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Abstract

Attributes can be used to recognize unseen objects from a tex-
tual description. Their learning is oftentimes accomplished
with a large amount of annotations, e.g. around 160k-180k,
but what happens if for a given attribute, we do not have many
annotations? The standard approach would be to perform
transfer learning, where we use source models trained on
other attributes, to learn a separate target attribute. However
existing approaches only consider transfer from attributes in
the same domain i.e. they perform semantic transfer between
attributes that have related meaning. Instead, we propose to
perform non-semantic transfer from attributes that may be in
different domains, hence they have no semantic relation to
the target attributes. We develop an attention-guided trans-
fer architecture that learns how to weigh the available source
attribute classifiers, and applies them to image features for
the attribute name of interest, to make predictions for that at-
tribute. We validate our approach on 272 attributes from five
domains: animals, objects, scenes, shoes and textures. We
show that semantically unrelated attributes provide knowl-
edge that helps improve the accuracy of the target attribute
of interest, more so than only allowing transfer from seman-
tically related attributes.

Introduction

Semantic visual attributes have allowed researchers to rec-
ognize unseen objects based on textual descriptions (Lam-
pert, Nickisch, and Harmeling 2009; Parikh and Grau-
man 2011; Akata et al. 2013), learn object models expedi-
ently by providing information about multiple object classes
with each attribute label (Kovashka, Vijayanarasimhan, and
Grauman 2011; Parkash and Parikh 2012), interactively rec-
ognize fine-grained object categories (Branson et al. 2010;
Wah and Belongie 2013), and learn to retrieve images from
precise human feedback (Kumar et al. 2011; Kovashka,
Parikh, and Grauman 2015). Recent ConvNet approaches
have shown how to learn accurate attribute models through
multi-task learning (Fouhey, Gupta, and Zisserman 2016;
Huang et al. 2015) or by localizing attributes (Xiao and
Jae Lee 2015; Singh and Lee 2016). However, deep learning
with ConvNets requires a large amount of data to be avail-
able for the task of interest, or for a related task (Oquab et
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al. 2014). What should we do if we have a limited amount of
data for the task of interest, and no data from semantically
related categories? For example, let us imagine we have an
entirely new domain of objects (e.g. deep sea animals) which
is visually distinct from other objects we have previously en-
countered, and we have very sparse labeled data on that do-
main. Let us assume we have plentiful data from unrelated
domains, e.g. materials, clothing, and natural scenes. Could
we still use that unrelated data?

We examine how we can transfer knowledge from at-
tribute classifiers on unrelated domains, as shown in Fig. 1.
For example, this might mean we want to learn a model
for the animal attribute “hooved” from scene attribute “nat-
ural”, texture attribute “woolen”, etc. We define semantic
transfer as learning a target attribute using the remaining
attributes in that same data set as source models. This is
the approach used in prior work (Chen and Grauman 2014;
Liu and Kovashka 2016; Han et al. 2014). In contrast, in non-
semantic transfer (our proposed approach), we use source at-
tributes from other datasets. We show that allowing transfer
from diverse datasets allows us to learn more accurate mod-
els, but only when we intelligently select how to weigh the
contribution of the source models. The intuition behind our
approach is that the same visual patterns recur in different
realms of the visual world, but language has evolved in such
a way that they receive different names depending on which
domain of objects they occur in.

We propose an attention-guided transfer network. Briefly,
our approach works as follows. First, the network receives
training images for attributes in both the source and tar-
get domains. Second, it separately learns models for the at-
tributes in each domain, and then measures how related each
target domain classifier is to the classifiers in the source do-
mains. Finally, it uses these measures of similarity (related-
ness) to compute a weighted combination of the source clas-
sifiers, which then becomes the new classifier for the target
attribute. We develop two methods, one where the target and
source domains are disjoint, and another where there is some
overlap between them. Importantly, we show that when the
source attributes come from a diverse set of domains, the
gain we obtain from this transfer of knowledge is greater
than if only use attributes from the same domain.

We test our method on 272 attributes from five datasets of
objects, animals, scenes, shoes, and textures, and compare



" w5y b W

anlmal attributes

Figure 1: We study transfer of knowledge among disjoint domains. Can shoe, object, scene, and texture attributes be beneficial
for learning animal attributes, despite the lack of semantic relation between the categories and attributes?

it with several baselines: learning using data from the tar-
get attribute only, transfer only from attributes in the same
domain, uniform weighting of the source classifiers, learn-
ing an invariant representation through a confusion loss, and
a fine-tuning approach. We also show qualitative results in
the form of attention weights, which indicate what kind of
information different target attributes borrowed.

