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at University of
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(Computer Vision)




Course Goals

* To learn about state-of-the-art approaches to
computer vision tasks

* To think critically about vision approaches, see
strengths, weaknesses, and connections
between works

 To conduct research with contributions

including novel methods, method comparison
and method/data analysis



Note on Course Climate

Some may be more familiar with the subject
of the seminar, some less, and that’s ok!

Please respect each other and listen to each
other carefully

You will need to collaborate on the course
project—work hard, be fair and honest, and try
to talk through problems

Talk to instructor openly



Plan for First Three Classes

Course logistics

Students introduce themselves

What is computer vision?

Preview readings

Paper presentation signups (by Sept. 1)
Some basics

Preliminary project pitches exercise



Policies and Schedule

https://people.cs.pitt.edu/~kovashka/cs3710 fa23/

Highlights:

* Paper presentations

* Project logistics
 Readings and schedule


https://people.cs.pitt.edu/~kovashka/cs3710_fa23/

Questions?



Blitz introductions (30 sec)

What is your name?

What one thing outside of school are you
passionate about?

What is your current or planned research about?

What do you hope to get out of this class?
(Optional)

When you speak, please remind me your name



What is Computer Vision?



What is computer vision?

Done?

"We see with our brains, not with our eyes“ (Oliver Sacks and others)

Kristen Grauman (adapted)



What is computer vision?

* Automatic understanding of images and video

— Algorithms and representations to allow a machine to

recognize objects, people, scenes, and activities
— Algorithms to mine, search, and interact with visual data

— Computing properties and navigating within the 3D world

using visual data

— Generating realistic synthetic visual data

Adapted from Kristen Grauman



Perception and interpretation

amusement park Objects
= Activities
Scenes
The Wicked Cedar Point Locations
Twister Text / writing
) | Faces
ride Ferris i Gestures
- wheel |gg-N"" Motlons

Lake Erie

Kristen Grauman



Visual search, organization

Query Image or video Relevant
archives content

Kristen Grauman



Measurement

_ Multi-view stereo for
Real-time stereo Structure from motion community photo collections
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3D Model Building

3D surface model
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Goesele et al.

Slide credit: L. Lazebnik



Generation

Karras et al., “Progressive Growing of GANSs for Improved Quality, Stability, and Variation”, ICLR 2018



Recognition in novel modalities

Figure 6: Qualitative Results. YOLO running on sample artwork and natural images from the internet. It is mostly accurate although it
does think one person is an airplane.

Redmon et al., CVPR 2016



Learning from weak supervision

Chen et al., CVPR 2017

The elephant are about to march
through them. The spiders
themselves have a span aswide as a

friends of spotted dear.

- < TN - »
the love serenade

o

But

is over once a dog arrives.

There's a turfwar going on and the
koalas are losing. (dog)

About 50 animals have died
in just three months, including this
adult orangutan on the day we

The mayor has declined offers of
assistance and expert advice from
animal welfare groups. (slephant)




Understanding activities and intents

@ e 2

Bagautdinov et al., CVPR 2017



Understanding stories in film

Video Clip

compassionate
R worried
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female
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Legend
@ Character @ Summary Int.
@ Attribute (O Topic
. Relationship . Reason

. Interaction B Timestamp

Scene: Field Road
Situation: Bullying

Description:

As Jenny and Forrest are on the road, three
boys start throwing rocks at Forrest.

Jenny urges him to run from them. While
Forrest runs, his leg braces fall apart.

1-

Bus ride Talk with stranger Bullying Escape

Vicol et al., CVPR 2018

Family altercation

Bedtime Football game




Das et al.,, CVPR 2018

Reasoning and acting:
Embodied guestion answering

o ;
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Related disciplines




Why vision?
* Images and video are everywhere!

Personal photo albums Movies, news sports

Jm gc% shuttersteck You

Surveillance and security Medical and scientific images

Adapted from Lana Lazebnik



Why vision?

* As image sources multiply, so do applications

— Relieve humans of boring, easy tasks

— Perception for robotics / autonomous agents
— Organize and give access to visual content

— Description of content for the visually impaired
— Human-computer interaction

— Fun applications (e.qg. art styles to my photos)

— What else?

Adapted from Kristen Grauman



Seeing Al
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Microsoft Cognitive Services: Introducing the Seeing Al project



https://www.youtube.com/watch?v=R2mC-NUAmMk
https://www.youtube.com/watch?v=R2mC-NUAmMk

Why are these tasks chaIIengmg?

i Vi




Recognition: What objects do you see?
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i Vi




Detection: Where are the cars?
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Activity: What is this person doing?
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Scene: Is this an indoor scene?

i Vi




Instance: Which city? Which building?

i Vi




Visual question answering:

Why | S there a carriage in the street?




