Peekaboom: A game for locating objects in images

Luis von Ahn, Ruoran Liu and Manuel Blum

Computer Science Department, Carnegie Mellon University

Presented by: Nils Murrugarra
University of Pittsburgh

Object Location in Images

Given an image, determine what objects are present in the image and locate them:

Woman

Man

Umbrella

Tree

Sailboat

Dog

Let's use Human Power

- "Math is hard. Let's go shopping!" –Barbie
- On similar line of thinking:
 - Programming computers to locate objects in images is hard, so...
 - Let's not think about that.
 - Instead, humans can do the work for us?

Problems

- Wait! Human probably wants:
 - Enjoyment they want to have a good time
 - Incentives they want something in return
- How to address them?

A Game

- People can do the work for us by playing a game.
- Many questions appears:
 - What will be the core idea of the game?
 - How do we collect data?
 - How do we ensure the quality of the data?

An Earlier Idea: Luis von Ahn's ESP Game – *Core Idea*

Two players without communication watch a particular image, each one tries to guess what the other is thinking about the image.

If they agree on a word, the game moves on and increases both players' scores.

The ESP Game 0 2:05 The ESP Game Time Left **Taboo Words Your Guesses** USO CROWD BANNER STAR PEOPLE STARS BLUE WHITE BLACK Pass Type your next guess: Your partner has Flag entered a quess © 2002-2003 Carriegie Mellon University, all rights reserved. Patent Pending

A Sample Run

Player 1 Guesses

- Pants
- Model
- Lady

Player 2 Guesses

- Woman
- Shirt
- Girl
- Model

Server: Agreed, "Model"

Why ESP Works – Data Collection and Quality

***When two players agrees:**

- Say what it is In other words this is a "label" to the shown image.
- The fact that two players agree on a label means that this label has a high quality.

Limitations of ESP

- The ESP Game can label images (what's in them), but it cannot:
 - Where the objects are?.
 - Determine the way in which the object appears – does the label "car" refer to the text "car" or an actual car in the image?

Completing the Image Cycle

A New Idea: Peekaboom – Core Idea

- Two players are assigned the roles of "revealer" (BOOM) and "guesser" (PEEK).
- The revealer sees an image with a label. The guesser sees nothing.
- The revealer shows the guesser parts of the image. If the guesser guesses correctly, the game continues with new images.

Peekaboom - Interface

Peek - Guesser

Boom - Revealer

Statement of Purpose

- The authors would like to collect data of a lot images automatically
- The authors hope that these data can be used to train computer vision algorithms.

Let's do an example ...

Let's Play ...

https://www.youtube.com/watch?v=tx082gD wGcM&feature=youtu.be&t=1683

Why Peekaboom Works

To help as much as possible the guesser to guess correctly, the revealer locates relevant parts of the object in the image:

But Wait, There's More

- Peekaboom not only locates objects:
 - It gives the context necessary to identify them.
 - It Classifies the image as "Text", "Noun", or "Verb" using the hints option.
- Let's learn more about these functionalities

Object Context

- •Pings help separate the context of object with the object itself.
- •They help the guesser distinguish nose from other possibly correct labels like "elephant" and "ear".

Hints

The Role of Hints

How to involve more participants in the game?

Game Points

Game Points

- Peek guesses the correct word (+ 50)
- Points are not subtracted for passing (+ 0)
- Peek guesses the correct word and Boom had used a hint (+ 25 extra)
- Points are not given for usage of the hot/cold buttons (+ 0)

Bonus Points

- Obtain up to get + 150 points
- Points depend on how far one participant's click is from his/her partner's corresponding click (+0 ~ 10)
- If the object are not in the image, players can pass (+25)

Collecting Image Metadata – Data Collection

- Data from Area Revealed: Which pixels are necessary to guess the word?
- Data from hints: what is the relation between word and image?
- Data from pings: which pixels are inside the object?
- Data from sequence of Boom's clicks: What are the most relevant aspects of the object?
- Data from Pass Button: Elimination of poor/difficult image-word pairs

Cheating – Data Quality

• Why to worried? If the two players cheat on the game, the data is not reliable.

Multiple anti-cheating mechanisms

- To avoid match participants that start at the "same time": The player queue
- To avoid geographically proximity: IP address checks
- To avoid bots: Blacklists after consistent failure on "seed" images
- To avoid "cheating communication": Limited freedom to enter guesses

Applications

- Improving Image-Search Results
- Object Bounding-Boxes
 - 1. Given an image, create a matrix of 0's
 - For each click in its surrounding area (radius 20 pixels). Add +1 to the matrix position
 - 3. Combine different games for the same imageword pair.
 - 4. Apply a **threshold** of 2 (at least 2 players agree)
 - 5. Cluster the pixels to get bounding boxes
- Using Ping Data for Pointing
 - Select a random ping

Evaluation

Is this an effective way to collect data? Yes!

Game is enjoyable

- Each person played average of 158.7 images
- That's 72 96 minutes per person in one month!
- User reviews

Usage Statistics

- August 1, 2005 ~ September 1, 2005
- 14153 people and 1122998 pieces of data

Evaluation: Accuracy of Collected Data

Accuracy of Bounding Boxes

Are they good compared to bounding boxes collected in a non-game setup?

