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Abstract

A common paradigm in deep learning applications for
computer vision is self-supervised pretraining followed
by supervised fine-tuning on a target task. In the self-
supervision step, a model is trained in a supervised fashion,
but the source of supervision needs to be implicitly defined
by the data. Image-caption alignment is often used as such
a source of implicit supervision in multimodal pretraining,
and grounding (i.e., matching word tokens with visual to-
kens) is one way to exploit it. We introduce a strategy to take
advantage of an underexplored structure in image-caption
datasets: the relationship between captions matched with
different images but mentioning the same objects. Given an
image-caption pair, we find an additional caption that men-
tions one of the objects the first caption mentions, and we
impose a sparse grounding between the image and the sec-
ond caption so that only a few word tokens are grounded in
the image. Our goal is to learn a better feature represen-
tation for the objects mentioned by both captions, encour-
aging grounding between the additional caption and the im-
age to focus on the common objects only. We report superior
grounding performance when comparing our approach with
a previously-published pretraining strategy, and we show
the benefit of our proposed double-caption grounding on
two downstream detection tasks: supervised detection and
open-vocabulary detection.

1. Introduction

A common approach for deep learning in computer vi-
sion applications is self-supervised pretraining followed by
supervised fine-tuning on the task of interest [8, 11, 13, 24,
26]. In self-supervised learning, we train a model in a super-
vised way, but the source of supervision needs to be implic-
itly defined by the data. In other words, no human labeler
should be involved in retrieving ground-truth values used
for self-supervised training. In multimodal datasets where

Figure 1. Proposed approach: given an image-caption pair, iden-
tify an additional caption that shares mentioned object(s) with the
first caption (“zebra” in the example). Grounding is enforced be-
tween the matching image-caption, and we propose to enforce a
sparse version of grounding between the image and the additional
caption. Since the two captions only share mentions of one object,
this sparse grounding encourages the model to only ground a few
word tokens in the additional caption with the image.

image-caption pairs are available, a widely utilized source
of such implicit supervision is the relation between images
and their captions. One way to take advantage of this re-
lation is grounding, which refers to the idea of matching a
word token (i.e., a word or parts of it) from a caption to a vi-
sual token (i.e., a part of an image) from the corresponding
image. Specifically, given an image-caption pair, the model
needs to learn which visual tokens should be matched with
which word tokens, and to force the matched visual and
word tokens’ representations to be similar.

Identifying new implicit relations in multimodal data to
use as supervision for self-supervised pretraining and for-
mulating new ways to take advantage of such relations are
active areas of research. In addition, recent work [28, 32]
has started advocating for tailoring self-supervised pretrain-



ing to the downstream application of interest: devising the
pre-training objective for, say, object detection, rather than
keeping it suitable for a variety of tasks [20, 30].

We contribute to both research directions by relaxing the
binary matching relationship between images and captions.
While previous work [6, 15, 18, 20] sees an image-caption
pair as either matching or not matching, we propose to con-
sider the relation between two captions that do not refer to
the same image (and would thus not be considered match-
ing) but mention one common object (and are, in our ap-
proach, “almost-matching”). Because mentioned objects
are the link between captions, our pretraining approach is
intuitively well suited for object detection.

To take advantage of the relation between captions shar-
ing objects and use it for self-supervised pretraining, we
enforce a sparse grounding between an image and the
non-matching caption, where only a few word tokens are
grounded in the image. The motivation behind this strat-
egy is to encourage the model to learn to only ground the
shared objects in the additional caption in the image, lead-
ing to better alignment of the visual embeddings with the
word embeddings. Since the introduction of the additional
caption generates a triplet (I, C,C ′) with one image (I) and
two captions (C and C ′), we will in the remainder of the text
refer to our method as the double-caption approach.

To enforce sparse grounding in our double-caption strat-
egy, we build on the grounding loss as defined by Zareian et
al. [33] and use their method as our baseline. We evaluate
quality of pretraining by using grounding to extract bound-
ing boxes and report superior performance on unsupervised
detection (with mAP@0.5 increasing by 26% over the base-
line). Furthermore, we qualitatively show how our pretrain-
ing better grounds whole objects rather than parts, and we
compare the impact of context on our pretrained model and
on the baseline. Because the main goal of the proposed ap-
proach is to learn better object representations, we also eval-
uate the benefit of our pretraining strategy on two detection
tasks: supervised detection and open-vocabulary detection,
and we report improvements in performance over the base-
line of 3.8% and 1.7%, respectively.