Why Is vision difficult?

* |ll-posed problem: real world much more
complex than what we can measure In
Images
-3D 2> 2D
— Motion - static

* Impossible to literally “invert” image formation
process with limited information

— Need information outside of this particular image
to generalize what image portrays (e.g. to resolve
occlusion)

Adapted from Kristen Grauman



Challenges: many nuisance parameters

Occlusions Intra-class V'iewpoint‘
appearance

Kristen Grauman



Challenges: intra-class variation

slide credit: Fei-Fei, Fergus & Torralba



Challenges: importance of context

slide credit: Fei-Fei, Fergus & Torralba



Challenges: Complexity

« Thousands to millions of pixels in an image
« 3,000-30,000 human recognizable object categories

« 30+ degrees of freedom in the pose of articulated
objects (humans)

 Billions of images indexed by Google Image Search
« 1.424 billion smart camera phones sold in 2015

* About half of the cerebral cortex in primates is
devoted to processing visual information [Felleman
and van Essen 1991]

Kristen Grauman



Challenges: Limited supervision
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Problem with categorization
(Borges' Animals)

“These ambiguities, redundancies and deficiencies recall
those that Dr. Franz Kuhn attributes to a certain Chinese
dictionary entitled The Celestial Emporium of Benevolent
Knowledge. In its remote pages it is written that animals
can be divided into (a) those belonging to the Emperor,
(b) those that are embalmed, (c) those that are tame, (d)
pigs, (e) sirens, (f) imaginary animals, (g) wild dogs, (h)
those included in this classification, (i) those that are
crazy-acting, (j) those that are uncountable, (k) those
painted with the finest brush made of camel hair, (l)
miscellaneous, (m) those which have just broken a vase,
and (n) those which, from a distance, look like flies.”

Jorge Luis Borges, The Analytical Language of John Wilkins, https://www.entish.org/essays/Wilkins.html



https://www.entish.org/essays/Wilkins.html

Preview of Readings



(1) Contrastive pre-training (2) Create dataset classifier from label text
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image. text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision." ICML 2021.
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Figure 2: An overview of using ViLLD for open-vocabulary object detection. ViLD distills the knowledge
from a pretrained open-vocabulary image classification model. First, the category text embeddings and the im-
age embeddings of cropped object proposals are computed, using the text and image encoders in the pretrained
classification model. Then, ViILD employs the text embeddings as the region classifier (ViLD-text) and mini-
mizes the distance between the region embedding and the image embedding for each proposal (ViLD-image).
During inference, text embeddings of novel categories are used to enable open-vocabulary detection.

Gu et al. "Open-vocabulary Object Detection via Vision and Language Knowledge Distillation." ICLR 2021.



Visual Programming

Compositional Visual Question Answering

Natural Language Image Editing

Visuval

Prediction Rationale

Program
Interpreter )

: High-level
: Progran 3

Progran
Generator
S el

Input
Image(s)

Ratural Language
Instruction

In-context
instruction-program
pairs

INAGE:

>

Question: Are there both ties and glasses in the picture?
Program:

B0X@=Loc(image=IMAGE, object="ties”)

ANSWER2=Count (box=BOX8)

B0X1«Loc(image«IMAGE, object«‘glasses’)

ANSWER1=Count (box=BOX1)

ANSWER2=Eval("‘yes’ if {ANSWERB) > @ and {ANSWER1)} > B else ‘no'")
RESULT=ANSWER2

Prediction: no

Natural Language Visual Reasoning

Prediction: False
~

LEFT: RIGHT:

Statement: The left and right image contains a total of six people and two boats.
Progran:

ANSNER®=Vga(image=LEFT, question=‘How nany people are in the image?’)
ANSNER1«Vga (image«RIGHT, guestion«‘How many people are in the image?’)
ANSWER2-Vga (image~LEFT, question~‘How many boats are in the image?’)

