
CS 3710: Advanced Topics in AI

Introduction

Prof. Adriana Kovashka
University of Pittsburgh

August 28, 2023

Course Info

• Course website:
http://people.cs.pitt.edu/~kovashka/cs3710_fa23

• Instructor: Adriana Kovashka
(kovashka@cs.pitt.edu)

• Office: Sennott Square 5325

• Class: Mon/Wed, 9:30am-10:45am

• Office hours: by appointment

• Zoom (for some appointments):
https://pitt.zoom.us/s/4168010698

http://people.cs.pitt.edu/~kovashka/cs3710_fa23
mailto:kovashka@cs.pitt.edu
https://pitt.zoom.us/s/4168010698

About the Instructor

Born 1985 in
Sofia, Bulgaria

Got BA in 2008 at
Pomona College, CA
(Computer Science &
Media Studies)

Got PhD in 2014
at University of
Texas at Austin
(Computer Vision)

Course Goals

• To learn about state-of-the-art approaches to
computer vision tasks

• To think critically about vision approaches, see
strengths, weaknesses, and connections
between works

• To conduct research with contributions
including novel methods, method comparison
and method/data analysis

Note on Course Climate

• Some may be more familiar with the subject
of the seminar, some less, and that’s ok!

• Please respect each other and listen to each
other carefully

• You will need to collaborate on the course
project–work hard, be fair and honest, and try
to talk through problems

• Talk to instructor openly

Plan for First Three Classes

• Course logistics

• Students introduce themselves

• What is computer vision?

• Preview readings

• Paper presentation signups (by Sept. 1)

• Some basics

• Preliminary project pitches exercise

Policies and Schedule

https://people.cs.pitt.edu/~kovashka/cs3710_fa23/

Highlights:

• Paper presentations

• Project logistics

• Readings and schedule

https://people.cs.pitt.edu/~kovashka/cs3710_fa23/

Questions?

Blitz introductions (30 sec)

• What is your name?

• What one thing outside of school are you
passionate about?

• What is your current or planned research about?

• What do you hope to get out of this class?
(Optional)

• When you speak, please remind me your name

What is Computer Vision?

What is computer vision?

 Done?

Kristen Grauman (adapted)

"We see with our brains, not with our eyes“ (Oliver Sacks and others)

• Automatic understanding of images and video

– Algorithms and representations to allow a machine to

recognize objects, people, scenes, and activities

– Algorithms to mine, search, and interact with visual data

– Computing properties and navigating within the 3D world

using visual data

– Generating realistic synthetic visual data

Adapted from Kristen Grauman

What is computer vision?

sky

water

Ferris

wheel

amusement park

Cedar Point

12 E

tree

tree

tree

carousel
deck

people waiting in line

ride

ride

ride

umbrellas

pedestrians

maxair

bench

tree

Lake Erie

people sitting on ride

Objects

Activities

Scenes

Locations

Text / writing

Faces

Gestures

Motions

Emotions…

The Wicked

Twister

Perception and interpretation

Kristen Grauman

Visual search, organization

Image or video

archives

?

Query

1

2

3

Relevant

content

Kristen Grauman

Measurement

Real-time stereo Structure from motion

NASA Mars Rover

Pollefeys et al.

Multi-view stereo for

community photo collections

Goesele et al.

Slide credit: L. Lazebnik

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018

Generation

Redmon et al., CVPR 2016

Recognition in novel modalities

Chen et al., CVPR 2017

Learning from weak supervision

Bagautdinov et al., CVPR 2017

Understanding activities and intents

Vicol et al., CVPR 2018

Understanding stories in film

Das et al., CVPR 2018

Reasoning and acting:

Embodied question answering

Related disciplines

Cognitive

science

Algorithms

Image

processing

Artificial

intelligence

Graphics
Machine

learning
Computer

vision

Kristen Grauman

Why vision?
• Images and video are everywhere!

Personal photo albums

Surveillance and security

Movies, news, sports

Medical and scientific images

Adapted from Lana Lazebnik

• As image sources multiply, so do applications

– Relieve humans of boring, easy tasks

– Perception for robotics / autonomous agents

– Organize and give access to visual content

– Description of content for the visually impaired

– Human-computer interaction

– Fun applications (e.g. art styles to my photos)

– …

– What else?

Adapted from Kristen Grauman

Why vision?

YouTube link

Seeing AI

https://www.youtube.com/watch?v=R2mC-NUAmMk
https://www.youtube.com/watch?v=R2mC-NUAmMk

Why are these tasks challenging?

Recognition: What objects do you see?

carriage
horse

person

person

truck

street

building

table

balcony

car

Detection: Where are the cars?

Activity: What is this person doing?

Scene: Is this an indoor scene?

Instance: Which city? Which building?

Visual question answering:
Why is there a carriage in the street?

Why is vision difficult?

• Ill-posed problem: real world much more

complex than what we can measure in

images

– 3D → 2D

– Motion → static

• Impossible to literally “invert” image formation

process with limited information

– Need information outside of this particular image

to generalize what image portrays (e.g. to resolve

occlusion)

Adapted from Kristen Grauman

Challenges: many nuisance parameters

Illumination Object pose Clutter

ViewpointIntra-class

appearance
Occlusions

Kristen Grauman

Challenges: intra-class variation

slide credit: Fei-Fei, Fergus & Torralba

CMOA Pittsburgh

Challenges: importance of context

slide credit: Fei-Fei, Fergus & Torralba

• Thousands to millions of pixels in an image

• 3,000-30,000 human recognizable object categories

• 30+ degrees of freedom in the pose of articulated

objects (humans)

• Billions of images indexed by Google Image Search

• 1.424 billion smart camera phones sold in 2015

• About half of the cerebral cortex in primates is

devoted to processing visual information [Felleman

and van Essen 1991]

Kristen Grauman

Challenges: Complexity

Challenges: Limited supervision

MoreLess

Kristen Grauman

Problem with categorization
(Borges' Animals)

“These ambiguities, redundancies and deficiencies recall
those that Dr. Franz Kuhn attributes to a certain Chinese
dictionary entitled The Celestial Emporium of Benevolent
Knowledge. In its remote pages it is written that animals
can be divided into (a) those belonging to the Emperor,
(b) those that are embalmed, (c) those that are tame, (d)
pigs, (e) sirens, (f) imaginary animals, (g) wild dogs, (h)
those included in this classification, (i) those that are
crazy-acting, (j) those that are uncountable, (k) those
painted with the finest brush made of camel hair, (l)
miscellaneous, (m) those which have just broken a vase,
and (n) those which, from a distance, look like flies.“

Jorge Luis Borges, The Analytical Language of John Wilkins, https://www.entish.org/essays/Wilkins.html

https://www.entish.org/essays/Wilkins.html

Preview of Readings

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision." ICML 2021.

Gu et al. "Open-vocabulary Object Detection via Vision and Language Knowledge Distillation." ICLR 2021.

Gupta and Kembhavi. "Visual Programming: Compositional visual reasoning without training." CVPR 2023.

Zhou et al. "Learning to Prompt for Vision-Language Models." IJCV 2022.

Pratt et al. "What does a platypus look like? Generating customized prompts for zero-shot image classification." ICCV 2023.

Hoffman et al. "Cycada: Cycle-consistent adversarial domain adaptation." ICML 2018.

Kalluri et al. "GeoNet: Benchmarking Unsupervised Adaptation across Geographies." CVPR 2023.

Tan et al. "Language-Guided Audio-Visual Source Separation via Trimodal Consistency." CVPR 2023.

Grauman et al. "Ego4D: Around the World in 3,000 Hours of Egocentric Video." CVPR 2022.

Ye et al. "Interpreting the Rhetoric of Visual Advertisements." TPAMI 2019.

Gafni et al. "Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors.” ECCV 2022.

Ahn et al. "Do As I Can, Not As I Say: Grounding Language in Robotic Affordances." CoRL 2023.

Paper Presentation Sign-ups

https://docs.google.com/spreadsheets/d/14g6_finym215L
qDZ2qnAE57bU5j5M9uHz3Tmmgq484U/edit?usp=sharing

https://docs.google.com/spreadsheets/d/14g6_finym215LqDZ2qnAE57bU5j5M9uHz3Tmmgq484U/edit?usp=sharing
https://docs.google.com/spreadsheets/d/14g6_finym215LqDZ2qnAE57bU5j5M9uHz3Tmmgq484U/edit?usp=sharing

Some Basics
(breezing through to establish common

ground…)

 Convolutional networks

Recurrent networks
Transformers

Self-supervised learning

Image formation

Slide credit: Derek Hoiem

(film)

Slide credit: Derek Hoiem, Steve Seitz

Digital images

• Sample the 2D space on a regular grid

• Quantize each sample (round to nearest integer)

• Sample the 2D space on a regular grid

• Quantize each sample (round to nearest integer)

• What does quantizing signal look like?

• Image thus represented as a matrix of integer values.

Adapted from S. Seitz

2D

1D

5.9 4.6

Digital images

6 5

Slide credit: Kristen Grauman

Digital color images

R G B

Color images,
RGB color space:

Split image into
three channels

Digital color images

Adapted from Kristen Grauman

Images as Matrices

• Vectors and matrices are just collections of
ordered numbers that represent something:
movements in space, word counts, movie
ratings, pixel brightnesses, etc.

