
Thus, discarding captions with NEs is not feasible. Furthermore,
we argue that ignoring NEs (as often done when pretraining multi-
modal models [16, 37]) represents a missed learning opportunity:
had the object been referenced with its name rather than with a
NE, the image-caption pair could have been used to learn a better
representation for the object. Following this reasoning, we propose
to address NEs through hypernymization: replacing a NE with its
hypernym (i.e., a general term representing the class/category of
the NE). Our key idea is summarized in Figure 1.

We investigate how hypernymization can be used on captions
with named entities to improve grounding-based pretraining and
open-vocabulary object detection. Grounding-based pretraining
aims to match image regions with their corresponding word tokens
from the caption. Because of this fine-grained matching, we hypoth-
esize that training of such models may particularly be impacted by
the presence of NEs. In addition, we fine-tune on open-vocabulary
detection, which refers to zero-shot detection [2] with captions
used as a source of supervision. Since the goal of grounding is to
learn representations for objects mentioned in the captions, open-
vocabulary detection allows us to evaluate their quality for objects
the model is fine-tuned on as well as for objects the model is not
fine-tuned on.

We introduce two methods to hypernymize captions:

(1) “manual hypernymization”, where we apply a pipeline rely-
ing on named entity recognition and on a comprehensive
ontology of concepts

(2) “learned hypernymization”, where we train a language model
to perform hypernymization based on the context surround-
ing NEs in a caption

We apply our proposed methods to captions from Wikipedia
and from The New York Times and we compare pretraining on
the original, NE-rich captions with pretraining on their hyper-
nymized counterparts. After pretraining, we fine-tune models on
open-vocabulary object detection and analyze how improvements
in pre-training performance translate to improvements in down-
stream performance. We report improved pretraining performance
on subsets of classes of interest and we highlight the challenges
related to hypernymization.

The rest of the manuscript is organized as follows: Section 2 cov-
ers related work, Section 3 introduces our proposed hypernymiza-
tion approaches, Section 4 describes our experimental design, Sec-
tion 5 reports our results, and Section 6 presents a discussion of
our results and our conclusions.

2 RELATEDWORK
Self-supervision from captions. A common approach in current
self-supervision for computer vision is to take advantage of the
naturally co-occurring captions associated with images crawled
from the web as a source of “free” supervision [22, 24, 37]. The
main way to leverage this source of supervision is Image-Text
Matching, which trains models to distinguish between matching
image-text inputs (i.e., those images and captions paired in the
dataset) and non-matching ones (i.e., any image and caption not
paired with each other) [7, 15, 16, 19, 22, 24]. This idea has also
been extended to image regions and word tokens: parts of an image
and parts of its caption are matched with each other, a task known
as grounding [13, 23, 38].

Due to the success of multi-modal pretraining, interest in image-
caption datasets has grown, and so has the size of these datasets:
from 3/12 million in Conceptual Captions (CC) [5, 27] to 400 and 900
million in CLIP [24] and Florence [37], respectively. With datasets
of such magnitude, manual inspection of the text is not feasible,
so quality checks must be implemented during [24] or after [5, 27]
collection. For example, CLIP collected captions so that they would
include common words as found in Wikipedia to ensure a broad
variety of visual concepts was covered, while CC removed all cap-
tions with high rate of token repetition.
Named entities. Among the potential problems with multi-modal
datasets, previous work has specifically highlighted named enti-
ties as an issue of interest for multi-modal supervision [27, 30]. In
some datasets, this problem may not be pervasive [5], and models
can be trained without addressing it [16, 24, 37]. In other domains,
though, NEs are dominant [4, 32] and simply ignoring them [30]
has shown to lead to underperforming models. Few studies used
hypernymization as a pre-processing steps [5, 27], but not for NE-
rich domains. We address this gap in the literature by investigating
the issue posed by NEs while pretraining multi-modal models in
NE-rich domains, and evaluating the impact on grounding-based
pretraining and on downstream object detection.
Pretraining evaluation. Evaluation of self-supervised models is
an active research direction. A common approach is to fine-tune on
many downstream tasks of interest [24], assuming that better pre-
training equals better downstream performance. Testing on such
a variety of downstream tasks also assumes that better feature
representations (and thus better pretraining strategies) are gen-
eralizable to many tasks of interest. Recent work [26, 34, 39] has
started challenging this view by suggesting that pretraining should
be tailored toward a specific task of interest. In particular, initial
evidence from the vision literature [10] shows that, at the current
state, no single pretraining strategy outperforms all others regard-
less of downstream task. We contribute to the research on how to
evaluate pretrained models by adapting a previous study [12] to
this task. In addition, we follow the idea of coupling pretraining
and finetuning [26, 34, 39] by choosing a downstream task closely
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Named Entity Hypernyms Most Specific Lowest Common