ANSWER3=Vga (image=RIGHT, question=‘How many boats are in the image?’)
ANSNER4=Eval( "{ANSMER@} + {ANSWKER1} == 6 and {ANSWER2} + {ANSWER3} == 2’}
RESULT«ANSWERS

Factual Knowledge Object Tagging

Prediction: INAGES

Instruction: Yag the 7 main characters on the TV show Big Bang Theory
Program:

0BJB=FaceDet (image=IMAGE)

LISTe=List(query="main characters on the TV show Big Bang Theory’, maxs7)
08)1«Classify(inage<IMAGE, object«0818, categories«LISTe)
IMAGEG=Tag(image~INAGE, object=0811)

RESULT=IMAGES

Prediction: IMAGEL

Instruction: Hide Daniel Craig with 8) and Sean Connery with ;)

Program:

08J)8=FaceDet( inage=IMAGE)

0B8J1<Select(image=<INAGE, object«0B]8, querys=‘Daniel Craig’, categorys=None)
IMGE@=Emoji (image=IMAGE, object=0BJ1, emoji~‘smiling_face_with_sunglasses®)
08J12=Select({image~IMAGE, object=0BJ@, query=‘Sean Connery’, category: None)
IMAGE1=Emofi(inage=IMAGE®, object=0812, emoji=‘winking face’)

RESULT=IMAGE1

IMAGE: Prediction: IMAGES

Instruction: Replace desert with lush green grass

Program:

0819=Seg(inage=INAGE)

08)1=Select(image~IMAGE, object=-0B)@, query=‘desert’, category=None)
IMGES~Replace(image~INAGE, object=0811, prompt=‘lush green grass’)
RESULT=IMAGE®

Prediction: IMAGE®

Instruction: Create a color pop of Barack Obama (person)

Program:

0BJ8=Seg(inage=IMAGE)

0Bl1=Select(image=IMAGE, object=08)8, query=‘Barack Obama’, category=‘person’)
IMAGE@=ColorPop (image<IMAGE, object«0811)

RESULT=IMAGE®

Figure 1. VISPROG is a modular and interpretable neuro-symbolic system for compositional visual reasoning. Given a few examples
of natural language instructions and the desired high-level programs, VISPROG generates a program for any new instruction using in-
context learning in GPT-3 and then executes the program on the input image(s) to obtain the prediction. VISPROG also summarizes the
intermediate outputs into an interpretable visual rationale (Fig. 4). We demonstrate VISPROG on tasks that require composing a diverse

set of modules for image understanding and manipulation, knowledge retrieval, and arithmetic and logical operations.

Gupta and Kembhavi. "Visual Programming: Compositional visual reasoning without training." CVPR 2023.



Caltech101 Prompt Accuracy Flowers102 Prompt Accuracy

a [CLASS]. 82.68 a photo of a [CLASS]. 60.86

a photo of [CLASS]. 80.81 a flower photo of a [CLASS]. 65.81

a photo of a [CLASS]. 86.29 a photo of a [CLASS], a type of flower. 66.14

[V]: [V]: ... [V} [CLASS]. 91.83 [VI; [V]; ... [Vl [CLASS]. 94.51
(a) (b)

Describable Textures (DTD) Prompt Accuracy EuroSAT Prompt Accuracy
‘ o T B 2 photo of a [CLASS). 39.83 a photo of a [CLASS). 24.17
A . a photo of a [CLASS] texture. 40.25 a satellite photo of [CLASS). 37.46

[CLASS] texture. 42.32 a centered satellite photo of [CLASS|. 37.56
V], [V]; ... [V]., [CLASS]. 63.58 [VI: [Vl ... [VIm [CLASS]. 83.53

(c) (d)

Fig. 1 Prompt engineering vs Context Optimization (CoOp). The former needs to use a held-out validation set for
words tuning, which is inefficient; the latter automates the process and requires only a few labeled images for learning.

Zhou et al. "Learning to Prompt for Vision-Language Models." IJCV 2022.



Standard Zero-shot

Customized Prompts via Language models (CuPL)

+

+
| “A photo of a goldfish” |

“# photo of a platypus”®
- ]

+

Text Image
encoder encoder

+*

>

‘A platypus looks like a
beaver with a duck's bill

+

+*

“What does a
platypus look like?”

+

1

Text Image
encoder encoder

+

“Gzoldfish are =mall, crangs
fish with shiny scalas”

“A platypus looks like a beaver

Y T .\.I_'_.I::
with a duck's b

+

>

Figure 1: Schematic of the method. (Left) The standard method of a zero-shot open vocabulary

image classification model (e.g., CLIP (Radford et al.

2021

)). (Right) Our method of CuPL. First,

an LLM generates descriptive captions for given class categories. Next, an open vocabulary model

uses these captions as prompts for performing classification.

Pratt et al. "What does a platypus look like? Generating customized prompts for zero-shot image classification." ICCV 2023.