Fei-Fei Li 3

Vectors have two main uses

• Vectors can represent an
offset in 2D or 3D space

• Points are just vectors
from the origin

Fei-Fei Li 61

• Data can also be treated
as a vector

• Such vectors don’t have a
geometric interpretation,
but calculations like
“distance” still have value

Vector

• A column vector where

• A row vector where

 denotes the transpose operation

Fei-Fei Li 62

• L1 norm

• L2 norm

• Lp norm (for real numbers p ≥ 1)

Norms

• L1 (Manhattan) distance

• L2 (Euclidean) distance

Distances

Example: Feature representation

• A vector representing measurable characteristics
of a data sample we have

• E.g. a glass of juice can be represented via its
color = {yellow=1, red=2, green=3, purple=4} and
taste = {sweet=1, sour=2}

• A given glass i can be represented as a vector: xi =
[3 2] represents green, sour juice

• For D features, this defines a D-dimensional space
where we can measure similarity between
samples

Example: Feature representation

0 1 2 3 4

2

1

color

taste

E.g. a glass of juice can be represented via its
color = {yellow=1, red=2, green=3, purple=4}
and taste = {sweet=1, sour=2}

x2 = [3 2]x1 = [1 2]

x3 = [1 1]

L2 distance:
d(x1, x2) = sqrt(4+0)
d(x1, x3) = sqrt(0+1)
d(x2, x3) = sqrt(4+1)

L1 distance:
d(x1, x2) = 2+0
d(x1, x3) = 0+1
d(x2, x3) = 2+1

Inner (Dot) Product

• Multiply corresponding entries of two vectors
and add up the result

• x·y is also |x||y|Cos(angle between x and y)

• If B is a unit vector, then A·B gives the length
of A which lies in the direction of B (projection)

Fei-Fei Li 67

(if B is unit-length hence norm is 1)

Image/ Video

Pixels

Traditional Recognition Approach

Hand-designed

feature extraction

(SIFT+BOW, HOG)

Trainable

classifier

• Features are key to recent progress in recognition, but

research shows they’re flawed… Where next?

Object

Class

Adapted from Lana Lazebnik, figures from Vondrick: http://www.cs.columbia.edu/~vondrick/ihog/ijcv.pdf

68

http://www.cs.columbia.edu/~vondrick/ihog/ijcv.pdf

What about learning the features?

• Learn a feature hierarchy all the way from pixels to

classifier

• Each layer extracts features from the output of

previous layer

• Train all layers jointly

Layer 1 Layer 2 Layer 3 Object

Class

Image/

Video

Pixels

Lana Lazebnik

69

“Shallow” vs. “deep” architectures

Hand-designed

feature extraction

Trainable

classifier

Image/

Video

Pixels

Object

Class

Layer 1 Layer N
Simple

classifier
Object

Class

Image/

Video

Pixels

Traditional recognition: “Shallow” architecture

Deep learning: “Deep” architecture

…

Lana Lazebnik

70

Neural network definition

• Activations:

• Nonlinear activation function h (e.g. sigmoid,

RELU):
Figure from Christopher Bishop

Recall SVM:

wTx + b

71

• Layer 2

• Layer 3 (final)

• Outputs (e.g. sigmoid/softmax)

• Finally:

Neural network definition

(binary)

(multiclass)

(binary)

72

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Maxout

ELU

Activation functions

Andrej Karpathy

Leaky ReLU

max(0.1x, x)

73

A multi-layer neural network

• Nonlinear classifier

• Can approximate any continuous function to arbitrary

accuracy given sufficiently many hidden units

Lana Lazebnik

74

Inspiration: Neuron cells

• Neurons

• accept information from multiple inputs,

• transmit information to other neurons.

• Multiply inputs by weights along edges

• Apply some function to the set of inputs at each node

• If output of function over threshold, neuron “fires”

Text: HKUST, figures: Andrej Karpathy

75

Biological analog

A biological neuron An artificial neuron

Jia-bin Huang

76

Hubel and Weisel’s architecture Multi-layer neural network

Adapted from Jia-bin Huang

Biological analog

77

Deep neural networks

• Lots of hidden layers

• Depth = power (usually)

• “With great power comes great responsibility”

Figure from http://neuralnetworksanddeeplearning.com/chap5.html

W
e

ig
h

ts
 t

o
 l
e
a
rn

!

W
e

ig
h

ts
 t

o
 l
e
a
rn

!

W
e

ig
h

ts
 t

o
 l
e
a
rn

!

W
e

ig
h

ts
 t

o
 l
e
a
rn

!

78

How do we train deep neural networks?

• The goal is to find such a set of weights that

allow the activations/outputs to match the

desired output: f(W, xi) ~ yi

• Unfortunately, no closed-form solution for

weights W, but we can express our objective

• We want to minimize a loss function (a

function of the weights in the network), we’ll

do so iteratively

• For now let’s simplify and assume there’s a

single layer of weights in the network

79

Classification goal

Example dataset: CIFAR-10

10 labels

50,000 training images

each image is 32x32x3

10,000 test images

Andrej Karpathy

80

Classification scores

[32x32x3]

array of numbers 0...1

(3072 numbers total)

f(x,W)

image parameters

10 numbers,

indicating class

scores

Andrej Karpathy

81

Linear classifier

[32x32x3]

array of numbers 0...1

10 numbers,

indicating class

scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1

Andrej Karpathy

82

Linear classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Andrej Karpathy

83

Linear classifier

Going forward: Loss function/Optimization

1. Define a loss function

that quantifies our

unhappiness with the

scores across the training

data.

2. Come up with a way of

efficiently finding the

parameters that minimize

the loss function

(optimization)

TODO:

Andrej Karpathy

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

84

Linear classifier

Suppose: 3 training examples, 3 classes.

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Adapted from Andrej Karpathy

85

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

Adapted from Andrej Karpathy

Want: syi
 >= sj + 1, for j != yi

i.e. sj – syi
 + 1 <= 0

If true, loss is 0

If false, loss is magnitude of violation

86

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 5.1 - 3.2 + 1)

+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

cat

car

frog

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1

Losses: 2.9

Adapted from Andrej Karpathy

87

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

cat 3.2

car 5.1

frog -1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0

Adapted from Andrej Karpathy

88

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)

= max(0, 5.3 + 1)

 + max(0, 5.6 + 1)

= 6.3 + 6.6

= 12.9

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0 12.9

Adapted from Andrej Karpathy

89

Linear classifier: Hinge loss

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

and the full training loss is the mean

over all examples in the training data:

L = (2.9 + 0 + 12.9)/3
2.9 0 12.9Losses: = 15.8 / 3 = 5.3

Lecture 3 - 12

Adapted from Andrej Karpathy

90

Linear classifier: Hinge loss

Adapted from Andrej Karpathy

91

Linear classifier: Hinge loss

Weight Regularization
λ = regularization strength

(hyperparameter)

In common use:

L2 regularization

L1 regularization

Dropout (will see later)

Adapted from Andrej Karpathy

92

scores = unnormalized log probabilities of the classes

where

Want to maximize the log likelihood, or (for a loss function)

to minimize the negative log likelihood of the correct class:

cat

car

frog

3.2

5.1

-1.7

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy

maximize

minimize
93

cat

car

frog

unnormalized log probabilities

24.5

164.0

0.18

3.2

5.1

-1.7

exp normalize

unnormalized probabilities

0.13

0.87

0.00

probabilities

L_i = -log(0.13)

= 0.89

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy

94

Other losses

• Triplet loss (Schroff, FaceNet)

• Anything you want!

a denotes anchor

p denotes positive

n denotes negative

95

How to minimize the loss function?

Andrej Karpathy

96

How to minimize the loss function?

In 1-dimension, the derivative of a function is:

In multiple dimensions, the gradient is the vector of (partial derivatives):

Adapted from Andrej Karpathy, definition/equation from https://en.wikipedia.org/wiki/Gradient

97

https://en.wikipedia.org/wiki/Gradient

Loss gradients

• Different notations:

• i.e. how does the loss change as a function

of the weights

• We want to change weights in a way that

makes the loss decrease as fast as possible

98

Gradient descent

• We’ll update weights

• Move in direction opposite to gradient:

L

Learning rate
Time

Figure from Andrej Karpathy

original W

negative gradient direction
W_1

W_2

99

Gradient descent

• Iteratively subtract the gradient with respect

to the model parameters (w)

• I.e. we’re moving in a direction opposite to

the gradient of the loss

• I.e. we’re moving towards smaller loss

100

How to compute the loss/gradient?

• In classic gradient descent, we compute the

gradient from the loss for all training

examples

• Mini-batch gradient descent: Only use some

of the data for each gradient update, cycle

through training examples multiple times
• Each time we’ve cycled through all of them once is called

an ‘epoch’

• Allows faster training (e.g. on GPUs), parallelization

• Some benefits for learning due to randomness

101

Andrej Karpathy

Learning rate selection

The effects of step size (or “learning rate”)

102

https://www.deeplearning.ai/ai-notes/optimization/

https://www.deeplearning.ai/ai-notes/optimization/

Gradient descent in multi-layer nets

• We’ll update weights

• Move in direction opposite to gradient:

• How to update the weights at all layers?