The remainder of the paper is organized as follows: Sec-
tion 2 presents related work, Section 3 details our proposed
double-caption approach, Section 4 describes our experi-
mental design, Section 5 reports our results, and Section 6
draws our conclusions and outlines potential future research
directions.

2. Related Work
Self-supervision has become a standard pretraining step

to improve performance on a number of downstream com-
puter vision tasks [8, 11, 13, 24, 26]. The source of self-
supervision can come from the images themselves (e.g.,
solving jigsaw puzzles [24], colorizing images [34], in-

painting [25], or predicting image rotations [17]), or can
exploit the additional information provided by multimodal
datasets like COCO [5, 19] or Conceptual Captions [4, 29].
Spurred by recent success in the application of the Trans-
former architecture [31] to Natural Language Processing
(models like BERT [7] and GPT-3 [3]), many researchers
have devised Transformer-based architectures that inte-
grate text and images [6, 15, 18, 20, 30, 33]. While initial
approaches relied on image features extracted from pre-
existing detectors [20, 30], recent work [15, 33] has started
investigating how to overcome such limitation. Our ap-
proach also follows this direction and does not require ex-
isting object detectors.

To pretrain a model in a self-supervised fashion with
multimodal data, previous approaches mainly take advan-
tage of the implicitly defined relations between words, im-
age regions, and between an image and its caption. Each of
these relations can be formulated as a loss function, obtain-
ing the Masked Language Modeling (MLM) loss [6, 15, 18,
20, 30], the Masked Region Modeling loss [6, 20, 30], and
the Image-Text Matching (ITM) loss [6, 15, 18, 20], respec-
tively.

While still using the MLM and ITM loss functions, ad-
ditional constraints can be imposed on the visual features
extracted from an image. Specifically, Zareian et al. [33]
use grounding to make features extracted from visual re-
gions similar to the embeddings extracted for the word to-
kens corresponding to those regions. With our approach, we
push this idea further and enforce a sparse grounding for-
mulation between an image and an additional caption that
mentions the same objects as the image-matching caption.
By adding this constraint, we challenge the binary separa-
tion of matching/non-matching image-caption pairs and we
introduce a novel intermediate state for “almost-matching”
captions.

Our work is also related to the recent push to design
self-supervision strategies that are tailored to the down-
stream task of interest [28, 32, 35]. For object detection,
for instance, self-supervised pretraining can be encouraged
to learn object characteristics by showing a model differ-
ent crops of the same image region [28] or differently aug-
mented regions of interest [32]. Our work also aims to teach
a model better feature representations for objects, but using
multimodal datasets rather than images alone and leverag-
ing the understudied relation between images and almost-
matching captions.

3. Method
In this section, we explain how we select the additional

caption for each image-caption pair, we summarize the most
relevant characteristics of the backbone model that extracts
visual and word embeddings, and we show how to formu-
late the double-caption grounding loss.



3.1. Choosing the third input

Our proposed approach starts with the creation of the
(I, C,C ′) triplets, examples of which are shown in Fig. 2.
We see how all additional captions would be traditionally
considered non-matching (e.g., there is no parking lot in the
top-left and bottom-right images, but C ′ mentions one in
both cases).

C: A stop sign that is hang-
ing upside down.
C’: A stop sign is posted
next to a parking lot.

C: a close up of a table
with many plates of food
C’: Some food sitting on
top of a table.

C: A half eaten meal sit-
ting on a plate.
C’: Plate of food with
meats, potatoes, eggs, and
fruit.

C: A red bus is driving on
the road.
C’: A bus parked between
two trucks in a parking lot.

Figure 2. Examples of (I, C,C′) triplets. The underlined words
represent mentions of the shared objects.

Each triplet is created by requiring that (C,C ′) share
one and only one mentioned object. For example, we no-
tice there is no mention of the plates in C ′ in the top-right
image, and there is no mention of the trucks in C in the
bottom-right image. In this study, we use ground-truth la-
bels (e.g., person, bicycle, car) to define objects, but the ob-
ject definition can be extended to include any other label of
interest or any noun. We consider the list of synonyms in-
troduced by Lu et al. [21] for each ground-truth label since
many captions may not mention the labels themselves. Ex-
amples of synonyms can be found in Table 1. This list
of synonyms was compiled by finding the 200 most simi-
lar words for each ground-truth label in the WordVec [23]
space and was manually reviewed. Alternative approaches
to constructing such a list include using transformer-based
embeddings (like BERT [7]) to find similar words, or the
use of WordNet synsets [10].