While our target attributes come from well-defined and
properly annotated datasets, our work demonstrates how
non-semantic transfer can be used to learn attributes on
novel domains where data is scarce, like the scenario dis-
cussed above. Our main contributions are an attention-
guided transfer network, and a study of transferability of at-
tributes across semantic boundaries.

The rest of this paper is organized as follows. Sec. 2 re-
views related work on attribute learning, transfer learning,
and attention networks. We describe our attention-guided
transfer approach in Sec. 3. Sec. 4 shows our experimental
evaluation, and we conclude in Sec. 5.

Related Work

Attribute learning. An image can portray more than one
attribute, so it is natural to learn multiple attributes jointly.
(Shao et al. 2015) employ multi-task learning to learn at-
tributes for crowd scene understanding. (Fouhey, Gupta,
and Zisserman 2016) recognize 3D shape attributes using a
multi-label and an embedding loss. Another way for joint at-
tribute learning is using a regularized hypergraph cut (Huang
et al. 2015). Hypergraphs represent instances and can cap-
ture correlations of multiple relations (i.e. attributes).

Other approaches use localization for attribute learning.
(Liu et al. 2015) learn binary face attributes using a local-
ization component and an identity classifier followed by lin-
ear SVMs for binary attribute prediction. (Xiao and Jae Lee
2015) discover visual concepts in a sequence of attribute
comparisons. (Singh and Lee 2016) improve the efficiency
and accuracy of this method using a Siamese neural network
with localization and ranking sub-nets.

Despite the success of end-to-end deep learning, many au-
thors employ neural networks for feature extraction, and use
these features in traditional machine learning frameworks.
(Liang et al. 2015) learn a feature space using additional in-
formation from object categories, and (Gan, Yang, and Gong
2016) create category-invariant features that are helpful for
attribute learning.

We study how to perform attribute transfer learning using
multi-task neural networks.

Domain adaptation and transfer learning. Many re-
searchers perform transfer learning via an invariant feature
representation (Gan, Yang, and Gong 2016; Gong et al.
2012), e.g. by ensuring a network cannot distinguish be-
tween two domains in the learned feature space (Tzeng et
al. 2015; Ganin and Lempitsky 2015; Long et al. 2016),
training a network that can reconstruct the target domain
(Ghifary et al. 2016; Kan, Shan, and Chen 2015; Bousmalis
et al. 2016), through layer alignment (Chen et al. 2015) or
shared layers that bridge different data modalities (Castre-
jon et al. 2016). Other methods (Yang, Yan, and Haupt-
mann 2007) perform transfer learning via parameter transfer
where the source classifiers regularize the target one. (Tom-
masi, Orabona, and Caputo 2014) employ an adaptive least-
squares SVM to transfer model parameters from source clas-
sifiers to a target domain.

Transfer learning for attributes. Prior work considers
transfer learning between attributes of the same domain.
(Chen and Grauman 2014) use tensor factorization to trans-
fer object-specific attribute classifiers to unseen object-
attribute pairs. (Han et al. 2014) learn a common feature
space through maximum mean discrepancy and multiple
kernels. (Liu and Kovashka 2016) select features from the
source and target domains, and transfer knowledge using
Adaptive SVM (Yang, Yan, and Hauptmann 2007) in this
lower-dimensional space.

Some recent zero-shot learning work (Changpinyo et al.
2016; Xian et al. 2016; Yu and Aloimonos 2010) learns an
underlying embedding space from the seen classes and some
auxiliary information (e.g. text), and then queries this em-
bedding with a sample belonging to a new unseen class, in
order to make a prediction. For example, (Xian et al. 2016)
use attributes and text as a class embedding. They also use
a non-linear latent embedding to compute projections of im-
age or text features, which are then merged through a Ma-
halanobis distance. A scoring function is learned which de-
termines if the source domain (class descriptions) and tar-
get domain (test image) belong to the same class. Simi-
larly, (Changpinyo et al. 2016) find an intermediate repre-
sentation for text and images with dictionary learning. (Yu
and Aloimonos 2010) use a topic-modeling-based genera-



tive model as an intermediate representation. Usually zero-
shot learning is performed to make predictions about object
categories, but it can analogously be used to predict a novel
target attribute, from a set of known source attributes.