• Answer: backpropagation of error from

higher layers to lower layers

103

Backpropagation: Graphic example

First calculate error of output units and use this

to change the top layer of weights.

output

hidden

input

Calculate how to

update weights into j

(update at end of iter)

Adapted from Ray Mooney, equations from Chris Bishop

k

j

i

w(2)

w(1)

104

Backpropagation: Graphic example

Next calculate error for hidden units based on

errors on the output units it feeds into.

output

hidden

input

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop

105

Backpropagation: Graphic example

Finally update bottom layer of weights based on

errors calculated for hidden units.

output

hidden

input

Update weights into i

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop

106

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Lecture 4 - 10

Andrej Karpathy

107

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 11

Andrej Karpathy

108

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 12

Andrej Karpathy

109

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 13

Andrej Karpathy

110

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 14

Andrej Karpathy

111

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 15

Andrej Karpathy

112

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 16

Andrej Karpathy

113

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 17

Andrej Karpathy

114

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 18

Andrej Karpathy

115

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

Lecture 4 - 19

Andrej Karpathy

116

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 20

Andrej Karpathy

117

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

Lecture 4 - 21

Andrej Karpathy

118

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f

activations

Lecture 4 - 22

Andrej Karpathy

119

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

Lecture 4 - 23

Andrej Karpathy

“local gradient”

f

gradients

120

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 24

Andrej Karpathy

121

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 25

Andrej Karpathy

122

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 26

Andrej Karpathy

123

Convolutional Neural Networks (CNN)

• Neural network with specialized

connectivity structure

• Stack multiple stages of feature

extractors

• Higher stages compute more global,

more invariant, more abstract features

• Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document

recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.
Adapted from Rob Fergus

124

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

• Feed-forward feature extraction:

1. Convolve input with learned filters

2. Apply non-linearity

3. Spatial pooling (downsample)

• Supervised training of convolutional

filters by back-propagating

classification error

Adapted from Lana Lazebnik

Convolutional Neural Networks (CNN)

Input Image

Convolution

(Learned)

Non-linearity

Spatial pooling

Output (class probs)

…

125

1. Convolution

• Apply learned filter weights

• One feature map per filter

• Stride can be greater than

1 (faster, less memory)

Input Feature Map

.

.

.

Adapted from Rob Fergus

126

2. Non-Linearity

• Per-element (independent)

• Some options:
• Tanh

• Sigmoid: 1/(1+exp(-x))

• Rectified linear unit (ReLU)

– Avoids saturation issues

Adapted from Rob Fergus

127

3. Spatial Pooling

• Sum or max over non-overlapping /
overlapping regions

Rob Fergus, figure from Andrej Karpathy

128

3. Spatial Pooling

• Sum or max over non-overlapping /
overlapping regions

• Role of pooling:
• Invariance to small transformations

• Larger receptive fields (neurons see more of input)

Max

Sum

Adapted from Rob Fergus

129

32

3

32x32x3 image

width

height

32

depth

Convolutions: More detail

Andrej Karpathy

130

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

Convolutions: More detail

Andrej Karpathy

131

32

32

3

Convolution Layer

32x32x3 image

5x5x3 filter

1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutions: More detail

Andrej Karpathy

132

32

32

3

Convolution Layer
activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all

spatial locations

Convolutions: More detail

Andrej Karpathy

133

32

32

3

Convolution Layer

32x32x3 image

5x5x3 filter

activation maps

1

28

28

convolve (slide) over all

spatial locations

consider a second, green filter

Convolutions: More detail

Andrej Karpathy

134

32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Convolutions: More detail

Andrej Karpathy

135

Preview: ConvNet is a sequence of Convolution Layers, interspersed with

activation functions

32

32

3

28

28

6

CONV,

ReLU

e.g. 6

5x5x3

filters

Convolutions: More detail

Andrej Karpathy

136

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with

activation functions

32

32

3

CONV,

ReLU

e.g. 6

5x5x3

filters 28

28

6

CONV,

ReLU

e.g. 10

5x5x6

filters

CONV,

ReLU

….

10

24

24

Convolutions: More detail

Andrej Karpathy

137

Preview
[From recent Yann

LeCun slides]

Convolutions: More detail

Andrej Karpathy

138

example 5x5 filters
(32 total)

We call the layer convolutional

because it is related to convolution

of two signals:

Element-wise multiplication and sum

of a filter and the signal (image)

one filter =>

one activation map

Convolutions: More detail

Adapted from Andrej Karpathy, Kristen Grauman

139

A closer look at spatial dimensions:

32

32

3

activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all

spatial locations

Convolutions: More detail

Andrej Karpathy

140

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

141

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

142

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

143

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

144

=> 5x5 output

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

145

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

146

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

147

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

=> 3x3 output!

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

148

7x7 input (spatially)

assume 3x3 filter

applied with stride 3?

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

149

7x7 input (spatially)

assume 3x3 filter

applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!

cannot apply 3x3 filter on

7x7 input with stride 3.

Convolutions: More detail

Andrej Karpathy

150

N

F

F

N

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride 1 => (7 - 3)/1 + 1 = 5

stride 2 => (7 - 3)/2 + 1 = 3

stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Convolutions: More detail

Andrej Karpathy

151

In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1

Convolutions: More detail

Andrej Karpathy

152

In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy

153

In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy

(N + 2*padding - F) / stride + 1

154

Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Output volume size: ?

Convolutions: More detail

Andrej Karpathy

155

Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Convolutions: More detail

Andrej Karpathy

156

Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Number of parameters in this layer?

Convolutions: More detail

Andrej Karpathy

157

Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params

=> 76*10 = 760

Convolutions: More detail

Andrej Karpathy

158

Putting it all together

Andrej Karpathy

159

Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

160

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

• Patches from validation images that give

maximal activation of a given feature map

• Activations projected

down to pixel level

via decovolution

161

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

162

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

163

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Occlusion experiments

(as a function of the

position of the

square of zeros in

the original image)

Andrej Karpathy

[Zeiler & Fergus 2014]

164

Occlusion experiments

(as a function of the

position of the

square of zeros in

the original image)

[Zeiler & Fergus 2014]

Andrej Karpathy

165

What image maximizes a class score?

Repeat:

1. Forward an image

2. Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest

3. Backprop to image

4. Do an “image update”

Andrej Karpathy

166

What image maximizes a class score?

[Understanding Neural Networks Through Deep Visualization, Yosinski et al. , 2015]

http://yosinski.com/deepvis

Andrej Karpathy

167

http://yosinski.com/deepvis

Shape vs texture

ImageNet-trained CNNs are biased towards texture; increasing shape bias improves

accuracy and robustness [Geirhos et al., ICLR 2019]

https://openreview.net/forum?id=Bygh9j09KX

Figure from http://www.mdpi.com/2072-4292/7/11/14680/htm

A Basic Architecture: AlexNet

169

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

Details/Retrospectives:

-first use of ReLU

-used Norm layers (not common anymore)

-heavy data augmentation

-dropout 0.5

-batch size 128

-SGD Momentum 0.9

-Learning rate 1e-2, reduced by 10

manually when val accuracy plateaus

-L2 weight decay 5e-4

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: AlexNet

Case Study: VGGNet

Only 3x3 CONV stride 1, pad 1

and 2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013

->

7.3% top 5 error

[Simonyan and Zisserman, 2014]

Andrej Karpathy

171

[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Case Study: GoogLeNet

Andrej Karpathy

172

Slide from Kaiming He’s presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

Case Study: ResNet

Andrej Karpathy

173

https://www.youtube.com/watch?v=1PGLj-uKT1w

(slide from Kaiming He’s presentation)

Case Study: ResNet

Andrej Karpathy

174

Case Study: ResNet
[He et al., 2016]

Very deep networks using residual

connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner

(3.57% top 5 error)

- Swept all classification and

detection competitions in

ILSVRC’15 and COCO’15!

..

.

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

What happens when we continue stacking deeper layers on a “plain” convolutional

neural network?

Q: What’s strange about these training and test curves?

[Hint: look at the order of the curves]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it’s not caused by overfitting!

Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Hypothesis: the problem is an optimization problem, deeper models are harder to

optimize

The deeper model should be able to perform at

least as well as the shallower model.

A solution by construction is copying the learned

layers from the shallower model and setting

additional layers to identity mapping.

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

relu

Case Study: ResNet
[He et al., 2016]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a

desired underlying mapping

X

identity

F(x) + x

F(x)

relu

relu

X
Residual block

X
“Plain” layers

H(x)

Use layers to

fit residual

F(x) = H(x) - x

instead of

H(x) directly

H(x) = F(x) + x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

..

.

Case Study: ResNet
[He et al., 2016]

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:

- Stack residual blocks
- Every residual block

has two 3x3 conv

layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Training: Best practices

• Data
• Center (subtract mean from) your data

• Use data augmentation

• Use mini-batch

• Weights/activations
• To initialize weights, use “Xavier initialization”

• Use regularization

• Use RELU (most common), don’t use sigmoid

• Hyperparameters:
• Learning rate: too high? Too low?

• Use cross-validation to pick

180

Over-training prevention

• Running too many epochs can result in over-fitting.

• Keep a hold-out validation set and test accuracy on it
after every epoch. Stop training when additional
epochs actually increase validation error.

0 # training epochs

e
rr

o
r

on training data

on test data

Adapted from Ray Mooney

181

Regularization: Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

• Randomly turn off some neurons

• Allows individual neurons to independently be

responsible for performance

Adapted from Jia-bin Huang

182

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Data Augmentation (Jittering)

Create virtual training samples
• Horizontal flip

• Random crop

• Color casting

• Geometric distortion

Jia-bin Huang, Image: https://github.com/aleju/imgaug

183

https://github.com/aleju/imgaug

Transfer Learning

“You need a lot of a data if you want to

train/use CNNs”

Andrej Karpathy

184

Transfer Learning with CNNs

• The more weights you need to learn, the

more data you need

• That’s why with a deeper network, you need

more data to train than for a shallower net

• One possible solution:

Set these to the already learned

weights from another network

Learn these on your own task

185

more generic

more specific

Lecture 11 - 34

very similar

dataset

very different

dataset

very little data Use simple

classifier from

top layer

You’re in

trouble… Try

simple classifier

from different

stages

quite a lot of

data

Finetune a few

layers

Finetune a

larger number of

layers

Transfer Learning with CNNs

Adapted from Andrej Karpathy

186

Pre-training on ImageNet

• Have a source domain and target domain

• Train a network to classify ImageNet classes
• Coarse classes and ones with fine distinctions (dog breeds)

• Remove last layers and train layers to

replace them, that predict target classes

Oquab et al., “Learning and Transferring Mid-Level Image Representations…”, CVPR 2014

187

Transfer learning with CNNs is pervasive…

Object Detection
Ren et al., “Faster R-CNN“, NIPS 2015

Image Captioning

Karpathy and Fei-Fei, “Deep Visual-

Semantic Alignments for Generating

Image Descriptions”, CVPR 2015

CNN pretrained

on ImageNet

Adapted from Andrej Karpathy

188

Extract

patch

CNN

Run through

a CNN

COW

Classify

center pixel

Repeat for

every pixel

Lecture 13 - 28

Semantic segmentation

Andrej Karpathy

189

Analysis of pre-training on ImageNet

• Source:
• distinguish 1000 ImageNet categories (incl. many dog breeds)

• Target tasks:
• object detection and action recognition on PASCAL

• scene recognition on SUN

• Pre-training with 500 images per class is about

as good as pre-training with 1000

• Pre-training with 127 classes is about as good

as pre-training with 1000

• Pre-training with (fewer classes, more images

per class) > (more classes, fewer images)

• Small drop in if classes with fine-grained

distinctions removed from pre-training set
Huh et al., “What makes ImageNet good for transfer learning?”, arxiv 2016

190

Recurrent Networks offer a lot of flexibility:

e.g. image captioning

image -> sequence of words

Andrej Karpathy

Recurrent Neural Network

x

RNN

y

We can process a sequence of vectors x by

applying a recurrence formula at every time step:

new state old state input vector at

some time step
some function

with parameters W

Andrej Karpathy

Character-level

language model

example

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Andrej Karpathy

Example

What kind of loss can we formulate?