Class 319/4 Train / MeanOfTransport Train MeanOfTransportMeanOfTransport

Curtly Ambrose

Person / [. . . ]

Cricketer ThingAthlete / Person / [. . . ]
Cricketer / Athlete / [. . . ]
Agent

Table 1: Comparison between “most specific” and “lowest common ancestor” methods to select among multiple DBPedia
Ontology types returned for a given NE. The slashes indicate the path to the root of the ontology (i.e., Thing, omitted for
brevity). For brevity, we omit full paths to the root when needed.

related to grounding: open-vocabulary object detection.
Object detection. Object detection is a benchmark downstream
task that is closely related to grounding pretraining. In particu-
lar, previous work [23, 38] has fine-tuned grounding models on
open-vocabulary object detection [9, 40], where no samples of
some classes are available during training (like in zero-shot de-
tection [2]), but captions are available to provide supervision in
the pretraining stage. We follow previous studies and evaluate the
effect of hypernymization after pretrained models are fine-tuned
for open-vocabulary object detection.

3 METHODS
In this section, we detail our proposed hypernymization strategies
and we provide a summary of the grounding pretraining architec-
ture we use [38].

3.1 Manual Hypernymization
For our first hypernymization approach, we rely on a named entity
recognition (NER) system and on a comprehensive knowledge base
where we can look up each NE. We call this approach “manual” as
it mimics how a person would carry out hypernymization.

The main strength of this approach is the use of a NER system
and of a knowledge base, which makes for a very competitive
hypernymization method; if we removed such resources, we would
sacrifice very informative tools.

The first step in our manual hypernymization pipeline is NER,
where NEs are identified within each caption (e.g., “Class 319/4”
from caption “The first refurbished Class 319/4”). Generally, NER al-
gorithms return a label for each NE, but the domain for these labels
is limited [1, 3, 11] (e.g., Person, Location, Organization, and Mis-
cellaneous). For this reason, we look up each NE on DBPedia [18], a
semantic network of concepts extracted from Wikipedia. DBPedia
itself matches each query NE to a list of its entities 1, from which
we select the highest scoring one (the scoring is implemented by
DBPedia). The selected entity is associated with multiple “types”,
defined in the DBPedia Ontology (e.g., “Class 319/4” is associated
with “Train” and “Mean Of Transport”). We pick the most specific
type, defined as the farthest from the root of the DBPedia Ontology
(e.g., “Train”, which is a child of “Mean Of Transport” - see Table 1).
Alternative approaches to selecting one type include: (a) the clos-
est category of interest, and (b) the lowest common ancestor (i.e.,
among all ancestors shared by the returned types, the one that is

1https://www.dbpedia.org/resources/lookup/, last accessed April 5th, 2023

farthest from the root). We discard the first one because we want
to keep the method independent of any list of pre-defined objects.
To decide between the “most specific type” approach and the “low-
est common ancestor” approach, we evaluate some examples (like
those in Table 1), and select the “most specific type” alternative.

Finally, if a NE is not found in DBPedia, we remove it. Given that
our motivation is that NEs are hard for models to ground, we aim
to leave no NEs in the captions.

While touted as a strength of our proposed manual hypernymiza-
tion approach, relying on a NER tool and on a knowledge base is
also a weakness: for example, if a NE is missed, it would be impos-
sible to hypernymize, and if only partially recognized, the NE may
not be found in the knowledge base. In addition, if hypernymiza-
tion relies on a knowledge base look-up operation, the knowledge
base must include all possible NEs and must be kept up to date
constantly. Since these requirements are very restrictive, we next
propose a method that relaxes them.