However, prior work only considers objects and attributes
from the same domain. Our study differs in that we study
if transferability of unrelated attributes (from different do-
mains) is more beneficial.

Attention networks. Attention has been used for tasks
such as image segmentation (Chen et al. 2016), saliency
detection (Kuen, Wang, and Wang 2016), image caption-
ing (You et al. 2016) and image question answering (Xu
and Saenko 2016; Shih, Singh, and Hoiem 2016; Yang et
al. 2016). The latter use an attention mechanism to decide
which regions in an image are relevant to a question input.
In our problem scenario, we are not concerned with image
regions, but want to know which source classifiers are rel-
evant to a target classifier. Thus, instead of image-text at-
tention, we perform attention-guided transfer from source to
target attribute classifiers.

Multi-task Attention Network for Transfer
Learning

Overview. We first overview our multi-task attention net-
work, illustrated in Fig. 2. Then, we give more details on its
formulation, optimization procedure, and implementation.

An attention architecture allows us to select relevant infor-
mation and discard irrelevant information. We are interested
in selecting relevant source models for our target attributes
(e.g. “sporty”). For example, the network might determine
attributes X and Z are useful for predicting target attribute
A, but attribute Y is not (Fig. 2 (b)). The learned attention
weights would reflect the predicted usefulness of the source
attributes for the target task.

Our network contains source and target input branches,
as depicted in Fig. 2. Similarly to (Shih, Singh, and Hoiem
2016; Yang et al. 2016), we extract fc7 features from
AlexNet for source and target images. These target (X;)
and source (X,) visual features are embedded into a com-
mon space using a projection matrix Wgpqreq, resulting in
embedded features X, and X.. This common space is re-
quired to find helpful features that bridge source and target
attributes. Then we learn a set of weights (classifiers) W,
and W which we multiply by X and X, to obtain attribute
presence/absence scores P; and P for the target and source
attributes, respectively.

In order to transfer knowledge between the target and
source attribute classifiers, we calculate normalized similar-
ities W4 between the classifiers W; and W,. We refer to
Wit as the attention weights learned in our network. We
then use W, as coefficients to compute a linear combi-
nation of the source classifiers Ws. By doing so, we select
the most relevant source classifiers related to our target at-
tributes. We call this resulting combined classifier W ,p.
Finally, we compute the product of W,,,, with the target
features X7, to produce the final attribute presence/absence
scores for the target attributes.

At training time, our network requires source and target
images to find helpful knowledge to our target task. How-
ever, once the relationship between source and target at-
tributes is captured in Wy, we no longer need the source
images. In Fig. 2, we denote modules that are used at test

time with dashed boundaries. Layers are denoted with -,
and " represents their parameters.

Network formulation. Our network receives target (X;)
and source (X) visual features. We process all source and
target attributes jointly, i.e. we input training image features
for all attributes at the same time. These are embedded in a
new common feature space:

Xt/ = Xthhared + Tb Xé/; = XsWshared + Tb (l)

where X; € RN*D X, e RN*D gre the features,
Wharea € RP*M contains the shared embedding weights,
T € RV=1 i5 a vector of ones, b € R*M is the bias term,
N is the batch size, D is the number of input features, and
M is the number of features of the embedding.

During backprop training, we learn target and source
models W; and W. Note that the target model is only used
to compute its similarity to the source models, and will be
replaced by a combination of source models in a later stage.
We then compute P; and P;, which denote the probability
of attribute presence/absence for the target and source at-
tributes, respectively. These are only used so we can com-
pute a loss during backprop (described below).

P, = f(X{Wy) P, = f(XW5) 2)

where W, € RM=K W, ¢ RM=L are learned model
weights, f is a sigmoid function (used since we want to com-
pute probabilities), L is the number of source attributes, and
K the number of target attributes. We found it is useful to
ensure unit-norm per column on Wy and W.

Attention weights W, are calculated measuring the sim-
ilarity between source classifiers W, and target classifiers
W;. Then, a normalization procedure is applied.