What do we still need to specify, for this to work?

E
n
co

d
e
r
R

N
N

Neural Machine Translation (NMT)

<START> he hit me with a pie

Source sentence (input)

il a m’ entarté

The sequence-to-sequence model

Encoding of the source sentence.

Target sentence (output)

D
e
co

d
e
r R

N
N

Encoder RNN produces

an encoding of the

source sentence.

Provides initial hidden state

for Decoder RNN.

Decoder RNN is a Language Model that generates

target sentence, conditioned on encoding.

he

a
rg

m
a
x

a
rg

m
a
x

hit

a
rg

m
a
x

me

Note: This diagram shows test time behavior:

decoder output is fed in as next step’s input

with a pie <END>

a
rg

m
a
x

a
rg

m
a
x

a
rg

m
a
x

a
rg

m
a
x

Abigail See

Sequence-to-sequence: the bottleneck problem
E

n
co

d
e
r
R

N
N

Source sentence (input)

<START> he hit me with a pieil a m’ entarté

he hit me with a pie <END>

D
e
co

d
e
r R

N
N

Target sentence (output)

Encoding of the

source sentence.

This needs to capture all

information about the

source sentence.

Information bottleneck!

Abigail See

Attention

• Attention provides a solution to the bottleneck problem.

• Core idea: on each step of the decoder, use direct

connection to the encoder to focus on a particular part of

the source sequence

• First we will show via diagram (no equations), then we will

show with equations

Abigail See

Sequence-to-sequence with attention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r R

N
N

A
tt
e
n
tio

n

sc
o
re

s

dot product

Source sentence (input)
Abigail See

Sequence-to-sequence with attention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r R

N
N

A
tt
e
n
tio

n

sc
o
re

s

dot product

Source sentence (input)
Abigail See

Sequence-to-sequence with attention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r R

N
N

A
tt
e
n
tio

n

sc
o
re

s

dot product

Source sentence (input)
Abigail See

Sequence-to-sequence with attention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r R

N
N

A
tt
e
n
tio

n

sc
o
re

s

dot product

Source sentence (input)
Abigail See

Sequence-to-sequence with attention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r R

N
N

A
tt
e
n
tio

n

sc
o
re

s

On this decoder timestep, we’re

mostly focusing on the first

encoder hidden state (”he”)

A
tt
e
n
tio

n

d
is

tr
ib

u
ti
o
n

Take softmax to turn the scores

into a probability distribution

Source sentence (input)
Abigail See

Sequence-to-sequence with attention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r R

N
N

A
tt
e
n
tio

n

d
is

tr
ib

u
ti
o
n

A
tt
e
n
tio

n

sc
o
re

s

Attention

output
Use the attention distribution to take a

weighted sum of the encoder hidden

states.

The attention output mostly contains

information from the hidden states that

received high attention.

Source sentence (input)
Abigail See

Sequence-to-sequence with attention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r R

N
N

A
tt
e
n
tio

n

d
is

tr
ib

u
ti
o
n

A
tt
e
n
tio

n

sc
o
re

s

Attention

output
Concatenate attention output

with decoder hidden state, then

use to compute 𝑦1 as before

𝑦1

he

Source sentence (input)
Abigail See

Attention: in equations

• We have encoder hidden states

• On timestep t, we have decoder hidden state

• We get the attention scores for this step:

• We take softmax to get the attention distribution

a probability distribution and sums to 1)

for this step (this is

• We use to take a weighted sum of the encoder hidden states to

get the attention output

• Finally we concatenate the attention output with the decoder

hidden state and proceed as in the non-attention seq2seq model

Abigail See

Attention is great

• Attention significantly improves NMT performance

• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem

• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem

• Provides shortcut to faraway states

• Attention provides some interpretability

• By inspecting attention distribution, we can see

what the decoder was focusing on

• We get (soft) alignment for free!

• This is cool because we never explicitly trained

an alignment system

• The network just learned alignment by itself

h
e

h
it

m
e

w
it
h

a p
ie

il

a

m’

entarté

Abigail See

Attention is a general Deep Learning technique

• We’ve seen that attention is a great way to improve the

sequence-to-sequence model for Machine Translation.

• However: You can use attention in many architectures (not

just seq2seq) and many tasks (not just MT)

• More general definition of attention:

• Given a set of vector values, and a vector query,

attention is a technique to compute a weighted sum of

the values, dependent on the query.

• We sometimes say that the query attends to the values.

• For example, in seq2seq + attention model, each decoder

hidden state (query) attends to all encoder hidden states

(values).
Abigail See

CVPR 2015:

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.

Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Adapted from Andrej Karpathy

Image Captioning

Convolutional Neural Network

Recurrent Neural Network

Andrej Karpathy

Image Captioning

test image

x0
<START>

<START>

Andrej Karpathy

Image Captioning

h0

y0

<START>

test image

before:

h = tanh(Wxh * x + Whh * h)

now:

h = tanh(Wxh * x + Whh * h + Wih * im)

im

Wih

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

sample!

straw

<START>

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

h1

y1

straw

<START>

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

h1

y1

sample!

straw hat

<START>

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

h1

y1

h2

y2

straw hat

<START>

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

h1

y1

h2

y2

sample

<END> token

=> finish.

straw hat

<START>

Adapted from Andrej Karpathy

Image Captioning

Caption generated:
“straw hat”

x0
<START>

• O(sequence length) steps for distant word pairs to interact means:

• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; not necessarily the right way to think about
sentences…

The chef who … was

Info of chef has gone through
O(sequence length) many layers!

Adapted from John Hewitt

Issues with recurrent models:
Linear interaction distance

• Forward and backward passes have O(sequence length) unparallelizable operations

• GPUs can perform a bunch of independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

• Inhibits training on very large datasets!

h1 h2

0

1 T

hT

T-11

2

2

3

Numbers indicate min # of steps before a state can be computed

John Hewitt

Issues with recurrent models:
Lack of parallelizability

• Attention treats each word’s representation as a query to access and
incorporate information from a set of values.

• We saw attention from the decoder to the encoder; today we’ll think about
attention within a single sentence.
• If attention gives us access to any state… maybe we can just use

attention and don’t need the RNN?

• Number of unparallelizable operations not tied to sequence length.

• All words interact at every layer!

attention

embedding
h1 h2

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

hT

attention
All words attend
to all words in
previous layer;
most arrows here
are omitted

If not recurrence, then what?
How about attention?

Adapted from John Hewitt

• We have some keys 𝑘1, 𝑘2, … , 𝑘𝑇. Each key is 𝑘𝑖 ∈ ℝ𝑑

• We have some values 𝑣1, 𝑣2, … , 𝑣𝑇. Each value is 𝑣𝑖 ∈ ℝ𝑑

• Attention operates on queries, keys, and values.

1 2 𝑇 • We have some queries 𝑞 , 𝑞 , … , 𝑞 . Each query is 𝑞i ∈ ℝ𝑑

• In self-attention, the queries, keys, and values are drawn from the same source.

• For example, if the output of the previous layer is 𝑥1, … , 𝑥𝑇, (one vec per word)
we could let 𝑣𝑖 = 𝑘𝑖 = 𝑞𝑖 = 𝑥𝑖 (that is, use the same vectors for all of them!)

• The (dot product) self-attention operation is as follows:

The number of queries
can differ from the
number of keys and
values in practice.

𝑖 𝑗 𝑗

Compute key-
query affinities

𝑖 j𝑒 = 𝑞i
𝖳𝑘 𝛼 =

exp(𝑒𝑖𝑗)

Σ 𝑗'

Compute attention
weights from affinities

(softmax)

output = Σ 𝑗 𝛼 𝑣𝑖 𝑖 𝑗 𝑗

Compute outputs as
weighted sum of values

exp(𝑒𝑖𝑗’)

John Hewitt

Self-Attention

𝑤1

The

𝑞1𝑘1 𝑣1

𝑤2

chef

𝑞2

𝑤3

who

𝑤𝑇

food

𝑘𝑇 𝑞𝑇 𝑣𝑇

…

𝑞1𝑘1 𝑣1 𝑘2 𝑞2 𝑞3𝑣2 𝑘3 𝑣3 𝑘𝑇 𝑞𝑇 𝑣𝑇

…
self-attention

𝑘2 𝑣2 𝑘3 𝑞3 𝑣3

• In the diagram at the right, we
have stacked self-attention
blocks, like we might stack LSTM
layers.