Source Prediction

Reconstructed Source Image

Source Label
GAN
loss

—————- : D
+~  Semantic N feat

= =»{ Consistency It€= T GAN
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Source Image Stylized as Target Target Image

Source Image

Figure 2: Cycle-consistent adversarial adaptation overview. By directly remapping source training data into the target
domain, we remove the low-level differences between the domains, ensuring that our task model is well-conditioned on
target data. We depict here the image-level adaptation as composed of the pixel GAN loss (green), the source cycle loss
(red), and the source and target semantic consistency losses (black dashed) — used when needed to prevent label flipping.
For clarity the target cycle is omitted. The feature-level adaptation is depicted as the feature GAN loss (orange) and the

source task loss (purple).

Hoffman et al. "Cycada: Cycle-consistent adversarial domain adaptation."” ICML 2018.



Design + Context
Shift Shift
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(b) Unsupervised domain adaptation does not suffice on GeoNet

Kalluri et al. "GeoNet: Benchmarking Unsupervised Adaptation across Geographies." CVPR 2023.
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Figure 1. We propose to separate and localize audio sources based
on a natural language query, by learning to align the modalities on
completely unlabeled videos. In comparison, prior audio-visual
sound separation approaches require object label supervision.

Tan et al. "Language-Guided Audio-Visual Source Separation via Trimodal Consistency." CVPR 2023.
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Jy Sewing / Knitting

Social interaction

Figure 1. Ego4D is a massive-scale egocentric video dataset of daily life activity spanning 74 locations worldwide. Here we see a snapshot of
the dataset (5% of the clips, randomly sampled) highlighting its diversity in geographic location, activities, and modalities. The data includes
social videos where participants consented to remain unblurred. See https://ego4d-data.org/figl.html for interactive figure.

Grauman et al. "Ego4D: Around the World in 3,000 Hours of Egocentric Video." CVPR 2022.



We Can Do It!

Before it’s too _Iate. &

Fig. 1: Example advertisements from our dataset that require
challenging visual recognition and reasoning. Despite the
potential applications of understanding the messages of ads,
this problem has not been tackled in computer vision.

Ye et al. "Interpreting the Rhetoric of Visual Advertisements." TPAMI 2019.



“a man standing next to a “a laughing purple “a chipmunk baking

woman in a room” porcupine” cookies”

> R L Y7
“a teddy bear with a blue scarf
and eves tilted to its left”

“a puinting of a two-headed zebra riding a high wheel bike with
pizza wheels on a tiled road by broccoli fields at sunset”

- 2o

Figure 1. Make-A-Scene: Samples of generated images from text inputs (a), and a text and scene input (b). Our method is able to both
generate the scene (a, bottom left) and image, or generate the image from text and a simple sketch input (b, center).

Gafni et al. "Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors.” ECCV 2022.



| spilled my drink, can you help? | spilled my drink, can you help?

GPT3 You could try using LLM Value Functions
“find a cleaner” s hanr” ——
a vacuum cleaner. il s spongs®

“find a sponge” D
01l 0w “go to the trash can”
plc‘f bpibesponge "pick up the sponge”
“try using the vacuum” “ty sing the vacoum’

| would:

1. find a sponge

2. pick up the sponge
3. come to you

4. put down the sponge
5. done

Do you want me to
LaMDA find a cleaner?

“find @ cleanes”
“find a sponge”
“go to the trash can”
“pick up the sponge”

“try wsing the vacuom”

I'm sorry, | didn't
mean to spill it.

FLAN

o ——————— — —

Figure 1: LLMs have not interacted with their environment and observed the outcome of their responses, and
thus are not grounded in the world. SayCan grounds LLLMs via value functions of pretrained skills, allowing
them to execute real-world, abstract, long-horizon commands on robots.

Ahn et al. "Do As | Can, Not As | Say: Grounding Language in Robotic Affordances."” CoRL 2023.



Paper Presentation Sign-ups

https://docs.google.com/spreadsheets/d/14g6 finym215L
gDZ2gnAE57bU5{5M9uHz3Tmmga484U/edit?usp=sharing



https://docs.google.com/spreadsheets/d/14g6_finym215LqDZ2qnAE57bU5j5M9uHz3Tmmgq484U/edit?usp=sharing
https://docs.google.com/spreadsheets/d/14g6_finym215LqDZ2qnAE57bU5j5M9uHz3Tmmgq484U/edit?usp=sharing

Some Basics

(breezing through to establish common
ground...)