3.2 Learned Hypernymization
Our second hypernymization approach is to train a language model
to perform hypernymization. With this approach, we aim to relax
the two constraints introduced by the manual approach (i.e., a
NER system and an all-encompassing knowledge base). With this
new approach, we still rely on a list of NEs and their hypernyms,
but we do not require such a list to be exhaustive. In addition,
we want to remove the issue of propagating errors from NER to
hypernymization by merging the two steps.

It is not straightforward to train a language model for the hy-
pernymization task in a supervised way because we do not have
ground truth caption pairs with (NE-rich, hypernymized) caption
pairs. Instead of paired data, we separately have (1) NE-rich cap-
tions (e.g., Wikipedia [30] and news articles [32]), and (2) NE-free
captions (e.g., COCO [6]). We thus create an artificial, NE-enriched
version of the NE-free captions by including NEs and other char-
acteristics typical of NE-rich settings. We then train a language
model to reconstruct the original, NE-free caption from the NE-
enriched captions. The hypothesis underlying this approach is that
captions contain enough information to learn how to hypernymize
NEs. After training this model, we apply it to a NE-rich setting and
generate hypernymized captions. Figure 2 illustrates this process
with examples.

We next describe the learned hypernymization pipeline in more
detail. The first step in creating artificial, NE-enriched captions is to
curate a list of NEs that can be introduced in the original, NE-free
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Figure 2: Proposed pipeline for learned hypernymization. 1) We apply pre-defined manipulations to NE-free captions to
make them more similar to captions from NE-rich settings. 2) We train a language model to reconstruct the original, NE-free
captions from their artificial, NE-enriched versions. 3) We apply the trained language model to NE-rich captions to perform
hypernymization.

captions. To do so, we use DBPedia and retrieve NEs for each “type”
(i.e., hypernym) included in the DBPedia Ontology. While this step
requires the use of DBPedia, we argue that its use in the learned
approach is less restrictive than its use in the manual one. In fact,
the manual approach requires DBPedia to include all possible NEs,
while the learned approach only requires it to include enough NEs
to train a model to perform hypernymization.

With these lists available, we apply the following manipulations:

(1) We replace mentions of DBPedia Ontology types with a
random NE from the corresponding list with probability
𝑝𝑁𝐸 . We add more than one NE if a type is mentioned in
plural form (e.g., “a group of <type>”). This step is crucial
to teach the language model to perform hypernymization.

(2) We randomly add locations (and dates) at the beginning
and end of a caption with probability 𝑝𝑑𝑎𝑡𝑒−𝑙𝑜𝑐 and in the
middle of a caption with probability 𝑝𝑚𝑖𝑑𝑑𝑙𝑒 . To make sure
the captions remain well-formed sentences, we add locations
(and dates) in themiddle of a caption only before punctuation
or prepositions. Dates and locations are often found in NE-
rich datasets, and we want the model to remove them as they
do not carry information relevant to grounding (or detection)
and could create spurious grounding relationships (e.g., if
captions mentioning “Los Angeles” show boats, the model
may learn to ground the two).

(3) We add artificial captions with NEs only that are matched to
empty sentences. We add these captions to teach the model
to remove (and not randomly hypernymize) NEs if context is
insufficient. Incorrect hypernymization would, in fact, create
spurious grounding relationships.

(4) We include captions with no mention of objects of interest.
For these captions, we do not replace mentions of DBPedia
Ontology types with NEs, but we add dates and locations.
The goal is to teach the model not to add object mentions in
every caption. Hallucinating objects in captions would create
a sample that confuses the model since it would establish a
grounding relationship that does not exist.

3.3 Grounding Architecture
We use OVR-CNN [38] as our grounding model, which consists of
a visual backbone and a text encoder whose outputs are combined
through self-attention. The visual backbone extracts features for
each element of a grid defined over the input image and passes
them through a visual-to-language (V2L) layer that maps the visual
embedding space to the text embedding space. The input caption
is processed by the text encoder and a multi-layer transformer
combines the text and visual features into output features on which
the loss functions are defined. In addition to the standard Image-
TextMatching (ITM) loss [7, 15, 16, 19, 22, 24] andMasked Language
Model (MLM) loss [7, 22, 31], OVR-CNN pretrains models using a
grounding loss defined as follows.