• Can self-attention be a drop-in
replacement for recurrence?

• No. It has a few issues, which
we’ll go through.

• First, self-attention is an
operation on sets. It has no
inherent notion of order.

self-attention

Self-attention doesn’t know the order of its inputs.

Self-Attention

John Hewitt

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning magic! It’s all just
weighted averages

• Need to ensure we don’t
“look at the future” when
predicting a sequence

• Like in machine translation

• Or language modeling

Solutions
• Add position

representations to the
inputs

• Easy fix: apply the same
feedforward network to each
self- attention output.

• Mask out the future by
artificially setting attention
weights to 0!

John Hewitt

Barriers and solutions for Self-Attention as a
building block

• Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝑝𝑖 ∈ ℝ𝑑 , for 𝑖 ∈ {1,2, … , 𝑇} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝑝𝑖 to our inputs!

• Let 𝑣𝑖 ‘, 𝑘𝑖 ‘, 𝑞𝑖 ‘ be our old values, keys, and queries.

Fixing the first self-attention problem:
Sequence order

𝑣𝑖 = 𝑣𝑖 ‘ + 𝑝𝑖
𝑞𝑖 = 𝑞𝑖 ‘ + 𝑝𝑖
𝑘𝑖 = 𝑘𝑖 ‘ + 𝑝𝑖

In deep self-attention
networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add…

John Hewitt

• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart!

• Cons:

• Not learnable; also the extrapolation doesn’t really work!

• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

sin(𝑖/100002∗1/𝑑)

cos(𝑖/100002∗1/𝑑)

𝑝𝑖 =

𝑑

sin(𝑖/100002∗2/𝑑)
𝑑

cos(𝑖/100002∗2/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence
D

im
en

si
o

n

John Hewitt

Position representation vectors through sinusoids

• Note that there are no elementwise
nonlinearities in self-attention;
stacking more self-attention layers
just re-averages value vectors

• Easy fix: add a feed-forward network
to post-process each output vector.

𝑚𝑖 = 𝑀𝐿𝑃 output𝑖
= 𝑊2 ∗ ReLU 𝑊1 × output𝑖 + 𝑏1 + 𝑏2

𝑤1

The

𝑤2

chef

𝑤3

who

𝑤𝑇

food

…

Intuition: the FF network processes the result of attention

FF FF FF

self-attention

FF

…

FF FF FF

self-attention

FF

Adding nonlinearities in self-attention

John Hewitt

• To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

• At every timestep, we could
change the set of keys and
queries to include only past
words. (Inefficient!)

• To enable parallelization, we
mask out attention to future
words by setting attention
scores to −∞.

𝑒𝑖𝑗 =

−∞ −∞ −∞ −∞

−∞ −∞ −∞

−∞ −∞

−∞

The

chef

who

[START]

For encoding
these words

We can look at these
(not greyed out) words

Masking the future in self-attention

𝑞i
𝖳 𝑘𝑗 , 𝑗 < 𝑖

−∞, 𝑗 ≥ 𝑖

John Hewitt

• Self-attention:

• The basis of the method.

• Position representations:

• Specify the sequence order, since self-attention is an unordered function of its
inputs.

• Nonlinearities:

• At the output of the self-attention block

• Frequently implemented as a simple feed-forward network.

• Masking:

• In order to parallelize operations while not looking at the future.

• Keeps information about the future from “leaking” to the past.

• That’s it! But this is not the Transformer model we’ve been hearing about.

Necessities for a self-attention building block:

John Hewitt

Transformer Overview

Attention is all you need. 2017. Aswani,

Shazeer, Parmar, Uszkoreit, Jones,

Gomez, Kaiser, Polosukhin

https://arxiv.org/pdf/1706.03762.pdf

• Non-recurrent sequence-to-

sequence encoder-decoder model

• Task: machine translation

with parallel corpus

• Predict each translated word

• Final cost/error function is

standard cross-entropy error

on top of a softmax classifier

This and related figures from paper ⇑

Christopher Manning

https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder-Decoder
[Vaswani et al., 2017]

Next, let’s look at the Transformer Encoder and Decoder Blocks

What’s left in a Transformer Encoder Block that we haven’t covered?

1. Key-query-value attention: How do we get the 𝑘, 𝑞, 𝑣 vectors from a single word embedding?

2. Multi-headed attention: Attend to multiple places in a single layer!

3. Tricks to help with training!

1. Residual connections

2. Layer normalization

3. Scaling the dot product

4. These tricks don’t improve what the model is able to do; they help improve the training process

John Hewitt

https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder:
Key-Query-Value Attention

• We saw that self-attention is when keys, queries, and values come from the same
source. The Transformer does this in a particular way:

• Let 𝑥1, … , 𝑥𝑇 be input vectors to the Transformer encoder; 𝑥𝑖 ∈ ℝ𝑑

• Then keys, queries, values are:

• 𝑘𝑖 = 𝐾𝑥𝑖, where 𝐾 ∈ ℝ𝑑×𝑑 is the key matrix.

• 𝑞𝑖 = 𝑄𝑥𝑖, where Q ∈ ℝ𝑑×𝑑 is the query matrix.

• 𝑣𝑖 = 𝑉𝑥𝑖, where V ∈ ℝ𝑑×𝑑 is the value matrix.

• These matrices allow different aspects of the 𝑥 vectors to be used/emphasized in
each of the three roles.

John Hewitt

• Let’s look at how key-query-value attention is computed, in matrices.

• Let 𝑋 = 𝑥1; … ; 𝑥𝑇 ∈ ℝ𝑇×𝑑 be the concatenation of input vectors.

• First, note that 𝑋𝐾 ∈ ℝ𝑇×𝑑, 𝑋𝑄 ∈ ℝ𝑇×𝑑, 𝑋𝑉 ∈ ℝ𝑇×𝑑.

• The output is defined as output = softmax 𝑋𝑄 𝑋𝐾 T × 𝑋𝑉.

= 𝑋𝑄𝐾𝖳 𝑋𝖳

∈ ℝ𝑇×𝑇

All pairs of
attention scores!

output ∈ ℝ𝑇×𝑑

=

𝐾𝖳 𝑋𝖳

𝑋𝑄

First, take the query-key dot
products in one matrix
multiplication: 𝑋𝑄 𝑋𝐾

Next, softmax, and
compute the weighted
average with another
matrix multiplication.

𝑋𝑄𝐾𝖳 𝑋𝖳softmax 𝑋𝑉

The Transformer Encoder:
Key-Query-Value Attention

John Hewitt

• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝖳𝑄𝖳𝐾𝑥𝑗 is high, but maybe we want

𝑑×

to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices
𝑑

• Let, 𝑄𝑃, 𝐾𝑃, 𝑉𝑃 ∈ ℝ ℎ , where ℎ is the number of attention heads, and 𝑃 ranges
from 1 to ℎ.

• Each attention head performs attention independently:

𝑃• output𝑃 = softmax 𝑋𝑄𝑃𝐾𝖳𝑋𝖳 ∗ 𝑋𝑉𝑃, where output𝑃 ∈ ℝ𝑑/ℎ

• Then the outputs of all the heads are combined!

• output = 𝑌[output1; … ; outputℎ], where 𝑌 ∈ ℝ𝑑×𝑑

• Each head gets to “look” at different things, and construct value vectors
differently.

John Hewitt

The Transformer Encoder:
Multi-headed attention

• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝖳𝑄𝖳𝐾𝑥𝑗 is high, but maybe we want

𝑑×

to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices
𝑑

• Let, 𝑄𝑃, 𝐾𝑃, 𝑉𝑃 ∈ ℝ ℎ , where ℎ is the number of attention heads, and 𝑃 ranges
from 1 to ℎ.

𝑋

𝑄 =
𝑋𝑄

Single-head attention
(just the query matrix)

𝑋

Multi-head attention
(just two heads here)

𝑄1 𝑄2 =
𝑋𝑄1 𝑋𝑄2

Same amount of
computation as
single-head self-
attention!

John Hewitt

The Transformer Encoder:
Multi-headed attention

Attention visualization in layer 5

• Words start to pay attention to other words in sensible ways

Christopher Manning

Attention visualization: Implicit anaphora resolution

In 5th layer. Isolated attentions from just the word ‘its’ for attention heads 5 and 6.
Note that the attentions are very sharp for this word.

Christopher Manning

I kicked the ball

Who

Did what?

To whom?

I kicked the ball

Ashish Vaswani

Parallel attention heads

• One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

• However, its total number of operations grows as 𝑂 𝑇2𝑑 , where 𝑇 is the
sequence length, and 𝑑 is the dimensionality.

= 𝑋𝑄𝐾𝖳 𝑋𝖳

∈ ℝ𝑇×𝑇

Need to compute all
pairs of interactions!
𝑂 𝑇2𝑑𝐾𝖳 𝑋𝖳

𝑋𝑄

Quadratic computation as function of seq. length

• Think of 𝑑 as around 𝟏, 𝟎𝟎𝟎.

• So, for a single (shortish) sentence, 𝑇 ≤ 30; 𝑇2 ≤ 𝟗𝟎𝟎.

• In practice, we set a bound like 𝑇 = 512.

• But what if we’d like 𝑻 ≥ 𝟏𝟎, 𝟎𝟎𝟎? For example, to work on long documents?

John Hewitt

• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, BigBird [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, like local
windows, looking at everything, and random interactions.

Recent work on improving on quadratic self-
attention cost

John Hewitt

https://arxiv.org/pdf/2007.14062.pdf

In modern NLP:

• All (or almost all) parameters in NLP
networks are initialized via pretraining.

• Pretraining methods hide parts of the input
from the model, and train the model to
reconstruct those parts.

• This has been exceptionally effective at
building strong:

• representations of language

• parameter initializations for strong NLP
models.