Convolutional networks
Recurrent networks
Transformers
Self-supervised learning



Image formation

Illumination (energy) ) ’

o
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Imaging system

(Internal) image plane (film)

Scene element

Slide credit: Derek Hoiem



Digital images

»
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ab

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image
sampling and quantization.

 Sample the 2D space on a regular grid
* Quantize each sample (round to nearest integer)

Slide credit: Derek Hoiem, Steve Seitz



Digital images

 Sample the 2D space on a regular grid
* Quantize each sample (round to nearest integer)
 What does quantizing signal look like?

5.9 4.6

62 79 23 119 120 105 4 0
10 10 9 62 12 78 34 0
10 £3 197 48 48 0 0 43
2D 178 135 5 188 191 68 0 49
2 1 i 29 28 37 0 77
0 39 144 147 187 102 62 208
255 252 0 188 123 62 0 31
166 63 197 17 1 0 99 30

Adapted from S. Seitz



Digital color images

Bayer filter

£ 2000 How Stuft Works

Slide credit: Kristen Grauman



Digital color images

Color images,
RGB color space:

Split image into
three channels

Adapted from Kristen Grauman



Images as Matrices

e Vectors and matrices are just collections of
ordered numbers that represent something:
movements in space, word counts, movie
ratings, pixel brightnesses, etc.



Vectors have two main uses

e Data can also be treated
as a vector

e Such vectors don’t have a
geometric interpretation,
but calculations like

. Vectors can represent an “distance” still have value
offset in 2D or 3D space

* Points are just vectors
from the origin



Vector

e A column vector v € R™"*1 where

U1
U2

* Arow vector v ¢ R1x7 where

VT = [’Ul Vo ... ’Un}

‘[ denotes the transpose operation



Norms

* L1 norm
|||, = lea\
1i=1

e L2 norm

2]l = /22 + -+ 22

* L norm (for real numbers p > 1)

n 1/p
Il = (Z - I‘”)
1=1



Distances

* L1 (Manhattan) distance
di(p,a) =llp—ali =) Ipi — al,
1=1

e L2 (Euclidean) distance

d(p,q) = 'J Eﬂ:(%‘ - p;)’

1=1

d(p,q) = \/(pl —q)’+ @)+ -+ + (P —an)



Example: Feature representation

A vector representing measurable characteristics
of a data sample we have

E.g. a glass of juice can be represented via its
color = {yellow=1, red=2, green=3, purple=4} and
taste = {sweet=1, sour=2}

A given glass i can be represented as a vector: x; =
[3 2] represents green, sour juice

For D features, this defines a D-dimensional space
where we can measure similarity between
samples



Example: Feature representation

L2 distance:

d(x1, x2) = sqrt(4+0)
d(x1, x3) = sqrt(0+1)
d(x2, x3) = sqrt(4+1)

L1 distance:

d(x1, x2) = 2+0
d(x1, x3) = 0+1
d(x2, x3) = 2+1

taste

E.g. a glass of juice can be represented via its
color = {yellow=1, red=2, green=3, purple=4}
and taste = {sweet=1, sour=2}

® «a1=012] O x2=[32]

@ 3-=[11]

color



Inner (Dot) Product

 Multiply corresponding entries of two vectors

and add up the result
-
xTy=|z1 ... @] || =20z (scalar)
Y|
e x-yisalso |x||y|Cos( angle between x and y )

* |f Bis a unit vector, then A:-B gives the length
of A which lies in the direction of B (projection)

(if B is unit-length hence normis 1)



Traditional Recognition Approach

« Features are key to recent progress in recognition, but
research shows they're flawed... Where next?

Image/ Video

Pixels E>

Object

—> Class

— e N -

- = - -
- e »> m

Fig. 1: An image from PASCAL and a high scoring car de-
tection from DPM (Felzenszwalb et al, 2010b). Why did the
detector fail?

Car Detection Our Visualization

@ o
03
. ) . a 02 —— HOG+Human AP = 063 N
Fig. 2: We show the crop for the false car detection from Fig- 42|~ RGB+Human AP = 0.96
ure 1. On the right, we show our visualization of the HOG 0 HOG+DPM AP = 0.51
. . . 0 02 04 06 08 1
features for the same patch. Our visualization reveals that

Recall 68

this false alarm actually looks like a car in HOG space.

Adapted from Lana Lazebnik, figures from Vondrick: http://www.cs.columbia.edu/~vondrick/ihog/ijcv.pdf



http://www.cs.columbia.edu/~vondrick/ihog/ijcv.pdf

What about learning the features?