Let 𝑒𝐶
𝑗
be the text embedding for the 𝑗-th caption token, 𝑛𝐶 the

number of tokens, 𝑒𝐼
𝑖
the V2L embedding for the 𝑖-th image region,

and 𝑛𝐼 the number of regions. Grounding ⟨𝐼 ,𝐶⟩𝐺 between image 𝐼
and caption 𝐶 is defined as

⟨𝐼 ,𝐶⟩𝐺 =
1
𝑛𝐶

𝑛𝐶∑︁
𝑗=1

𝑛𝐼∑︁
𝑖=1

𝑎𝑖, 𝑗 ⟨𝑒𝐼𝑖 , 𝑒
𝐶
𝑗 ⟩𝐿 (1)

with ⟨𝑒𝐼
𝑖
, 𝑒𝐶

𝑗
⟩𝐿 the dot product between 𝑒𝐼𝑖 and 𝑒

𝐶
𝑗
, and the coefficient

𝑎𝑖, 𝑗 defined as

𝑎𝑖, 𝑗 =
exp⟨𝑒𝐼

𝑖
, 𝑒𝐶

𝑗
⟩𝐿∑𝑛𝐼

𝑖′=1 exp⟨𝑒
𝐼
𝑖′ , 𝑒

𝐶
𝑗
⟩𝐿

(2)

The attention coefficients 𝑎𝑖, 𝑗 are computed as the softmax of each
embedding pair’s dot product across image regions, and they are
used as weights to average the region-token embedding dot product
in Equation 1.

The grounding loss should encourage overall grounding for an
image and its matching text to be maximized, while grounding
between each image (caption) and a non-matching caption (image)
should be minimized. Two grounding losses are introduced, where,
given an image-caption pair, all other captions in the batch are used
as negative examples for the image, and all other images are used
as negative examples for the caption. These two grounding losses



Hypernymization for grounding ICMR ’23, June 12–15, 2023, Thessaloniki, Greece

are, respectively

𝐿𝐺 (𝐼 ) = − log
exp⟨𝐼 ,𝐶⟩𝐺∑

𝐶′′∈𝐵𝐶 exp⟨𝐼 ,𝐶′′⟩𝐺
(3)

and

𝐿𝐺 (𝐶) = − log
exp⟨𝐼 ,𝐶⟩𝐺∑

𝐼 ′∈𝐵𝐼
exp⟨𝐼 ′,𝐶⟩𝐺

(4)

The final loss is the sum of the two grounding losses and the ITM
and MLM losses.

𝐿(𝐼 ,𝐶) = 𝐿𝐺 (𝐼 ) + 𝐿𝐺 (𝐶) + 𝐿𝐼𝑇𝑀 + 𝐿𝑀𝐿𝑀 (5)

4 EXPERIMENTAL DESIGN
4.1 Datasets
We analyze hypernymization on two NE-rich datasets: Wikipedia
Image-Text (WIT) [30] and NYTimes800k [32].

WIT includes images and text extracted from Wikipedia. Each
image is associated with multiple sources of text, some of which
may be in multiple languages. In detail, each image can be asso-
ciated with: (1) a reference description (i.e., the caption visible on
the Wikipedia page), (2) an attribution description (i.e., the text
found on the Wikimedia page of the image), or (3) the alt-text
description (i.e., the HTML field associated with the image). We
concatenate the reference text and the English-only part of the
attribution description to create a caption for each image, as done
by [30]. Because of the dataset size, we subset the data by excluding
empty captions as well as all images not in jpeg format (since gif,
png, and svg files are likely to be graphics and not photographs),
greyscale images (likely old photographs), and images whose cap-
tions mention dates before 1950 (likely scans of old photographs).
This results in 303,589 image-caption pairs. We hold out a validation
set (N=18,755) for hyperparameter tuning and model selection.

NYTimes800k [32] includes 445K articles and 793K images with
captions from The New York Times spanning 14 years, and it was
collected using The New York Times API. It follows a similar col-
lection pipeline as GoodNews [4], but it is 70% larger and more
complete (GoodNews includes some incomplete articles and some
non-English text). Named entities are dominant in this dataset: 97%
of captions include at least one [32]. We use the official training
and validation splits for model pre-training and hyperparameter
tuning and model selection.