Wi wr
CIWEIWE
[Q(Oatti,l)a s g(Oatti,L)]
Zf:l g(O(ltti‘j)

where W and WSTJ are columns from W; and Wy, Ogy €

RE=L W, € RE®L g is a RELU function, Oatt, ; s the
similarity between target attribute ¢ and source attribute j,
and W, are the attention weights for a single target at-
tribute. We use cosine similarity in Eq. 3 to ensure distances
are in the range [-1, 1].

When computing attention weights, we want to ensure
we do not transfer information from classifiers that are in-
versely correlated with our target classifier of interest. Thus,
we employ normalization over a RELU function (g in Eq. 3)
and transfer information from classifiers positively corre-
lated with the target classifier, but discard classifiers that

Oatti,]-
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Figure 2: (a) Overview of our transfer attention network, using an example where the target attributes are from the shoes
domain, and the source attributes are from the objects, scenes, animals and textures domains. Source and target images are
projected through a shared layer. Then, target and source attribute models W; and W, are learned. An attention module selects
how to weigh the available source classifiers, in order to produce a correct target attribute prediction. At test time, we only

use the dashed-line modules. "~ denotes layers, and ' represents their parameters. (b) Example of how source models W, are
combined into the final target attribute classifiers W5, using as coefficients the attention weights W;.

are negatively correlated with it (negative similarities are
mapped to a 0 weight).

Finally, a weighted combination of source models is cre-
ated, and multiplied with the target image features X; to
generate our final predictions for the target attributes:

Wcomb = WatthT P= f(Xt/Wc,Ic;mb) (4)

where Wy, € RE®M ig the weighted combination of
sources, and f is a sigmoid function.

Note our model is simple to train as it only requires the
learning of three sets of parameters, W qreq, Ws and Wy.

Optimization. Our network performs three tasks. The
main task 7T} predicts target attributes using attention-guided
transfer, and side tasks 75 and T3 predict source and target
attributes, respectively. Each task 7} is associated with a loss
L;. Our optimization loss is defined as

L =M %L1+ % Lo+ A3 % Ls 5)

where A\; = 1, A2 = 0.1, and A5 = 0.1." Since an image can
posses more than one attribute, our predictions are multi-
label and we employ binary cross-entropy loss for all L;.
For task T5, our source image branch contains attributes
from different domains. Thus an image has annotations for
attributes in its domain, but not for other domains. We solve
this issue with a customized cross-entropy loss (Fouhey,

!'The loss weights were selected similar to other transfer learn-
ing work (Tzeng et al. 2015) where the main task has a weight of
1, and side tasks have a weight of 0.1.

Gupta, and Zisserman 2016). Suppose you have N samples
and L attributes. Each attribute is annotated with 0, 1 or &,
where @& denotes no annotation. The customized loss is:

N L
LY,P) =Y Y Yijlog(P;;)+(1-Y;;)log(1-P; ;)

i=1 j=1
Yy #9

(6)
where 7 is an image, j is an attribute label, Y;; €
{0,1,2}™-F is the ground-truth attribute label matrix and
P; ; € [0,1]™F is the prediction probability for image i and
attribute j. The constraint Y; ; # & means attribute annota-
tions & have no effect on the loss.

Implementation. We implemented the described network
using the Theano (Theano Development Team 2016) and
Keras (Chollet 2015) frameworks and (Singh and Lee
2016)’s attention network. First, we did parameter explo-
ration using 70 random configurations of learning rate
and L, regularizer weight. Each configuration ran for five
epochs with the ADAM optimizer. Then the configuration
with the highest accuracy on a validation set was selected
and a network with this configuration ran for 150 epochs.
In the end of each epoch, the network was evaluated on a
validation set, and training was stopped when the validation
accuracy began to decrease. Finally, note that we have fewer
target images than source images, so the target images were
sampled more times.



Experimental Validation

We compare three types of source data for attribute trans-
fer, i.e. three types of data that can be passed in the
source branch of Fig. 2. This data can correspond to at-
tributes from the same domain, from a disjoint domain, or
from any domain. The first option corresponds to the stan-
dard manner of performing semantic (within-domain) at-
tribute transfer (Chen and Grauman 2014; Han et al. 2014;
Liu and Kovashka 2016). The latter two options represent
our non-semantic transfer approach.