COCO label Synonyms
person girl, boy, man, woman, kid
bicycle bike, unicycle
car automobile, van, minivan
motorcycle scooter, motorbike, moped
airplane plane, aircraft, jet

Table 1. Examples of synonyms for COCO labels [21]

3.2. Base model

The base model is composed of a ResNet-based [12] vi-
sual feature extractor and a BERT encoder. During pretrain-
ing, the model learns to match visual tokens and word to-
kens, and forces the visual token embeddings (extracted by
the visual feature extractor) to be similar to the matched
word token embeddings (extracted by BERT). During fine-
tuning, a Faster R-CNN [27] is used for both supervised
and open-vocabulary detection, with the weights of the
ResNet feature extractor being transferred to the Faster R-
CNN backbone and fine-tuned. Classification for open-
vocabulary detection is achieved by predicting a class em-
bedding (rather than the class itself) for each region pro-
posal. The predicted embedding is then matched to the
BERT embeddings of the considered ground-truth labels.

3.3. Three-input grounding

Let (I, C,C ′) identify the triplet composed by image I ,
its corresponding caption C, and the additional caption C ′.
Grounding between (I, C) is defined as

⟨I, C⟩G =
1

nC

nC∑
j=1

nI∑
i=1

ai,j⟨eIi , eCj ⟩L (1)

where ⟨., .⟩L denotes the dot product of two vectors, eIi is
the embedding for visual token i with i = 1, ..., nI , eCj is
the BERT embedding for word token j with j = 1, ..., nC ,
and

ai,j =
exp⟨eIi , eCj ⟩L∑nI

i′=1 exp⟨eIi′ , eCj ⟩L
(2)

These ai,j coefficients weigh each dot product between vi-
sual and word token embeddings, re-scaling their impact on
the grounding loss by the relative importance of each dot
product with respect to those between word embedding eCj
and the other visual embeddings eIi′ .

To enforce sparsity of grounding between (I, C ′), we
modify the grounding definition as

⟨I, C ′⟩G =
1

nC′

nC′∑
j′=1

βj′

nI∑
i=1

ai,j′⟨eIi , eC
′

j′ ⟩L (3)



where β′
j is defined as

βj′ =
exp

∑nI

i=1⟨eIi , eC
′

j′ ⟩∑nC′
j′′=1 exp

∑nI

i=1⟨eIi , eC
′

j′′ ⟩
(4)

In words, each βj′ represents the overall attention of word
token j′ in caption C ′ when grounded in image I . Defining
βj′ as the softmax of the summation of the attention coeffi-
cients for word token j′ encourages the distribution of such
summations over the word tokens in C ′ to be sparse; only
few word tokens in C ′ will thus be grounded in image I .
In contrast, Equation 1 does not enforce such a constraint,
allowing more word tokens in C to be grounded in I .

The loss functions associated with grounding between
(I, C) are

LG(C) = − log
exp⟨I, C⟩G∑

I′∈BI
exp⟨I ′, C⟩G

(5)

and

LG(I) = − log
exp⟨I, C⟩G∑

C′′∈BC
exp⟨I, C ′′⟩G

(6)

where BI and BC represent the image and caption batches,
and the overall loss L(I, C) is the sum of the two, plus the
Masked Language Model loss and the Image-Text Matching
loss [15]:

L(I, C) = LG(I) + LG(C) + LMLM + LITM (7)

The loss for (I, C ′) is defined analogously, replacing C
with C ′ in LG(I) and LG(C) and omitting the MLM and
ITM losses. We omit the ITM loss because C ′ is not I’s
matching caption, while we omit the MLM loss because
this loss will be evaluated on C ′ when C ′ is selected as
the matching caption of its corresponding image I ′ rather
than as the additional caption in the (I, C,C ′) triplet. When
image-caption pair (I ′, C ′) is sampled during training, the
ITM and MLM loss will be computed on the pair and our
newly-introduced double-caption loss will be computed be-
tween image I ′ and an additional caption C ′′.