For fine-tuning on open-vocabulary detection, we use MS-COCO
Objects [21], which includes 118,287 training images and 5,000
validation images. We test models on the official validation set,
and we hold out a subset of 5,000 training images as an internal
validation set for hyperparameter tuning and model selection.

We train our hypernymization language model on MS-COCO
Captions [6] and its NE-enriched version (Section 3.2). MS-COCO
Captions includes an average of 5 captions for each MS-COCO
Objects image. We hold out the same subset of the training split for
internal validation.

Finally, we include captions from Conceptual Captions (CC) [28]
that do not mention any COCO object when training our learned
hypernymization approach. CC includes 3M image-text pairs from
the Internet, where captions are pre-processed versions of the
alt-text field associated with each image.

4.2 Baselines
As our baseline hypernymization strategies, we use two simple
ways to deal with named entities: ignore them by not modifying
the captions (as often done in the literature [16, 37]) or remove
them.

For grounding pre-training, we train models on these two base-
line versions of the captions and compare them with models pre-
trained on captions hypernymized using our two proposed methods.

For open-vocabulary detection, we fine-tune the groundingmodel
pre-trained on the original captions for WIT (and NYTimes800k)
and use it as our baseline. We compare this baseline to models
fine-tuned from grounding models pre-trained on captions hyper-
nymized with our proposed approaches.

4.3 Language Model Evaluation
After training a language model to perform hypernymization (Sec-
tion 3.2), we start by verifying that it is able to reconstruct the
original, NE-free captions. To do so, we run the learned model on
the validation split of COCO captions and compute Rouge [20]
metrics to quantify the overlap between original and reconstructed
COCO captions. To verify the need to fine-tune the language model
on our NE-enriched captions, we evaluate an off-the-shelf, non-
fine-tuned version of the same model and use it as a baseline.

4.4 Hypernymized Datasets Evaluation
After verifying that the learned language model can reconstruct
COCO captions, we apply it to our NE-rich datasets and extract
dataset statistics for the original captions and their two hyper-
nymized versions. Specifically, we extract number of unigrams and
average length of caption (as number of unigrams in the caption).
The purpose of these statistics is to numerically compare the three
versions of the NE-rich datasets and verify that our manipulations
are having the desired effect of making captions more similar to
those in a NE-free domain.

Following [30], we compute the Jensen-Shannon Divergence
(JSD) between the unigram distribution of COCO (train) and that
of the three NE-rich dataset versions (original and the two hyper-
nymized). JSD values are low if the distributions are similar, so we
aim to show how hypernymization transforms NE-rich settings to
be more similar to COCO and thus to be better suited for training
models for grounding and object detection.

4.5 Object Mention Extraction
For our grounding evaluation (to follow in Section 4.6) we ground
images with mentions of COCO classes in their captions. To extract
suchmentions, we use ExactMatch [33]: only verbatim occurrences
of COCO classes are counted as mentions. We evaluate the ability
of ExactMatch to correctly extract object mentions from COCO
captions by computing precision and recall with respect to the
ground truth labels provided for each image. In detail, we extract
the set of unique objects mentioned by all captions describing an
image and we compare them with the unique set of ground truth
labels associated with the same image.

This evaluation allows us to identify classes for which we can
reliably extract grounding maps: if precision is high for a class, we
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can expect an object mention to correspond to an actual object in
the image.

4.6 Grounding Evaluation
To evaluate grounding models, we adapt a strategy previously intro-
duced to assign pseudo ground truth labels to region proposals [12].
Given a caption and an image, we compute a grounding map be-
tween each mention of a COCO class (Section 4.5) and the image
(i.e., the attention coefficients defined by Equation 2). We then com-
pute the average grounding coefficient within each ground truth
bounding box for the image and select the box with highest av-
erage as the chosen detection result. Once bounding boxes and
their scores are computed for each (image, caption) pair, we carry
out a standard detection evaluation and report mAP across the 80
COCO classes. The use of ground truth bounding boxes allows us to
evaluate the potential of the learned grounding for object detection.
Given that grounding is a preliminary step, we would rather have
a model that correctly grounds most pixels within ground truth
bounding boxes (at the cost of potentially more incorrect grounding
outside of them). This would mean that the model learns a (crude)
representation for, at the least, the objects of interest. Further re-
finement of such representations can be obtained with fine-tuning.
We only compare detection results to ground truth bounding boxes
for classes mentioned by the captions.