… the movie was …

𝒚

Pretrained jointly

[This model has learned how to represent
entire sentences through pretraining]

Pretraining models

Adapted from John Hewitt

The neural architecture influences the type of pretraining, and natural use cases.

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• Wait, how do we pretrain them?

Encoder-

Decoders

Pretraining for three types of architectures

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Adapted from John Hewitt

Recall the language modeling task:

• Model 𝑝𝜃 𝑤𝑡 𝑤1:𝑡−1), the probability
distribution over words given their past
contexts.

• There’s lots of data for this! (In English.)

Pretraining through language modeling:

• Train a neural network to perform language
modeling on a large amount of text.

• Save the network parameters.

Decoder
(Transformer, LSTM, ++)

Iroh goes to make tasty tea

goes

Pretraining through language modeling
[Dai and Le, 2015]

to make tasty tea END

John Hewitt

https://arxiv.org/pdf/1511.01432.pdf

Pretraining can improve NLP applications by serving as parameter initialization.

Decoder
(Transformer, LSTM, ++)

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)

Lots of text; learn general things!

Decoder
(Transformer, LSTM, ++)

☺/

The Pretraining / Finetuning Paradigm

Step 2: Finetune (on your task)

Not many labels; adapt to the task!

… the movie was …

John Hewitt

There’s increasing evidence that pretrained models learn a wide variety of things about
the statistical properties of language:

• Stanford University is located in , California. [Trivia]

• I put fork down on the table. [syntax]

• The woman walked across the street, checking for traffic over shoulder. [coreference]

• I went to the ocean to see the fish, turtles, seals, and . [lexical semantics/topic]

• Overall, the value I got from the two hours watching it was the sum total of the popcorn
and the drink. The movie was . [sentiment]

• Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his
destiny. Zuko left the . [some reasoning – this is harder]

• I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, [some basic
arithmetic; they don’t learn the Fibonnaci sequence]

• Models also learn – and can exacerbate racism, sexism, all manner of bad biases.

Adapted from John Hewitt

Capturing meaning via context:

What kinds of things does pretraining learn?

So far, we’ve looked at language model pretraining. But encoders get bidirectional
context, so we can’t do language modeling!

Idea: replace some fraction of words in the
input with a special [MASK] token; predict
these words.

ℎ1, … , ℎ𝑇 = Encoder 𝑤1, … , 𝑤𝑇

𝑦𝑖 ∼ 𝐴𝑤𝑖 + 𝑏

Only add loss terms from words that are
“masked out.” If 𝑥 ’ is the masked version of 𝑥,
we’re learning 𝑝𝜃(𝑥|𝑥’). Called Masked LM.

I [M] to the [M]

went store

𝐴, 𝑏

ℎ1, … , ℎ𝑇

[Devlin et al., 2018]

Pretraining encoders:
What pretraining objective to use?

John Hewitt

https://arxiv.org/pdf/1810.04805.pdf

Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a
pretrained Transformer, a model they labeled BERT.

Some more details about Masked LM for BERT:

• Predict a random 15% of (sub)word tokens.

• Replace input word with [MASK] 80% of the time

• Replace input word with a random token 10% of
the time

• Leave input word unchanged 10% of the time (but
still predict it!)

• Why? Doesn’t let the model get complacent and not
build strong representations of non-masked words.
(No masks are seen at fine-tuning time!)

• Too little masking: Too expensive to train
• Too much masking: Not enough context

[Predict these!]

I pizza to the [M]

storewent to

Transformer
Encoder

[Devlin et al., 2018]

[Masked][Replaced] [Not replaced]

John Hewitt / Christopher Manning

BERT: Bidirectional Encoder Representations from
Tranformers

https://arxiv.org/pdf/1810.04805.pdf

• Additional task: Next sentence prediction

• To learn relationships between sentences, predict whether

Sentence B is actual sentence that proceeds Sentence A, or a

random sentence

Adapted from Christopher Manning

BERT: Bidirectional Encoder Representations from
Tranformers

• The pretraining input to BERT was two separate

contiguous chunks of text:

• In addition to masked input reconstruction, BERT was trained to predict

whether one chunk follows the other or is randomly sampled.

• Later work has argued this “next sentence prediction” is not necessary.

[Devlin et al., 2018, Liu et al., 2019]

Adapted from John Hewitt

BERT: Bidirectional Encoder Representations from
Tranformers

https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/abs/1907.11692

BERT: Bidirectional Encoder Representations from
Tranformers

[Devlin et al., 2018]

Details about BERT

• Two models were released:

• BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.

• BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.

• Trained on:

• BooksCorpus (800 million words)

• English Wikipedia (2,500 million words)

• Pretraining is expensive and impractical on a single GPU.

• BERT was pretrained with 64 TPU chips for a total of 4 days.

• (TPUs are special tensor operation acceleration hardware)

• Finetuning is practical and common on a single GPU

• “Pretrain once, finetune many times.”

John Hewitt

https://arxiv.org/pdf/1810.04805.pdf

2018’s GPT was a big success in pretraining a decoder!

• Transformer decoder with 12 layers.

• 768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.

• Byte-pair encoding with 40,000 merges

• Trained on BooksCorpus: over 7000 unique books.

• Contains long spans of contiguous text, for learning long-distance dependencies.

• The acronym “GPT” never showed up in the original paper; it could stand for
“Generative PreTraining” or “Generative Pretrained Transformer”

John Hewitt

Generative Pretrained Transformer (GPT)
[Radford et al., 2018]

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

How do we format inputs to our decoder for finetuning tasks?

Natural Language Inference: Label pairs of sentences as entailing/contradictory/neutral

Premise: The man is in the doorway

Hypothesis: The person is near the door

Radford et al., 2018 evaluate on natural language inference.

Here’s roughly how the input was formatted, as a sequence of tokens for the decoder.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

The linear classifier is applied to the representation of the [EXTRACT] token.

entailment

Generative Pretrained Transformer (GPT)
[Radford et al., 2018]

John Hewitt

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

We mentioned how pretrained decoders can be used in their capacities as language models.

GPT-2, a larger version of GPT trained on more data, was shown to produce relatively

convincing samples of natural language.

John Hewitt

Increasingly convincing generations (GPT2)
[Radford et al., 2018]

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Let’s take a look at the assumptions we’ve made about a language’s vocabulary.

We assume a fixed vocab of tens of thousands of words, built from the training set.

All novel words seen at test time are mapped to a single UNK.

word

hat

learn

taaaaasty

laern

vocab mapping

pizza (index)

tasty (index)

UNK (index)

UNK (index)

UNK (index)

embedding

Transformerify

Common
words

Variations

misspellings

novel items

John Hewitt

Aside: Word structure and subword models

Finite vocabulary assumptions make even less sense in many languages.

• Many languages exhibit complex morphology, or word structure.

• The effect is more word types, each occurring fewer times.

Example: Swahili verbs can have
hundreds of conjugations, each
encoding a wide variety of
information. (Tense, mood,
definiteness, negation, information
about the object, ++)

Here’s a small fraction of the
conjugations for ambia – to tell.

[Wiktionary]

John Hewitt

Aside: Word structure and subword models

https://en.wiktionary.org/wiki/ambia

Subword modeling in NLP encompasses a wide range of methods for reasoning about
structure below the word level. (Parts of words, characters, bytes.)

• The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).

• At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword.

3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained
models.

[Sennrich et al., 2016, Wu et al., 2016]

John Hewitt

Aside: The byte-pair encoding algorithm

https://www.aclweb.org/anthology/P16-1162.pdf
https://arxiv.org/pdf/1609.08144.pdf

Common words end up being a part of the subword vocabulary, while rarer words are split
into (sometimes intuitive, sometimes not) components.

In the worst case, words are split into as many subwords as they have characters.

word vocab mapping

hat

learn

taa## aaa## sty

la## ern##

Transformer## ify

embedding

hat

learn

taaaaasty

laern

Transformerify

Common
words

Variations

misspellings

novel items

John Hewitt

Aside: Word structure and subword models

So far, we’ve interacted with pretrained models in two ways:

• Sample from the distributions they define (maybe providing a prompt)

• Fine-tune them on a task we care about, and take their predictions.

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

GPT-3 is the canonical example of this. The largest T5 model had 11 billion parameters.

GPT-3 has 175 billion parameters.

John Hewitt

GPT-3, in-context learning, very large models

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

The in-context examples seem to specify the task to be performed, and the conditional
distribution mocks performing the task to a certain extent.

Input (prefix within a single Transformer decoder context):

“ thanks -> merci

hello -> bonjour

mint -> menthe

otter -> ”

Output (conditional generations):

loutre…”

John Hewitt

GPT-3, in-context learning, very large models

Transformers in vision

https://www.youtube.com/watch?v=TrdevFK_am4 Dosovitskiy, ICLR 2021, https://github.com/google-research/vision_transformer

https://www.youtube.com/watch?v=TrdevFK_am4
https://github.com/google-research/vision_transformer

Cross-modal transformers

Chen et al., “UNITER: Learning UNiversal Image-TExt Representations”, ECCV 2020

Cross-modal transformers

Lu et al., “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks”, NeurIPS 2019

Cross-modal transformers

Tan and Bansal, “LXMERT: Learning Cross-Modality Encoder Representationsfrom Transformers”, EMNLP 2019

Self-Supervised Learning

• Learn representations from context in raw data

• Language – predict nearby words [already covered]
– Transformers, BERT

• Vision – predict pixels from other pixels
– Predict nearby patches in an image

– Predict order of frames in a video

– Predict what you will see as you move

– Predict physics

Jitendra Malik: "Supervision is the opium of the AI researcher"
Alyosha Efros: "The AI revolution will not be supervised"

Yann LeCun: “Self-supervised learning is the cake, supervised learning is the icing on the
cake, reinforcement learning is the cherry on the cake"

Unsupervised Visual Representation
Learning by Context Prediction

Carl Doersch, Alexei Efros and Abhinav Gupta

ICCV 2015

ImageNet + Deep Learning

Beagle

- Image Retrieval
- Detection (RCNN)
- Segmentation (FCN)
- Depth Estimation
- …

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

ImageNet + Deep Learning

Beagle

Do we even need semantic labels?
Pose?