To evaluate the benefit of transfer, we also compare to
a method that learns target attributes from scratch with no
source data, and two standard transfer learning approaches
(Tzeng et al. 2015; Oquab et al. 2014). We do not directly
compare to attribute transfer methods (Chen and Grauman
2014; Han et al. 2014; Liu and Kovashka 2016) as they do
not use neural nets and the comparison would not be fair.

We evaluated our method and the baselines on five do-
mains and 272 attributes. We observe that by transferring
from disjoint domains or from any domain, i.e. by perform-
ing non-semantic transfer without the requirement for a se-
mantic relationship between the source and target tasks, we
achieve the best results. To better understand the transfer
process, we also show attention weights and determine the
most relevant source domains per target domain/attribute.

Datasets

We use five datasets: Animals with Attributes (Lampert,
Nickisch, and Harmeling 2009), aPascal/aYahoo Objects
(Farhadi et al. 2009), SUN Scenes (Patterson et al. 2014),
Shoes (Kovashka, Parikh, and Grauman 2015), and Textures
(Caputo, Hayman, and Mallikarjuna 2005). The number of
attributes is 85, 64, 102, 10 and 11, respectively. The to-
tal number of images is 30,475; 15,340; 14,340; 14,658 and
4,752, respectively.

For each dataset, we split the data in 40% for training the
source models, 10% for training the target models, 10% for
selection of the optimal network parameters, and 40% to test
the final trained network on the target data. The complexity
of the experimental setup is to ensure fair testing. For trans-
fer learning among different domains (ATTENTION-DD and
ATTENTION-AD below), we can increase the size of our
source data split to the full dataset, but for fair comparison,
we use the same split as for the ATTENTION-SD setup.

Our splits mimic the scenario where we have plentiful
data from the source attributes, but limited data for the at-
tribute of interest.

Baselines

5

Let D; represent a domain and its attributes, and D = |J D;
i=1

be the union of all domains. We compare seven methods.

The first are two ways of performing non-semantic transfer:

e ATTENTION-DD, which is our multitask attention net-
work with D; as our target domain and D\ D, as our
source domains. We train five networks, one for each con-
figuration of target/source.

e ATTENTION-AD, which is our multitask attention net-
work with D; as our target domain and D as our source
domains. We again train one network for each target do-
main. Some attributes on the source and target branches
overlap, so we assign 0 values along the diagonal of W,
to avoid transfer between an attribute and itself.

We compare our methods against the following baselines:

e ATTENTION-SD, which uses the same multitask attention
network but applies it on attributes from only a single
domain D;, for both the source and target branches. We
again train five networks, and assign values of 0 along
the diagonal of W,;;. Note that even though some form
of transfer is already taking place between all target at-
tributes due to the multi-task loss, the explicit transfer
from the source domains is more effective because we
have more training data for the sources than the targets.

e TARGET-ONLY, which uses the predictions P, as the final
predictions of the network, without any transfer from the
source models.

e A replacement of the attention weights W, with
uniform weights, i.e. combining all source classifiers
with the same importance for all targets. This results
in baselines ATTENTION-SDU, ATTENTION-DDU and
ATTENTION-ADU.

e (Tzeng et al. 2015) which learns feature representations
X!, X, invariant across domains, using domain classifier
and confusion losses but no attention. This results in base-
lines CONFUSION-DD and CONFUSION-AD.

e Approaches FINETUNE-DD and FINETUNE-AD that
fine-tune an AlexNet network using source data, then fine-
tune those source networks again for the target domain.
This method represents “standard” transfer learning for
neural networks (Oquab et al. 2014).

We found that ATTENTION-SD is a weak baseline.
Thus, we replace it by an ensemble of TARGET-ONLY with
ATTENTION-SD. This ensemble averages the probability
outputs of these two models. We try a similar procedure for
ATTENTION-DD and ATTENTION-AD, but it weakens their
performance, so we use these methods in their original form.

Quantitative results

Tables 1 and 2 contain show average accuracy and F-
measure, respectively. We show both per-domain and across-
domains overall averages. We include F-measure because
many attributes have imbalanced positive/negative data.

In both tables, we see that our methods ATTENTION-DD
and ATTENTION-AD outperform or perform similar to the
baselines in terms of the overall average. While the strongest
baselines CONFUSION-DD and CONFUSION-AD (Tzeng et
al. 2015) perform similarly to our methods for accuracy?,
our methods have much stronger F-measure (Table 2). Ac-
curacies in Table 1 seem misleadingly high because attribute
annotations are imbalanced in terms of positives/negatives
and a baseline that predicts all negatives will do well in terms

The top four methods have slightly different performance us-
ing three decimals.