4.6.1 Fine-grained grounding evaluation. Because DBPedia is a
general-purpose tool not designed for a specific task or dataset,
the set of concepts it represents does not coincide with that repre-
sented by COCO classes. We thus focus on classes included in the
DBPedia Ontology, where we specifically expect hypernymization
to be beneficial. Both the manual and learned methods can directly
improve performance on these classes since they can look them
up in DBPedia and perform hypernymization or obtain training
data, respectively. Our learned approach could still infer how to hy-
pernimize classes not in the ontology by leveraging context in the
caption (e.g., by learning the context around instances of “bicyle”,
our language model may learn to hypernymize NEs of that type
without needing artificial captions where mentions of “bicycle” are
replaced with NEs).

Finally, because our grounding evaluation depends on extraction
of object mentions, we focus on mentions that very likely refer
to the correct object by excluding classes for which ExactMatch’s
precision is lower than the overall average.

4.7 Open-Vocabulary Detection Evaluation
To further evaluate the impact of hypernymization on quality of pre-
training, we fine-tune the pretrained model on the open-vocabulary
detection task [38], where only a subset of 48 “base” classes are
seen during training, while the model is also tested on 17 “target”
classes [2]. Following [38], we report performance as mAP@0.5.

4.8 Implementation
To perform named entity recognition, we use the off-the-shelf Flair
tagger [1], available from Hugging Face [35].

For our learned hypernymization approach, we use the T5-small [25]
language model, which we fine-tune for 5 epochs on one Google

Cloud TPU with learning rate of 0.0001, batch size of 12, and gra-
dient accumulation step of 8. Given the affinity of caption recon-
struction with summarization, we add the “summarize:” prompt to
the beginning of each input caption.

To create the artificial, NE-enriched captions, we set 𝑝𝑁𝐸 = 0.7,
𝑝𝑑𝑎𝑡𝑒−𝑙𝑜𝑐 = 𝑝𝑚𝑖𝑑𝑑𝑙𝑒 = 0.3 (Section 3.2).

For pre-training, we adapt the code from [38]with a ResNet50 [14]
as the visual encoder and a frozen BERT-base model [8, 35] as the
text encoder. We set the learning rate to 0.001 (decreased by a factor
of 10 at 50% and 80% of training). We set the batch size to 9 and
we train using 3 Nvidia Titan X GPUs. We select hyperparameters
after a grid search on our held-out validation set.

For open vocabulary detection, we freeze the first two layers of
the ResNet50 backbone and fine-tune the rest with learning rate of
0.005 (decreased as before) and batch size of 8 on 2 Nvidia Titan X
GPUs.

5 RESULTS
5.1 Baselines
Table 2 reports pretraining evaluation results for a model trained
on COCO and for our baseline models trained on WIT and NY-
Times800k.

Dataset mAP
COCO 54.3
WIT 38.5
WIT - no NEs 37.5
NYTimes800k 40.5
NYTimes800k - no NEs 40.6

Table 2: Pretraining evaluation performance (mAP, in per-
centage) on MS-COCO val 2017 for models pretrained on
COCO, WIT (with and without NEs) and NYTimes800k (with
and without NEs)

The model pretrained on COCO represents an upper bound
for our experiments since it is trained and evaluated on the same
dataset. We observe a performance gap between this upper bound
and models pretrained on WIT or NYTimes800k. This is due to
reasons including domain shift and differences in captions’ charac-
teristics (e.g., WIT’s captions tend to be more narrative and redun-
dant while COCO’s are more descriptive and succinct). In addition,
we notice how our two baseline approaches (i.e., original captions
and removing NEs) perform on par with each other for both WIT
and NYTimes800k, indicating that the models seem to be able to
largely ignore named entities. This is an interesting finding: NEs
do not significantly contribute to grounding-based pretraining; in a
way, they are “wasted”. This motivates investigating how to better
leverage the supervision NEs could provide.