Boundaries?Geometry?

Parts?
Materials?

Do we need this task?

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Context as Supervision
[Collobert & Weston 2008; Mikolov et al. 2013]

Deep
Net

Context Prediction for Images

A B

1 2 3

54

6 7 8
Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Semantics from a non-semantic task

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Randomly Sample Patch
Sample Second Patch

CNN CNN

Classifier

Relative Position Task
8 possible locations

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Architecture

Patch 2Patch 1

Fully connected

Max Pooling
LRN

Max Pooling
LRN

Convolution
Convolution
Convolution

Convolution

Convolution

Max Pooling

Max Pooling
LRN

Max Pooling
LRN

Fully connected

Convolution
Convolution
Convolution

Convolution

Convolution

Max Pooling

Softmax loss

Fully connected

Fully connected

Tied Weights

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

CNN CNN

Classifier

Patch Embedding

Input Nearest Neighbors

CNN Note: connects across instances!

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Ours

What is learned?

Input ImageNet AlexNet

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Pre-Training for R-CNN

Pre-train on relative-position task, w/o labels

[Girshick et al. 2014]Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

VOC 2007 Performance
(pretraining for R-CNN)

No PretrainingRel. PositionImageNet Labels

40.7

46.3

54.2

%
 A

ve
ra

ge
 P

re
ci

si
o

n

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Which will be better?

• Option 1: pretrain (unsup) on dataset B

• Option 2: pretrain (sup) on dataset A

• Test on dataset B

Shuffle and Learn: Unsupervised Learning
using Temporal Order Verification

Ishan Misra, C. Lawrence Zitnick, and Martial Hebert

ECCV 2016

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016

Learning image representations tied to
ego-motion

Dinesh Jayaraman and Kristen Grauman

ICCV 2015

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

The kitten carousel experiment
[Held & Hein, 1963]

active kitten passive kitten

Key to perceptual development:

self-generated motion + visual feedback

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Problem with today’s visual learning

Status quo: Learn from
“disembodied” bag of
labeled snapshots.

Our goal: Learn in the
context of acting and moving
in the world.

Goal: Teach computer vision system the connection:

“how I move” ↔ “how my visual surroundings change”

Our idea: Ego-motion ↔ vision

+

Ego-motion motor signals Unlabeled video

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Ego-motion ↔ vision: view prediction

After moving:

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Ego-motion ↔ vision for recognition

Learning this connection requires:

➢ Depth, 3D geometry

➢ Semantics

➢ Context

Can be learned without manual labels!

Also key to

recognition!

Our approach: unsupervised feature learning

using egocentric video + motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of

transformations

𝐳 𝑔𝐱 ≈ 𝐳(𝐱)

Invariance discards information;

equivariance organizes it.

Equivariant features : predictably responsive to

some classes of transformations, through simple

mappings (e.g., linear)

𝐳 𝑔𝐱 ≈ 𝑀𝑔𝐳(𝐱)

“equivariance map”

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Equivariant embedding

organized by ego-motions

Pairs of frames related by

similar ego-motion should

be related by same

feature transformation

left turn

right turn

forward

Learn

Approach idea: Ego-motion equivariance

time →

m
o
to

r
s
ig

n
a
l

Training data

Unlabeled video +

motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Approach overview

Our approach: unsupervised feature learning using

egocentric video + motor signals

1. Extract training frame pairs from video

2. Learn ego-motion-equivariant image features

3. Train on target recognition task in parallel

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Training frame pair mining

Discovery of ego-motion clusters

Right turn

=forward

=right turn

=left turn

y
a
w

 c
h

a
n

g
e

forward distance

𝑔

𝑔

𝑔

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

∥ 𝑀𝑔𝐳𝛉(𝐱𝑖) − 𝐳𝛉(𝑔𝐱𝑖) ∥𝟐

Ego-motion equivariant feature learning

𝐱𝑖

𝑔𝐱𝑖

𝐳𝛉(𝐱𝑖)

𝐳𝛉(𝑔𝐱𝑖)

𝑀𝑔

Desired: for all motions 𝑔 and all images 𝐱,

𝐳𝛉 𝑔𝐱 ≈ 𝑀𝑔𝐳𝛉(𝐱)

𝛉

𝛉

Given:

𝛉 𝐳𝛉(𝐱𝑘)𝐱𝑘 𝑊 softmax loss 𝐿𝐶(𝐱𝑘 , y𝑘)

Unsupervised training

Supervised training

𝐳𝛉(𝑔𝐱𝑖)

𝐳𝛉(𝐱𝑖) 𝑀𝑔

Feature space

class y𝑘 𝛉, 𝑀𝑔 and 𝑊 jointly trained

𝑔

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Results: Recognition

Learn from unlabeled car video (KITTI)

Exploit features for static scene classification

(SUN, 397 classes)

Geiger et al, IJRR ’13

Xiao et al, CVPR ’10
Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

KITTI ⟶ SUN

Do ego-motion equivariant features improve recognition?

397 classes

re
c
o

g
n

it
io

n
 a

c
c
u

ra
c
y
 (

%
)

Results: Recognition

6 labeled training

examples per class

Up to 30% accuracy increase

over state of the art!

0.25

0.70

1.02

1.21

1.58

invariance

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

The Curious Robot: Learning Visual
Representations via Physical Interactions

Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han,
Yong-Lae Park, and Abhinav Gupta

ECCV 2016

Embodied representations

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

Grasping

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

Pushing

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

Poking

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

Representations from interactions

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

Classification/retrieval performance

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

Classification/retrieval performance

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

SimCLR - A Simple Framework for Contrastive
Learning of Visual Representations

Chen et al., “SimCLR - A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020

https://amitness.com/2020/03/illustrated-simclr/

x t

t’

ResNet50

Output of the last
average pooling layer

Multi Layer
Perceptron (2)