Table 1: Method comparison using accuracy. Our ATTENTION-DD and ATTENTION-AD outperform or perform equal to the

other methods on average. Best results are bolded per row.

TARGET | ATTENTION | ATTENTION | ATTENTION | ATTENTION | ATTENTION | ATTENTION | CONFUSION | CONFUSION | FINETUNE | FINETUNE
-ONLY -SDU -DDU -ADU -SD -DD (ours) -AD (ours) -DD -AD -DD -AD
avg animals 0.90 0.63 0.63 0.73 0.90 0.91 091 0.91 091 0.88 0.92
avg objects 0.92 0.89 0.89 0.89 0.92 0.93 0.93 0.93 0.93 091 0.92
avg scenes 0.95 0.93 0.93 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.95
avg shoes 0.88 0.70 0.71 0.79 0.89 0.90 0.90 0.90 0.90 0.75 0.92
avg textures 0.91 0.87 0.91 0.91 0.95 0.99 0.99 0.99 0.99 0.91 0.91
avg overall 0.91 0.80 0.81 0.85 0.92 0.94 0.94 0.94 0.94 0.88 0.92

Table 2: Method comparison using F-measure. Our approaches ATTENTION-DD and ATTENTION-AD outperform the other

methods on average. Best results are bolded per row.

TARGET | ATTENTION | ATTENTION | ATTENTION | ATTENTION | ATTENTION | ATTENTION | CONFUSION | CONFUSION | FINETUNE | FINETUNE
-ONLY -SDU -DDU -ADU -SD -DD (ours) -AD (ours) -DD -AD -DD -AD
avg animals | 0.81 0.00 0.00 0.27 0.82 0.82 0.83 0.82 0.82 0.69 0.79
avg objects 0.50 0.00 0.00 0.01 0.50 0.47 0.47 0.39 0.41 0.10 0.14
avg scenes 0.28 0.00 0.00 0.00 0.27 0.25 0.26 0.17 0.15 0.04 0.04
avg shoes 0.81 0.27 0.38 0.59 0.83 0.83 0.84 0.83 0.83 0.37 0.87
avg textures 0.68 0.09 0.00 0.00 0.78 0.96 0.96 0.95 0.95 0.06 0.09
avg overall 0.62 0.07 0.08 0.17 0.64 0.67 0.67 0.63 0.63 0.25 0.39

Table 3: Attention weights summed per domain for our
ATTENTION-DD approach. Rows vs columns represent tar-
get vs source classifiers. The most relevant domains are
bolded per row. — denotes ATTENTION-DD does not trans-

fer from attributes in the same domain.
tgt/scc | animals | objects | scenes | shoes | textures

animals - 0.29 0.56 0.06 0.09
objects 0.48 - 0.44 0.04 0.04
scenes 0.59 0.28 - 0.07 0.06
shoes 0.19 0.35 0.38 - 0.08
textures 0.33 0.19 0.44 0.04 -

Table 4: Attention weights summed per domain for our
ATTENTION-AD approach.

tgt/src | animals | objects | scenes | shoes | textures
animals 0.43 0.09 0.39 0.02 0.07
objects 0.26 0.21 0.41 0.04 0.08
scenes 0.36 0.19 0.39 0.02 0.04
shoes 0.10 0.30 0.50 0.00 0.10
textures 0.36 0.16 0.39 0.03 0.06

of accuracy (0.81 on average), but not in terms of F-score.
Thus, the differences between the methods are larger than
they seem.

It is important to highlight the success of ATTENTION-
DD as it does not use any attributes from the target domain,
as opposed to ATTENTION-AD. In other words, transfer is
more successful when we allow information to be trans-
ferred even from domains that are semantically unrelated to
the target. In addition, note that the uniform weight baselines
(ATTENTION-SDU, ATTENTION-DDU and ATTENTION-
ADU) are quite weak. This shows that only by selecting
the source classifiers intelligently, we can perform trans-
fer learning correctly. We see many 0 F-measure scores for
ATTENTION-SDU, ATTENTION-DDU and ATTENTION-
ADU because they have a bias to predict negative labels.