The overall loss that is minimized during training be-
comes:

L(I, C,C ′) = L(I, C) + λL(I, C ′) (8)

where λ is a hyperparameter that determines the impact of
the double-caption loss on training.

4. Experimental Setup
In our experiments, we use the COCO dataset [5, 19].

Although this study focuses on learning meaningful multi-
modal representations during pretraining, we also show the
benefit of our pretraining approach on two downstream de-
tection tasks: supervised detection and open-vocabulary de-
tection.

Because we use the same architecture as Zareian et al. [33],
we use their method as our baseline as it provides a way to
directly assess the impact of introducing our double-caption
loss in the pretraining step. Other state of the art methods
can be used as baselines, but variations in architecture or
pretraining strategy would make for a less effective evalua-
tion of the benefit of our pretraining approach.

4.1. Dataset

For pretraining, we use the COCO Captions dataset [5]
(2017 splits). All images and captions used in our experi-
ments come from this dataset. We keep the given train/val
splits and we further set aside 5,000 images (same size as
the official validation split) from the training split for hyper-
parameter tuning and model selection. For supervised de-
tection, we use the COCO Objects dataset [19] and we set
aside the same 5,000 images for model selection. For open-
vocabulary detection, we follow previous work [1] and con-
sider 48 base classes (on which models are trained) and 17
target classes (not seen during training).

4.2. Evaluation Strategies

4.2.1 Grounding-based detection

To evaluate the quality of our pretraining approach, we in-
troduce a way to extract bounding boxes from attention co-
efficients (Equation 2). These coefficients are defined for a
given image-caption pair where the caption can be the ac-
tual caption describing the image or any other text we are
interested in grounding in the image. In our analysis, we
evaluate pretraining using (a) the original caption C, (b) the
additional caption C ′ that shares one mentioned object with
C, and (c) an artificially created caption that mentions all
ground-truth labels associated with the image (e.g., “A pic-
ture of a person, a cat”). In these artificial captions, multiple
instances of the same ground-truth label are mentioned once
since we would expect the model to ground, say, “person”
with all the image regions representing people. The three
choices of text to ground in the image allow us to investi-
gate a pretraining strategy’s reliance on context: from full
context in (a), to less relevant context in (b) where most of
the caption does not describe the image (the only exception
being the mention of one object), to no additional context in
(c) where few words do not refer to objects in the image.

Since each attention coefficient ai,j corresponds to word
token j and image region i, we extract bounding boxes by
only considering attention coefficients ≥ thattn and find-
ing the connected components of the remaining binary map.
Each connected component becomes a bounding box, to
which we assign a score equal to the average attention coef-
ficient within the just-defined bounding box. In our experi-
ments, thattn = 0.5.

We use these bounding boxes and compare them to the
ground-truth bounding boxes (i.e., those that will be used



for evaluating supervised detection). We use different sub-
sets of such ground-truth bounding boxes depending on the
choice of text to ground with the image. When (a) the origi-
nal caption is used, we evaluate using all ground-truth boxes
as well as using the subset of ground-truth bounding boxes
that are associated with objects mentioned by the original
captions. In fact, these are the only bounding boxes retriev-
able through grounding between the images and their cap-
tions. When (b) we ground the additional captions C ′, we
only evaluate using the ground-truth bounding boxes linked
to the one object shared between (C,C ′). This is because
such objects are the only ones we can assume are repre-
sented in image I since any other object in C ′ cannot be
mentioned by C. Finally, when (c) we consider artificial
captions, we use all ground-truth bounding boxes since all
objects are mentioned and can thus be grounded in the im-
age.

4.2.2 False Positive analysis

To better understand how the proposed double-caption strat-
egy affects pretraining, we use a previously published diag-
nosis tool [14] to compare the types of false positive er-
rors committed by our pretrained model with those made
by the baseline. This detection diagnosis software classifies
incorrect detections into four groups: localization errors,
misclassification with similar objects, misclassification with
other objects, and confusion with background. These er-
rors represent correctly-classified detections that do not suf-
ficiently overlap with a ground-truth bounding box, detec-
tions that classify an object as another considered “similar”,
detections confusing an object with a non-similar one, and
detections that correspond to background regions, respec-
tively. To adapt the diagnosis tool, originally developed for
the Pascal VOC dataset [9], to COCO, we define as “simi-
lar” objects that belong to the same COCO supercategory.