- It was performed in 50 image-word (nouns) pairs
- Given a word, four volunteers were asked to draw a bounding box around the object that the word refers to.
- Average overlap: 0.754
- Standard deviation: 0.109

 $OVERLAP(A,B) = AREA(A \cap B) / AREA(A \cup B)$

Accuracy of Pings

- It was verified if the Peekaboom object pointers are indeed inside the objects
- Given a pointer, three volunteer determine if it is inside the object or not.
- 100% of the pointers were inside the object referred by the word

Discussion

- What are some disadvantages/weaknesses of Peekaboom?
- Can you think of any other applications of Peekaboom?

Conclusion

- Peekaboom is an enjoyable game to collect image data achieving :
 - Low costs One game server.
 - Data with Good Quality

 Accurately locate objects in images.
 - Large Quantity of data— Locate objects in millions of images.

Questions

References

- [1]. Von Ahn, L., Liu, R., & Blum, M. (2006, April). Peekaboom: a game for locating objects in images. In *Proceedings of the SIGCHI conference on Human Factors in computing systems* (pp. 55-64). ACM.
- [2]. Slides version of " Peekaboom: A game for locating objects in images." Source: http://www.slideserve.com/rachel/peekaboom-a-game-for-locating-objects-in-images
- [3]. Slides version of " Peekaboom: A game for locating objects in images." Source:

http://nrl.iis.sinica.edu.tw/Web2.0/presentation/ESP_Game_and_Peekaboom.ppt

- [4]. Slides version of "Peekaboom: A game for locating objects in images." Source: http://cgit.nutn.edu.tw:8080/cgit/PPTDL/LZJ 800224182928.PDF
- [5]. Slides version of " Peekaboom: A game for locating objects in images." Source:

http://www.eecs.harvard.edu/cs286r/courses/fall08/files/AngelaCS286r.pdf

[6]. Video: Human Computation. Source:

https://www.youtube.com/watch?v=tx082gDwGcM

Crowdsourcing Annotations for Visual Object Detection

Hao Su, Jia Deng, Li Fei-Fei
Computer Science Department, Stanford
University

Presented by: Nils Murrugarra
University of Pittsburgh

Motivation

Motivation:

 A large quantity of precise bounding boxes are required to learn good object detectors.

Goal:

Crowd-source bounding boxes annotations

Challenges:

Control the data quality with minimal cost.

Method Overview

Method – Drawing Task

CORRECT

WRONG: must be as tight as possible!

WRONG; must include all visible parts!

CORRECT

WRONG: occluded parts do not matter as long as all visible parts are included.

Rule 2: If there are multiple instances, include only ONE (any one).

CORRECT

CORRECT

WRONG: should include only one instance.

prev NO.6 submit

Method – Drawing Task

Rule 3: DO NOT draw on an instance that already has a bounding box, as shown below in vellow. Draw on a new instance. Main Instructions with examples Look up "kit fox" in Wikipedia in Google Draw a box around kit fox, prairie fox, Vulpes velox small grey fox of the plains of western Draw a bounding box around the following North America object in the image: kit fox, prairie fox, Vulpes velox; small grey fox of the plains of western North America Instructions: · Include all visible parts and draw as tightly as possible . If there are multiple instances, pick only ONE (any one). SEE INSTRUCTIONS WITH EXAMPLES: Check here if there's NO kit fox, prairie fox, Vulpes velox in this image. (Optional) Enter any comment you have: Already has a box. Do not draw on this one.

Method – Drawing Task

Draw a box around lion cub: a young lion
This is a qualification test!

Draw a bounding box around the following object in the image:

fion cub; a young lion

Instructions:

5 images in total, 4 left. This is a qualification test.

Method – Quality Verification Task

Good Annotation

Bad Annotation

Method – Coverage Verification Task

Evaluation

Dataset

200 images were selected over 10 categories on the Imagenet database.

Overall Quality

- It was manually inspected
- 97.9% of images are completely covered with bounding boxes. The remaining 2.1% are difficult cases.
- 99.2% are accurate (tight as possible)

Overall Cost

- The proposed method is cheaper
- Consensus is 32.80% more expensive

Task Name	Time per b.box	
	Median	Mean
Drawing	25.5s	50.8s
Quality Verification	9.0s	21.9s
Coverage Verification	7.8s	15.3s
Total	42.4s	88.0s

Evaluation – Quality Control

Drawing Task

Acceptance ratio
 62.2%

Quality Verification Task

- It was employed a "gold standard" (validation images)
- Acceptance ratio: 89.9%

Coverage Verification Task

- It was employed a "gold standard" (validation images)
- Acceptance ratio: 95.0%

Effectiveness of Worker Training

Acceptance Ratio 58.0% 62.2%		Without Training	With Training
-	Acceptance Ratio	58.0%	62.2%

Conclusion

- It was presented a method that collects **bounding boxes** annotation using **Crowdsourcing**.
- It is composed by 3 tasks:
 - Drawing Task
 - Quality Verification Task
 - Coverage Verification Task
- It achieves high quality data with low-cost.

Questions

References

- [1]. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In *Computer Vision and Pattern Recognition*, 2009. CVPR 2009. IEEE Conference on (pp. 248-255). IEEE.
- [2]. Su, H., Deng, J., & Fei-Fei, L. (2012, July). Crowdsourcing annotations for visual object detection. In *Workshops at the Twenty-Sixth AAAI Conference on Artificial Intelligence*.