While FINETUNE-AD outperforms our methods for two
domains in Table 1, it is weaker in terms of the overall aver-
age, and weaker in four out of five domains in Table 2.

Finally, the attention transfer methods with learned atten-
tion weights usually outperform TARGET-ONLY, which em-
phasizes the benefit of transfer learning. Our non-semantic
transfer methods bring the largest gains.

We believe the success of our attention network is due to
the combination of transfer learning via a common feature
representation, and parameter transfer. The common feature
representation is achieved via our shared layer, and the pa-
rameter transfer is performed via our attention-guided trans-
fer. Finally, we believe that instance weighting also helps:
this is accomplished by our choice to sample more target
images than source images.

Qualitative results

In order to analyze the internal behavior of ATTENTION-
DD and ATTENTION-AD, we extract and show the attention
weights W,;;. Hence, for each target classifier 7, we extract
the weights Wy, = (w1, ws,...,wy) for the source clas-
sifiers. This procedure also verifies if ATTENTION-AD is
primarily using transfer from attributes in the same domain,
or attributes from disjoint domains with respect to the target.
Due to the large number of attributes, we group attributes by
their domain. Rows represent targets, and columns sources.

In Table 3 corresponding to ATTENTION-DD, the atten-
tion weights over the source classifiers are distributed among
animals, objects, and scenes. We believe that shoes attributes
are not very helpful for other domains because shoes images
only contain one object. Further, textures are likely not very
helpful because they are a low-level representation mainly
defined by edges. Interestingly, we observe that the most rel-
evant domain for animals, shoes, and textures is scenes, and
scenes is not closely related to any of these domains. Simi-
larly, the most meaningful domain for objects and scenes is
animals, another semantically unrelated source domain.

In Table 4, showing results when we perform transfer



Table 5: Interesting selected source attributes from domains
disjoint from the target domain.

domain | target attribute some relevant source
attributes from [domain]
aluminium muscular [animal], made
textures of glass [object]

linen handlebars [object],
railroad [scene]
lettuce leaf lives in forest [animal]
pointy foliage [scene]
shoes bright-in-color vegetation [scene],
shrubbery [scene]
long-on-the-leg has leg [object]
has stem dirty soil [scene], feed
object from fields [animal]

vegetation dirty soil [scene]
tough-skinned stressful [scene]
animal fast scary [scene]

hunter studying [scene]
railroad solitary [animal]
scene shrubbery tough-skinned [animal]

from any domain, we observe that shoes and textures at-
tributes do not benefit almost at all from other attributes in
the same domain. On the other hand, objects, scenes, ani-
mals do benefit from semantically related attributes, but the
overall within-domain model similarity is lower than 50%,
again reaffirming our choice to allow non-semantic transfer.

Finally, we illustrate what visual information is being
transferred across domains. In Table 5, we show relevant
source attributes for several target attributes. The ‘“alu-
minium” texture presents a “muscular” structure, and a color
similar to “glass”. The “linen” texture has edges similar to
“handlebars” and “railroads”. “Lettuce leaf” shows leaves’
textures, so “forest” animals (which might co-occur with
leaves) are helpful. For shoes attributes, “foliage” is a set of
“pointy” leaves, “vegetation” and ‘““shrubbery” are “bright-
in-color”, and “leg” is related to shoes that are “long-on-the-
leg”. For object attributes, “vegetation” and objects with a
“stem” grow on “dirty soil” and animals might “feed” on
them. For animal attributes, “tough skin” gives us the feel-
ing of a “stressful” situation, “fast” animals might “scare”
people, and “hunter” animals “study” the best situation to
catch their prey. Finally, “railroad” scenes might be “soli-
tary” places, and “shrubbery” is rough like “tough-skinned”
animals. In other words, while source attributes are selected
from disjoint domains, it is possible to explain some selec-
tions, but note that many do not have an intuitive explana-
tion. The latter is indeed what we expect when we perform
non-semantic transfer.

Conclusion

We have explored the problem of attribute transfer learn-
ing using unrelated domains. We develop an approach that
transfers knowledge in a common feature space, by perform-
ing parameter transfer from source models. Our attention
mechanism intelligently weights source attribute models to

improve performance on target attributes. We find that at-
tributes from a different domain than the target attributes are
quite beneficial for transfer learning, and improve accuracy
more than transfer from semantically related attributes. We
also outperform standard transfer learning approaches.
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