« Learn a feature hierarchy all the way from pixels to
classifier

« Each layer extracts features from the output of
previous layer

« Train all layers jointly

Object
Class

Image/
Video
Pixels

Lana Lazebnik
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“Shallow” vs. “deep” architectures

Traditional recognition: “Shallow” architecture

Image/
Video —)»
Pixels

Object
Class

Deep learning: “Deep” architecture
Image/
Video
Pixels

Lana Lazebnik

Object
Class

70



Neural network definition

Figure 5.1 Network diagram for the two- hidden units
layer neural network corre-
sponding to (5.7). The input,
hidden, and output variables
are represented by nodes, and
the weight parameters are rep-
resented by links between the
nodes, in which the bias pa-
rameters are denoted by links
coming from additional input
and hidden variables zp and
zp. Arrows denote the direc-
tion of information flow through
the network during forward
propagation.

-
+*
-
-
+*
-
+*
-
+*
-

D
- - R Il SVM:
+ Activations:  a; =) wjz; +w b

=1
* Nonlinear activation function h (e.g. sigmoid,
RELU) Ej — h(ﬂj) 71

Figure from Christopher Bishop



Neural network definition

 Layer 2 D
=3 it
« Layer 3 (final)
M
2 2
o= 3wl +of}
j=1
« Outputs (e.g. sigmoid/softmax)
1 (multiclass) .
(binary) Y. — (T((I.;L._) — - ] Y = EKP[HL)
1 + exp(— a) >, exp(ay)

* Finally:

oman) = (2) ( ) (1 ) (2)
2 2
yp(x, w) =0 E w,h E Ti + w, + w
kg t k0 .

1=1



Activation functions

Sigmoid A/ Leaky RelLU

A max(0.1x, x)
o(z)=1/(1+e7)

10 s

Maxout  max(wTz + by, wlz + by)
tanh tanh(X) - o ELU #5 {1’ itz >0

*’Zl 0
' a(exp(z)—1) ifx<0
o . —ELU o
: —LReLU /
O ‘ —ReLU /
ReLU max(0,x) z | R
S ; r /
E /

Andrej Karpathy



A multi-layer neural network

Input Hidden Layer Output
Layer Layer
Input #1 —=
Input #2 —=
~ Output
Input #3 —=
Input #4 —=

* Nonlinear classifier

« Can approximate any continuous function to arbitrary
accuracy given sufficiently many hidden units

Lana Lazebnik



Inspiration: Neuron cells

e Neurons
« accept information from multiple inputs,
* transmit information to other neurons.

« Multiply inputs by weights along edges
* Apply some function to the set of inputs at each node
 If output of function over threshold, neuron “fires”

L0 Wo
axon from a neuro>n. Sy
impulses carried
toward cell body g
, branches
dendrites ( of axon cell body Z
) T w;x; +b
Wyl |
REEACHE ~\| | [erminals G Zwimi g output axon
= ¢ . .
impulses carried \f& activation
' away from cell bod function
cell body ¥ 4 L)
75

Text: HKUST, figures: Andrej Karpathy



Biological analog

Axonal arborization

Output: o(w-x + b)

Sigmoid function:

a(l)= -
l+e

A biological neuron An artificial neuron

Jia-bin Huang



Biological analog

Hubel & Weisel featural hierarchy

topographical mapping '
hyrer—complex @ high leve!

5
@ mid level
D

O low level

cell
complex cells

simple cells

Hubel and Weisel’s architecture

Adapted from Jia-bin Huang

hidden layver 1  hidden laver 2  hidden layer 3

input layer

Multi-layer neural network




Deep neural networks

Lots of hidden layers

Depth

11

power (usually)
With great power comes great responsibility”

3
=
al
&
=
—
-
_—
e
0
&
3
o
&
gt
b /.....:... g T Loy T Louies [
5" / hﬂﬂ,._.m,nhum.n 4 ol
g= NSRRI e
=
=
3
e
ol
&
,
T S N
. TR TR
= ALY
o
3
-
o
R
i)
et
gl
™
iy
-t
—
Sy

Figure from http://neuralnetworksanddeeplearning.com/chap5.html



How do we train deep neural networks?