4.2.3 Sparsity of the additional caption

To verify that our pretraining strategy teaches a model to
ground the object mentioned by both captions, we com-
pute the percentage of (I, C,C ′) triplets where j∗ =
argmaxj(βj) (i.e., the word token associated with the high-
est overall attention) corresponds to the object shared be-
tween the two captions. For the baseline, we feed the model
each (I, C ′) pair and compute βj according to Equation 4.

This evaluation is two-fold as it not only verifies that
training with our double-caption approach has the desired
effect on the attention coefficients, but also evaluates how
our pretraining successfully identifies an object in a caption
regardless of its context (i.e., the other words in the caption
that do not describe the image appropriately).

4.2.4 Evaluation without bounding boxes

To evaluate pretraining without extracting bounding boxes
from attention coefficients, we compare the mean atten-
tion coefficients inside (and outside) ground-truth bounding
boxes for the baseline and our approach. We also compute
the entropy of the coefficients over the visual tokens to have
a quantitative measure of the attention coefficients’ distri-
bution.

4.2.5 Supervised detection and Open-Vocabulary de-
tection

For downstream detection tasks, we finetune Faster R-
CNN [27] models starting from our pretrained models’
weights. For supervised detection, we report mean Average
Precision (mAP), mean Average Recall (mAR), and mAP
at IoU threshold of 0.5 (mAP@0.5). For baseline results,
we finetune a Faster R-CNN [27] starting from the pre-
trained weights made available by Zareian et al. [33]. For
open-vocabulary detection, we report mAP@0.5, following
previous work. Baseline results are taken from Zareian et
al. [33].

4.3. Implementation

We use the code base provided by Zareian et al. [33]
to implement our double-caption strategy. Specifically,
we adopt the R_50_C4 configuration from the maskrcnn-
benchmark code [22] to extract visual tokens and a frozen
BERT model to extract word token embeddings. We use
spatial dropout [15] during pretraining to sample visual re-
gions. We choose a learning rate of 0.001, reduced to
0.0001 and to 0.00001 following the scheme in previous
work [33]. We set the double-caption loss weight λ to 0.1.
We tune hyperparameters through a grid search over the
held-out internal validation set, selecting the values that re-
turn the best loss after one epoch of training. We use a batch
size of 12 and we train on 3 Nvidia Titan X GPUs, which
takes about 4 days.

For supervised and open-vocabulary detection, we freeze
the first two blocks of the pretrained ResNet50 and fine-
tune the rest. We use a learning rate of 0.01 (decreased
by a factor of 10 as before), batch size of 9, and train for
8 epochs on 3 Nvidia Titan X GPUs, which takes about 4
days. For open-vocabulary detection, we use a learning rate
of 0.005 (decreased as before), batch size of 8, and train for
10 epochs on 2 Nvidia Titan X GPUs, which takes about 5
days.

5. Results
In this section, we report performance of our double-

caption pretraining approach compared to that described
in Zareian et al. [33], showing a 26% improvement on



mAP@0.5. We also qualitatively show how our approach
results in better grounding, where whole objects rather than
parts are grounded with words in the captions. We finally
evaluate the merit of our pretraining strategy on downstream
detection tasks and report superior performance on super-
vised and open-vocabulary detection.

5.1. Pretraining

5.1.1 Grounding-based detection

Table 2 and Table 3 show performance of pretraining eval-
uated by extracting bounding boxes from attention coeffi-
cients when grounding the original captions with the im-
ages (Section 4.2.1). Table 2 evaluates detection using all
ground-truth bounding boxes in the evaluation set, while
Table 3 only considers those ground-truth bounding boxes
associated with a label that is mentioned in the captions.
We notice how our approach’s mAP@0.5 increases from the
baseline’s 2.9% to 3.7% (a 27.6% improvement) and from
8.8% to 11.1% (a 26% improvement), respectively.

Method mAP@0.5 mAP mAR
Baseline 2.9 1.0 2.8
Ours 3.7 1.3 3.3

Table 2. Pretraining performance (in percentage) considering all
ground-truth bounding boxes.

Method mAP@0.5 mAP mAR
Baseline 8.8 2.9 8.9
Ours 11.1 3.7 10.0

Table 3. Pretraining performance (in percentage) considering
mentioned ground-truth bounding boxes.