Chen et al., “SimCLR - A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020

He et al., “Masked Autoencoders Are Scalable Vision Learners”, CVPR 2022

Project Pitches

	Slide 1: CS 3710: Advanced Topics in AI Introduction
	Slide 2: Course Info
	Slide 3: About the Instructor
	Slide 4: Course Goals
	Slide 5: Note on Course Climate
	Slide 6: Plan for First Three Classes
	Slide 7: Policies and Schedule
	Slide 8: Questions?
	Slide 9: Blitz introductions (30 sec)
	Slide 10: What is Computer Vision?
	Slide 11: What is computer vision?
	Slide 12: What is computer vision?
	Slide 13
	Slide 14: Visual search, organization
	Slide 15: Measurement
	Slide 16: Generation
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Related disciplines
	Slide 23: Why vision?
	Slide 24: Why vision?
	Slide 25
	Slide 26: Why are these tasks challenging?
	Slide 27: Recognition: What objects do you see?
	Slide 28: Detection: Where are the cars?
	Slide 29: Activity: What is this person doing?
	Slide 30: Scene: Is this an indoor scene?
	Slide 31: Instance: Which city? Which building?
	Slide 32: Visual question answering: Why is there a carriage in the street?
	Slide 33: Why is vision difficult?
	Slide 34: Challenges: many nuisance parameters
	Slide 35: Challenges: intra-class variation
	Slide 36: Challenges: importance of context
	Slide 37: Challenges: Complexity
	Slide 38: Challenges: Limited supervision
	Slide 39: Problem with categorization (Borges' Animals)
	Slide 40: Preview of Readings
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Paper Presentation Sign-ups https://docs.google.com/spreadsheets/d/14g6_finym215LqDZ2qnAE57bU5j5M9uHz3Tmmgq484U/edit?usp=sharing
	Slide 54: Some Basics (breezing through to establish common ground…) Convolutional networks Recurrent networks Transformers Self-supervised learning
	Slide 55: Image formation
	Slide 56: Digital images
	Slide 57: Digital images
	Slide 58: Digital color images
	Slide 59
	Slide 60: Images as Matrices
	Slide 61: Vectors have two main uses
	Slide 62: Vector
	Slide 63: Norms
	Slide 64: Distances
	Slide 65: Example: Feature representation
	Slide 66: Example: Feature representation
	Slide 67: Inner (Dot) Product
	Slide 68: Traditional Recognition Approach
	Slide 69: What about learning the features?
	Slide 70: “Shallow” vs. “deep” architectures
	Slide 71: Neural network definition
	Slide 72: Neural network definition
	Slide 73: Leaky ReLU max(0.1x, x)
	Slide 74: A multi-layer neural network
	Slide 75: Inspiration: Neuron cells
	Slide 76: Biological analog
	Slide 77: Biological analog
	Slide 78: Deep neural networks
	Slide 79: How do we train deep neural networks?
	Slide 80: Classification goal
	Slide 81: Classification scores
	Slide 82: Linear classifier
	Slide 83: Linear classifier
	Slide 84: Linear classifier
	Slide 85: Linear classifier
	Slide 86: Linear classifier: Hinge loss
	Slide 87: Linear classifier: Hinge loss
	Slide 88: Linear classifier: Hinge loss
	Slide 89: Linear classifier: Hinge loss
	Slide 90: Linear classifier: Hinge loss
	Slide 91: Linear classifier: Hinge loss
	Slide 92: Linear classifier: Hinge loss
	Slide 93: Another loss: Softmax (cross-entropy)
	Slide 94: Another loss: Softmax (cross-entropy)
	Slide 95: Other losses
	Slide 96: How to minimize the loss function?
	Slide 97: How to minimize the loss function?
	Slide 98: Loss gradients
	Slide 99: Gradient descent
	Slide 100: Gradient descent
	Slide 101: How to compute the loss/gradient?
	Slide 102: Learning rate selection
	Slide 103: Gradient descent in multi-layer nets
	Slide 104: Backpropagation: Graphic example
	Slide 105: Backpropagation: Graphic example
	Slide 106: Backpropagation: Graphic example
	Slide 107: e.g. x = -2, y = 5, z = -4
	Slide 108: e.g. x = -2, y = 5, z = -4
	Slide 109: e.g. x = -2, y = 5, z = -4
	Slide 110: e.g. x = -2, y = 5, z = -4
	Slide 111: e.g. x = -2, y = 5, z = -4
	Slide 112: e.g. x = -2, y = 5, z = -4
	Slide 113: e.g. x = -2, y = 5, z = -4
	Slide 114: e.g. x = -2, y = 5, z = -4
	Slide 115: e.g. x = -2, y = 5, z = -4
	Slide 116: e.g. x = -2, y = 5, z = -4
	Slide 117: e.g. x = -2, y = 5, z = -4
	Slide 118: e.g. x = -2, y = 5, z = -4
	Slide 119: activations
	Slide 120: activations
	Slide 121: activations
	Slide 122: activations
	Slide 123: activations
	Slide 124: Convolutional Neural Networks (CNN)
	Slide 125: Convolutional Neural Networks (CNN)
	Slide 126: 1. Convolution
	Slide 127: 2. Non-Linearity
	Slide 128: 3. Spatial Pooling
	Slide 129: 3. Spatial Pooling
	Slide 130: Convolutions: More detail
	Slide 131: Convolutions: More detail
	Slide 132: Convolution Layer
	Slide 133: Convolution Layer
	Slide 134: consider a second, green filter
	Slide 135: For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:
	Slide 136: Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions
	Slide 137: Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions
	Slide 138: Preview
	Slide 139: one filter => one activation map
	Slide 140: A closer look at spatial dimensions:
	Slide 141: A closer look at spatial dimensions:
	Slide 142: A closer look at spatial dimensions:
	Slide 143: A closer look at spatial dimensions:
	Slide 144: A closer look at spatial dimensions:
	Slide 145: A closer look at spatial dimensions:
	Slide 146: A closer look at spatial dimensions:
	Slide 147: A closer look at spatial dimensions:
	Slide 148: A closer look at spatial dimensions:
	Slide 149: A closer look at spatial dimensions:
	Slide 150: A closer look at spatial dimensions:
	Slide 151
	Slide 152: In practice: Common to zero pad the border
	Slide 153: In practice: Common to zero pad the border
	Slide 154: In practice: Common to zero pad the border
	Slide 155
	Slide 156
	Slide 157
	Slide 158: Examples time:
	Slide 159
	Slide 160: Layer 1
	Slide 161: Layer 2
	Slide 162: Layer 3
	Slide 163: Layer 4 and 5
	Slide 164: Occlusion experiments
	Slide 165: Occlusion experiments
	Slide 166: What image maximizes a class score?
	Slide 167: What image maximizes a class score?
	Slide 168: Shape vs texture
	Slide 169: A Basic Architecture: AlexNet
	Slide 170: [Krizhevsky et al. 2012]
	Slide 171: Case Study: VGGNet
	Slide 172
	Slide 173: Case Study: ResNet
	Slide 174: Case Study: ResNet
	Slide 175: Case Study: ResNet [He et al., 2016]
	Slide 176: Case Study: ResNet [He et al., 2016]
	Slide 177: Case Study: ResNet [He et al., 2016]
	Slide 178: Case Study: ResNet [He et al., 2016]
	Slide 179: Case Study: ResNet [He et al., 2016]
	Slide 180: Training: Best practices
	Slide 181: Over-training prevention
	Slide 182: Regularization: Dropout
	Slide 183: Data Augmentation (Jittering)
	Slide 184: Transfer Learning
	Slide 185: Transfer Learning with CNNs
	Slide 186: more generic
	Slide 187: Pre-training on ImageNet
	Slide 188: Transfer learning with CNNs is pervasive…
	Slide 189: Semantic segmentation
	Slide 190: Analysis of pre-training on ImageNet
	Slide 191: Recurrent Networks offer a lot of flexibility:
	Slide 192: Recurrent Neural Network
	Slide 193
	Slide 194: Neural Machine Translation (NMT)
	Slide 195: Sequence-to-sequence: the bottleneck problem
	Slide 196: Attention
	Slide 197: Sequence-to-sequence with attention
	Slide 198: Sequence-to-sequence with attention
	Slide 199: Sequence-to-sequence with attention
	Slide 200: Sequence-to-sequence with attention
	Slide 201: Sequence-to-sequence with attention
	Slide 202: Sequence-to-sequence with attention
	Slide 203: Sequence-to-sequence with attention
	Slide 204: Attention: in equations
	Slide 205: Attention is great
	Slide 206: Attention is a general Deep Learning technique
	Slide 207
	Slide 208: Recurrent Neural Network
	Slide 209: test image
	Slide 210
	Slide 211: test image
	Slide 212: test image
	Slide 213: test image
	Slide 214: test image
	Slide 215: test image
	Slide 216: Issues with recurrent models: Linear interaction distance
	Slide 217: Issues with recurrent models: Lack of parallelizability
	Slide 218: If not recurrence, then what? How about attention?
	Slide 219: Self-Attention
	Slide 220: Self-Attention
	Slide 221: Barriers and solutions for Self-Attention as a building block
	Slide 222: Fixing the first self-attention problem: Sequence order
	Slide 223: Position representation vectors through sinusoids
	Slide 224: Adding nonlinearities in self-attention
	Slide 225: Masking the future in self-attention
	Slide 226: Necessities for a self-attention building block:
	Slide 227: Transformer Overview
	Slide 228: The Transformer Encoder-Decoder [Vaswani et al., 2017]
	Slide 229: The Transformer Encoder: Key-Query-Value Attention
	Slide 230: The Transformer Encoder: Key-Query-Value Attention
	Slide 231: The Transformer Encoder: Multi-headed attention
	Slide 232: The Transformer Encoder: Multi-headed attention
	Slide 233: Attention visualization in layer 5
	Slide 234: Attention visualization: Implicit anaphora resolution
	Slide 235: Parallel attention heads
	Slide 236: Quadratic computation as function of seq. length
	Slide 237: Recent work on improving on quadratic self-attention cost
	Slide 238: Pretraining models
	Slide 239: Pretraining for three types of architectures
	Slide 240: Pretraining through language modeling [Dai and Le, 2015]
	Slide 241: The Pretraining / Finetuning Paradigm
	Slide 242: Capturing meaning via context: What kinds of things does pretraining learn?
	Slide 243: Pretraining encoders: What pretraining objective to use?
	Slide 244: BERT: Bidirectional Encoder Representations from Tranformers
	Slide 245: BERT: Bidirectional Encoder Representations from Tranformers
	Slide 246: BERT: Bidirectional Encoder Representations from Tranformers
	Slide 247: BERT: Bidirectional Encoder Representations from Tranformers
	Slide 248: Generative Pretrained Transformer (GPT) [Radford et al., 2018]
	Slide 249: Generative Pretrained Transformer (GPT) [Radford et al., 2018]
	Slide 250: Increasingly convincing generations (GPT2) [Radford et al., 2018]
	Slide 251: Aside: Word structure and subword models
	Slide 252: Aside: Word structure and subword models
	Slide 253: Aside: The byte-pair encoding algorithm
	Slide 254: Aside: Word structure and subword models
	Slide 255: GPT-3, in-context learning, very large models
	Slide 256: GPT-3, in-context learning, very large models
	Slide 257: Transformers in vision
	Slide 258: Cross-modal transformers
	Slide 259: Cross-modal transformers
	Slide 260: Cross-modal transformers
	Slide 261: Self-Supervised Learning
	Slide 262: Unsupervised Visual Representation Learning by Context Prediction
	Slide 263: ImageNet + Deep Learning
	Slide 264: ImageNet + Deep Learning
	Slide 265: Context as Supervision [Collobert & Weston 2008; Mikolov et al. 2013]
	Slide 266: Context Prediction for Images
	Slide 267: Semantics from a non-semantic task
	Slide 268: Relative Position Task
	Slide 269: Architecture
	Slide 270
	Slide 271: What is learned?
	Slide 272: Pre-Training for R-CNN
	Slide 273: VOC 2007 Performance (pretraining for R-CNN)
	Slide 274: Which will be better?
	Slide 275: Shuffle and Learn: Unsupervised Learning using Temporal Order Verification
	Slide 276
	Slide 277
	Slide 278
	Slide 279: Learning image representations tied to ego-motion
	Slide 280
	Slide 281: Problem with today’s visual learning
	Slide 282
	Slide 283: Ego-motion left right arrow vision: view prediction
	Slide 284: Ego-motion left right arrow vision for recognition
	Slide 285: Approach idea: Ego-motion equivariance
	Slide 286: Approach idea: Ego-motion equivariance
	Slide 287: Approach overview
	Slide 288: Training frame pair mining
	Slide 289: Ego-motion equivariant feature learning
	Slide 290: Results: Recognition
	Slide 291
	Slide 292: The Curious Robot: Learning Visual Representations via Physical Interactions
	Slide 293: Embodied representations
	Slide 294: Grasping
	Slide 295: Pushing
	Slide 296: Poking
	Slide 297: Representations from interactions
	Slide 298: Classification/retrieval performance
	Slide 299: Classification/retrieval performance
	Slide 300: SimCLR - A Simple Framework for Contrastive Learning of Visual Representations
	Slide 301
	Slide 302
	Slide 303: Project Pitches