5.2 How well does a language model perform
hypernymization?

Table 3 reports the evaluation of the language model trained to
perform hypernymization. We notice how fine-tuning is necessary
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Fine-tuned Rouge1 Rouge2 RougeL
No 59.50 47.39 58.81
Yes 91.49 89.36 91.48

Table 3: Rouge metrics evaluating the ability of the learned
language model to reconstruct COCO captions from their
artificial, NE-enriched versions.

since an off-the-shelf, non-fine-tuned model is not able to recon-
struct the original COCO captions, while a fine-tuned version of
the model achieves high reconstruction performance.

5.3 How similar are hypernymized captions to
COCO captions?

Table 4 reports unigram-level statistics for COCO, WIT, and its
two hypernymized versions, while Table 5 shows them for NY-
Times800k and its hypernymized versions.

WIT WIT
manual

WIT
learned COCO

Words 366,223 162,327 162,254 29,650
Length 24 21 21 11

Table 4: Dataset statistics for COCO and WIT and its two hy-
pernymized versions. Length represents the average number
of unigrams per caption.

NYT NYT
manual

NYT
learned COCO

Words 224,048 57,471 120,264 29,650
Length 23 21 21 11

Table 5: Dataset statistics for COCO and NYTimes800k (NYT)
and its two hypernymized versions. Length represents the
average number of unigrams per caption.

From Tables 4 and 5, we notice how both hypernymization strate-
gies reduce the number of unique unigrams and the average length
of a caption, moving these statistics closer to their values for COCO.

To further evaluate how hypernymization shifts the unigram
distribution of NE-rich captions toward that of COCO captions,
Table 6 reports the Jensen-Shannon Divergence (JSD) between the
unigram distribution for COCO captions and different versions of
WIT and NYTimes800k captions.

Dataset COCO v. WIT COCO v. NYTimes800k
Original 0.597 0.557
Manual 0.584 0.552
Learned 0.529 0.501

Table 6: Jensen-Shannon Divergence (JSD) between datasets.
Low values indicate similar distributions.

We observe how hypernymization is successful in moving the
unigram distribution of WIT and NYTimes800k toward that of
COCO, with our learned hypernymization approach closing the
gap further than the manual approach (JSD=0.529 vs. 0.584 for WIT,
and JSD=0.501 vs. 0.552 for NYTimes800k).

5.4 How well do we extract object mentions
from captions?

We report average precision=0.90 and recall=0.48 across classes on
COCO train 2017 for the ExactMatch mention extraction method.
We expected high precision since object names are generally used
only to describe the objects they refer to, and we expected low recall
because they are not the only way those objects are referred to. For
example, a mention of “person” likely corresponds to a person in
the image, but synonyms like “woman” are often used to describe
an image with a person in it.

5.5 What is the impact of hypernymization on
grounding?

Table 7 reports our pretraining evaluation on WIT, NYTimes800k,
and their hypernymized versions. Results on original versions of
the datasets (Table 2) are repeated for ease of comparison.

Dataset All classes High-precision and
In DBPedia (7)

COCO 54.3 60.8
WIT 38.5 54.6
Manual hypr. 38.9 52.9
Learned hypr. 37.9 55.1
NYTimes800k 40.5 55.8
Manual hypr. 40.6 51.6
Learned hypr. 40.3 56.2

Table 7: Evaluation results on COCO val 2017 (in percent-
age). Grounding mAP are reported for all COCO classes
and for those in the DBPedia Ontology and for which Ex-
actMatch achieves precision higher than 0.9. Bold: highest
performance per column per dataset. Shaded cells: results of
note.

From Table 7 (middle column), manual hypernymization in-
creases performance from mAP=38.5% to 38.9% for WIT, while
we observe how our learned hypernymization approach overall un-
derperforms the baseline (mAP=37.9% v. 38.5% for WIT, and 40.3%
v. 40.5% for NYTimes800k).

When focusing on classes for which ExactMatch achieves pre-
cision ≥ 0.9 and that are included in the DBPedia Ontology, our
learned method boosts performance (from mAP=54.6% to 55.1%
in WIT and from mAP=55.8% to 56.2% in NYTimes800k), while
manual hypernymization does not. This confirms that the training
data we created if effective in teaching a language model to perform
hypernymization. We expect increasing the number of classes the
language model can learn to hypernymize will translate into better
overall grounding.
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5.6 What is the impact of hypernymization on
open-vocabulary detection?

Table 8 reports mAP@0.5 for our open-vocabulary detection ex-
periments on base classes only, target classes only, and both sets
combined (“general”).