Figure 3 shows heatmaps for the attention coefficients
for the Zareian et al. [33] baseline and our double-caption
method. We see how the baseline approach tends to ground
only parts of an object (e.g., the top of the cake and the head
of the cat), while our approach identifies the object in its en-
tirety (as shown by the cake and fire hydrant examples). In-
tuitively, this explains the increase in performance reached
by our method: more accurately localized bounding boxes.

Table 4 shows results for our evaluation of grounding
between the images and the additional captions C ′.

Method mAP@0.5 mAP mAR
Baseline 7.8 2.6 8.9
Ours 8.3 2.9 9.6

Table 4. Pretraining performance (in percentage) when evaluating
using (I, C′). We only consider ground-truth bounding boxes as-
sociated with the COCO category shared by (C,C′).

(a) Zareian et al. [33] (b) Double-caption (ours)

Figure 3. Heatmaps of the attention coefficients for (left) the
Zareian et al. [33] baseline, and (right) our double-caption ap-
proach. All images are from the COCO 2017 validation set. The
heatmaps represent the attention coefficients associated with the
words “cake”, “cat”, and “fire hydrant”.

The performance drop from Table 3 to Table 4 indicates
that context provides useful information for both the base-
line and our method. When context is less informative (as it
is the case when replacing caption C with C ′), our approach
outperforms the baseline’s mAP@0.5 by 6.4%.

To further remove the effect of words that do not describe
any COCO object, we also repeat the grounding evaluation
using artificial captions that mention each ground-truth ob-
ject (e.g., “A picture of a person, a cat”). Table 5 shows the
results.

Method mAP@0.5 mAP mAR
Baseline 3.5 1.1 4.2
Ours 3.8 1.3 4.2

Table 5. Pretraining performance (in percentage) when evaluating
using artificial captions mentioning each ground-truth object (e.g.,
“A picture of a person, a cat”).

From Table 5, we notice decreased performance for both
methods, similar to what we observe in Table 4, underlining
the role of context for grounding-based detection. Even in
this case, though, our approach outperforms the baseline’s
mAP@0.5 by 8.6%.



5.1.2 False positive analysis

To further verify that our double-caption approach provides
better localization than the Zareian et al. [33] baseline, Fig-
ure 4 shows the distribution of the false positive errors
across COCO labels classified using the software by Hoiem
et al. [14]. For each method and for each COCO class,
errors are normalized over the total number of false posi-
tive errors so they add up to 1. We notice how, on aver-
age, our double-caption approach makes fewer localization
(loc) mistakes than the baseline, while also making more
background (bg) errors. This behavior is exemplified by the
images in Figure 3, where objects appear better localized
(i.e., higher attention coefficients for whole objects rather
than parts), but more background pixels are also grounded
with the object (e.g., the third image where more grass is
grounded with “fire hydrant”).

Figure 4. Distribution of false positive error type across COCO
labels. Loc: localization error, sim: misclassification with object
belonging to the same COCO supercategory, other: misclassifica-
tion with object belonging to a different COCO supercategory, bg:
misclassification as background.

5.1.3 Sparsity of the third input

Table 6 shows the fraction of (I, C,C ′) triplets in the vali-
dation set where the most grounded word in C ′ corresponds
to the object shared by (C,C ′). From this table, we show
how our training strategy is effective at teaching the model
to ground the object (C,C ′) share in the image, when com-
pared with our baseline (where such behavior is not encour-
aged during training).

Method % correct object
Baseline 3.4
Ours 39.2

Table 6. Percentage of (I, C,C′) triplets in the validation set
where the most grounded (highest βj′ ) word in C′ corresponds
to the object shared by (C,C′).

5.1.4 Evaluation without bounding boxes

Table 7 shows the results for our final pretraining evalua-
tion, where no bounding boxes need to be extracted from
the attention coefficients.

Method Inside Outside
Mean Entropy Mean Entropy

Baseline 0.38 3.99 0.046 3.22
Ours 0.44 4.24 0.086 4.25

Table 7. Evaluating pretraining without extracting bounding boxes
from attention coefficients: mean and entropy of attention coeffi-
cients inside and outside the ground-truth bounding boxes.

From Table 7, we notice higher average attention inside
the ground-truth bounding boxes for our method, indicat-
ing that our pretraining focuses more on the relevant parts
of the images. When evaluating outside the ground-truth
bounding boxes, the average attention coefficient is low for
both the baseline and our method, with our method having
a slightly higher mean attention. This is in agreement with
the qualitative analysis in Figure 3, where our method ap-
pears to increase coverage of whole objects at the cost of
grounding some background areas as well (e.g., the grass
around the fire hydrants).