The goal is to find such a set of weights that
allow the activations/outputs to match the
desired output: f(W, x;) ~ v

Unfortunately, no closed-form solution for
weights W, but we can express our objective

We want to minimize a loss function (a
function of the weights in the network), we’'ll
do so iteratively

For now let's simplify and assume there’s a
single layer of weights in the network



Classification goal

airplane ﬁ..% v ...= - E())(?;rllogli dataset: CIFAR-10
.h 50,000 training images

automobile E L4

TR P
cat | ‘:J'."-« ~ !E

deer N W : m

dog L1 i IR o

s el B e

horse # mn‘- o nm

o e -

truck Hi
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Classification scores

flz,W) =Wz
x{ T(x,W) 10 numbers,
x indicating class
- scores

[32x 32X 3]
array of numbers 0...1
(3072 numbers total)

81
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Linear classifier

f(z, W)|=Wig 3072*L  [(+b)]10x1

10x1 10x3072
\ 10 numbers,

iIndicating class

s scores
[32x 32X 3]

array of numbers 0...1

parameters, or “weights”

82
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Linear classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

02 |-05| 01 | 20 56 1.1 -96.8 | cat score

15113 | 21 | 0.0 231 4 3.2 | | 437.9 dog score

: 0 025| 0.2 | -0.3 -1.2 ;
input image 24 61.95 ship score

83

Andrej Karpathy



Linear classifier

Going forward: Loss function/Optimization

TODO:

1. Define aloss function
that quantifies our
unhappiness with the
scores across the training

cat 32 13 22 data

2. Come up with a way of
car
5.1 49 2 9 efficiently finding the
fr _ _ parameters that minimize
09 1.7 2.0 3.1 the loss function

(optimization)

84
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Linear classifier

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wz are:

cat 3.2 1.3
car 5.1 4.9
frog -1.7 2.0

Adapted from Andrej Karpathy
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Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wz are:

Adapted from Andrej Karpathy

Hinge loss:

Given an example (wi, yi)
where g, is the image and
where Yi Is the (integer) label,
and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

Want: s, >=s;+ 1, forjl=y,
lLe.s;—s, +1<=0

If true, loss is O
If false, loss is magnitude of violation
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Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes. Hinge loss:
With some W the scores f(z, W) = Wz are:
Given an example (wi, yi)
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

cat

car 5.1 4.9 2.5 = max(0, 5.1 - 3.2 + 1)

] ) +max(0, -1.7 - 3.2 + 1)
frog 1.7 2.0 3.1 = max(0, 2.9) + max(0, -3.9)
Losses: | 2.9 T2

87

Adapted from Andrej Karpathy



Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) = Wz are:

cat 3.2

car 5.1
frog -1.7

Hinge loss:

Given an example (wi, yi)
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

Losses: 2.9

Adapted from Andrej Karpathy

=max(0, 1.3-4.9+1)
+max(0,2.0-4.9+1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0
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Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) = Wz are:

cat 3.2
car 5 1
frog -1.7

Hinge loss:

Given an example (wi, yi)
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

Losses: 29

Adapted from Andrej Karpathy

12.9

=max(0, 2.2 - (-3.1) + 1)
+max(0, 2.5 - (-3.1) + 1)
= max(0, 5.3+ 1)
+ max(0, 5.6 + 1)
=6.3+6.6
=12.9
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Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wz are:

cat 3.2 1.3
car 5.1 4.9
frog -1.7 2.0

-3.1

Losses: 2.9 0

Adapted from Andrej Karpathy

12.9

Hinge loss:

Given an example (33i, yi)
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:
Li =34, max(0,s; — sy, + 1)

and the full training loss is the mean
over all examples in the training data:

N
L= % Zizl Li

L=(2.9 +0 + 12.9)/3
=15.8/3=5.3

90



Linear classifier: Hinge loss

flx, W) =Wx

L=L13" 3., max(0, f(zi;W); — f(mi; W)y, + 1)

Adapted from Andrej Karpathy



Linear classifier: Hinge loss

Weight Regularization

A = regularization strengt
(hyperparameter)
N

h

[

AR(W)

L= X5, X, max(0, f(ziW); — f(zi; W)y, +1) +

n common use:
_2 regularization
_1 regularization
Dropout

Adapted from Andrej Karpathy

RW) =32, W
R(W) — Zk Zl |Wkl|
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Another loss: Softmax (cross-entropy)

scores = unnormalized log probabilities of the classes

P(Y = le — ZBZ) — Ze.szsj

cat 32 where S = f(ill‘z, W)

car 51
Want to maximize the log likelihood, or (for a loss function)
frog -1.7 to minimize the negative log likelihood of the correct class:

Li = —log P(Y = yi| X = =)

\ J
|

maximize

Y
minimize

93

Adapted from Andrej Karpathy



Another loss: Softmax (cross-entropy)

unnormalized probabilities

cat 3.2 245 0.13 |- L_i=-log(0.13)
exp normalize =0.89
car 5.1 —— [164.0 - 1 0.87
frog -1.7 0.18 0.00
unnormalized log probabilities probabilities

94

Adapted from Andrej Karpathy



Other losses

« Triplet loss (Schroff, FaceNet)

)
S [17@) = IR - 1£@2) - I +a]

T

Negative m
Ar::{ll{ir/,. LEARNING e
— .‘::’;_::r Negative

Anchor -
Positive Positive

Figure 3. The Triplet Loss minimizes the distance between an an-
chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a
different identity.