Base Target Generalized
Base Target All

COCO 46.8 27.5 46.0 22.8 39.9
WIT 43.8 6.6 43.2 3.9 32.9
Manual hypr. 44.0 7.9 43.3 4.4 33.1
Learned hypr. 43.9 3.8 43.4 1.2 32.4
NYTimes800k 43.1 6.7 42.4 3.2 32.1
Manual hypr. 42.9 7.9 42.0 4.1 32.0
Learned hypr. 42.7 8.4 41.8 4.1 31.9

Table 8: Open-vocabulary detectionmAP@0.5 (in percentage).
Results for COCO training are taken from [38]. Bold: highest
performance per column per dataset. Shaded cells: results of
note.

Baseline models on WIT and NYTimes800k perform comparably.
As expected, in both Wikipedia and news data, hypernymization is
successful at improving performance, especially on target classes
(mAP@0.5=7.9% from 6.6% for WIT and mAP@0.5=8.4% from 6.7%
for NYTimes800k), although themanual hypernymization approach
is more successful inWIT, while the learned one is in NYTimes800k.
These results suggest that models pretrained on hypernymized cap-
tions may learn robust features that result in higher performance
on target classes, for which no bounding-box supervision is avail-
able. On the other hand, for the base classes where supervision is
available, performance is similar across dataset versions, suggesting
fine-tuning may dominate over any benefit from pretraining. In
addition, the best hypernymization method may depend on each
dataset’s characteristics. On one hand, learned hypernymization
could be better suited for datasets more similar to COCO (JSD be-
tween COCO and NYTimes800 0.557 vs. 0.597 for COCO and WIT
from Table 6), where our manipulations on COCO captions are able
to better mimic the NE-rich data characteristics. On the other hand,
the manual hypernymization method could be better suited for
NE-rich data whose subtleties are harder to artificially reproduce.

6 DISCUSSION AND CONCLUSIONS
In this work, we studied the issue posed by the presence of named
entities (NEs) in captions that naturally accompany images in do-
mains like Wikipedia and news articles. We argued that NEs repre-
sent a missed learning opportunity when pretraining multi-modal
models: if the caption mentioned the object by its category (e.g.,
“person”), the model would better learn from image-caption pairs.

To address this problem, we introduced two ways to perform
hypernymization: a manual approach based on NE recognition
and DBPedia look-up, and a learned approach, where we trained a
language model for hypernymization.

Our results show that models are able to ignore NEs during
training, resulting in similar pretraining performance when NEs

are left untouched and when they are removed (Table 2). In addition,
our analysis shows that both hypernymization strategies make NE-
rich captions more similar to NE-free COCO captions (Tables 4, 5,
and Table 6) and that hypernymization can improve grounding
(Table 7). Finally, the benefit of hypernymization persists for open-
vocabulary detection (Table 8), especially on classes not seen during
training.

This study has some limitations. For instance, the relative low
number of COCO classes in the DBPedia Ontology limits the benefi-
cial effect hypernymization can have on grounding-based pretrain-
ing. Our pretraining evaluation results restricted to such classes
are encouraging, though; the more classes we can teach a lan-
guage model to hypernymize, the more hypernymization could
improve pretraining. Our pretraining evaluation approach also has
some drawbacks. For instance, automatically extracting mentions
of objects of interest is still imperfect despite its very high average
precision. To limit the impact of erroneously extracted mentions,
we focused our analysis on classes with very high precision only
(Table 7). Finally, we notice that improved pretraining performance
does not always translate to improved downstream performance
(Tables 7 and 8). Other studies [10, 17] have started investigating
the relationship between pretraining and downstream performance,
which remains an active area of research.

Societal impact: We propose hypernymization as a way to
better extract self-supervision from a dataset. For this reason, our
method would further any type of bias present in the data, although
the size of both WIT and NYTimes800k should reduce the likeli-
hood of such biases by increasing diversity in the included data. In
addition, the hypernymization process may also introduce bias if
NEs for, say, people of a certain gender or race are more likely to be
hypernymized. The use of a comprehensive resource like DBPedia
in our hypernymization approaches ameliorates this issue since it
makes it less likely to only include NEs for specific subgroups of
people.
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