Also in agreement with Figure 3, Table 7 reports higher
entropy for our method both inside and outside the ground-
truth bounding boxes. In other words, our method grounds
more pixels within a ground-truth bounding box, covering
whole objects rather than parts.

5.2. Supervised detection

Table 8 reports performance on the supervised detection
task, with an improvement over the Zareian et al. [33] base-
line of 3.2% for mAP@0.5 and of 3.8% for mAP.

Method mAP@0.5 mAP mAR
Baseline 43.0 23.6 37.2
Ours 44.4 24.5 38.1

Table 8. Supervised detection performance (in percentage). Our
double-caption approach improves mAP by 3.8% (from 23.6% to
24.5%).

Learning a meaningful and useful multimodal represen-
tation is this study’s objective. With the above analysis,
we show the merit of our double-caption pretraining ap-
proach, and we leave efforts to tune our experimental de-
sign to establish a new SOTA to future work. The compar-
ison with the approach in Zareian et al. [33] remains the
most appropriate since it allows us to directly compare the
impact of introducing our double-caption loss, while varia-
tions in model architecture in other SOTA methods would
make such a direct comparison infeasible.



5.3. Open-vocabulary detection

Table 9 shows results on the open-vocabulary detection
task, where we improve overall generalized mAP@0.5 by
1.7%.

Method Base Target Generalized
Base Target All

Baseline 46.8 27.5 46.0 22.8 39.9
Ours 49.9 22.6 49.4 15.8 40.6

Table 9. Open-vocabulary detection mAP@0.5 (in percentage).
Our double-caption approach improves mAP@0.5 by 1.7% (from
39.9% to 40.6%).

From this table, we notice how the superior overall
performance is due to increased performance on the base
classes on which the model is fine-tuned, which is in
agreement with our findings on fully-supervised detection.
Nonetheless, this improvement on the base classes comes
at the cost of reduced performance on the target classes,
showing how task-specific fine-tuning can limit the benefit
of improving pretraining across all classes (see Tables 2,3).
Lowering the learning rate ameliorates this problem, but at
the same time significantly reduces performance on the base
classes.

6. Conclusions and Future Work
In this study, we introduce a double-caption loss to take

advantage of a previously understudied structural relation in
unlabeled image-caption data: captions for different images
may mention the same object(s). Given an image-caption
pair (I, C), we use this relation as a source of supervision
by enforcing a sparse grounding between image I and a cap-
tion C ′ that mentions one object that C mentions as well.
We call grounding between (I, C ′) “sparse” because only
the word tokens associated with the shared object should be
grounded.

We use the work in Zareian et al. [33] as our baseline,
and we evaluate quality of pretraining quantitatively and
qualitatively, showing grounding-based detection perfor-
mance of mAP@0.5 of 11.1% (vs. the baseline’s mAP@0.5
of 8.8%) and highlighting how our pretraining approach ap-
pears to better capture whole objects rather than parts (Fig-
ure 3). In addition, our pretraining strategy trains mod-
els that, although sensitive to context, keep ouperforming
the baseline even if context is removed (Tables 4, 5). Fi-
nally, we evaluate our pretraining strategy by fine-tuning on
two detection tasks: supervised and open-vocabulary detec-
tion, reporting an improvement in mAP@0.5 of 3.2% and
of 1.7%, respectively.

Given the promise of our approach, many research direc-
tions can be pursued in the future. First, additional down-
stream tasks can be evaluated like weakly-supervised ob-

ject detection [2] or phrase grounding [16]. Second, we
could increase the number of objects captions (C,C ′) share
(although the higher the number of shared object, the less
sparse grounding between (I, C ′) would have to become).
Finally, the image originally associated with C ′ could be
used as the third input.
Societal impact: Because the proposed method aims to bet-
ter learn information from image-caption pairs, our models
could include biases coming from the data. Racial and gen-
der biases in the dataset may limit the generalizability of
our models to underrepresented races/genders. Addition-
ally, captioning itself can be biased by the human annota-
tors’ beliefs or characteristics, potentially limiting the gen-
eralizability of the learned models to captions obtained from
different annotators.
Acknowledgements: This work was supported by a Uni-
versity of Pittsburgh Intelligent Systems Program fellow-
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