* Anything you want!

a denotes anchor
p denotes positive
n denotes negative

95



How to minimize the loss function?

Andrej Karpathy
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How to minimize the loss function?

In 1-dimension, the derivative of a function is:

df(z) _ . flz+h)— f(@)

dx h —0 h

In multiple dimensions, the gradient is the vector of (partial derivatives):

Thatis, for f: R" — R, its gradient V f: R" — R" is defined at
the point p = (1, ..., Z,) in n-dimensional space as the vector:["!

2L(p) |

Oxq
Vi(p) = .
aof

L &Bn

The nabla symbol V, written as an upside-down triangle and

pronounced "del”, denotes the vector differential operator.
97

Adapted from Andrej Karpathy, definition/equation from https://en.wikipedia.org/wiki/Gradient



https://en.wikipedia.org/wiki/Gradient

Loss gradients

 Different notations: 0L
a_w(})
v
* |.e. how does the loss change as a function
of the weights

* We want to change weights in a way that
makes the loss decrease as fast as possible

VwL

tangent line




Gradient descent

« We'll update weights

* Move Iin direction opposite to gradient:
\

_ ( \
W("”{” =w'™) —nVE(w™)

Time

Learning rate

— ' ‘

i o i original W

W1

/
negative gradient direction

99

Figure from Andrej Karpathy




Gradient descent

 lteratively subtract the gradient with respect
to the model parameters (w)

* |.e. we're moving in a direction opposite to
the gradient of the loss

* |l.e. we're moving towards smaller loss



How to compute the loss/gradient?

In classic gradient descent, we compute the
gradient from the loss for all training
examples

Mini-batch gradient descent: Only use some
of the data for each gradient update, cycle

through training examples multiple times
Each time we've cycled through all of them once is called
an ‘epoch’
Allows faster training (e.g. on GPUSs), parallelization
Some benefits for learning due to randomness



Learning rate selection

The effects of step size (or “learning rate”)
25 : - - - A

loss

20

low learning rate

high learning rate

good learning rate
0,00 iO 40 60 80 100 ’

Epoch 4 epoch

https://www.deeplearning.ai/ai-notes/optimization/
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https://www.deeplearning.ai/ai-notes/optimization/

Gradient descent in multi-layer nets

« We'll update weights
 Move Iin direction opposite to gradient:

wlTt) = w(™ — ) VE(w())

 How to update the weights at all layers?

« Answer: backpropagation of error from
higher layers to lower layers



Backpropagation: Graphic example

First calculate error of output units and use this
to change the top layer of weights.

output Kk

2
Calculate how to w(2)

update weights into |

(update at end of iter) hidden j

w®)

input i

Adapted from Ray Mooney, equations from Chris Bishop



Backpropagation: Graphic example

Next calculate error for hidden units based on
errors on the output units it feeds into.

Adapted from Ray Mooney, equations from Chris Bishop



Backpropagation: Graphic example

Finally update bottom layer of weights based on
errors calculated for hidden units.

output Kk

Update weights into i hidden j

input i

Adapted from Ray Mooney, equations from Chris Bishop



f(z,y,2) = (¢ + y)z
eg.x=-2,y=95,z=-4

Andrej Karpathy

=1
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f

1

of of
f=gqz 8 %Pz
of Of Of

Want: 55 Oy Be

Andrej Karpathy
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f(z,y,2) = (¢ + y)z Doqs
+ -
eg.Xx=-2,y=5,z=- .5 £ 12

o aq . aq Z -4
of
of of 37
f=uz B Oy i
of Of of

Want: 55 Oy Be
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. of of of
Want: 55 Oy Be
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=1

of of
f=gqz 8 %Pz
of of of

Want: 55 Oy Be

Andrej Karpathy

of
0z
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of of
f=gqz 8 %Pz
of of of

Want: 55 Oy Be

Andrej Karpathy

f-12
1
z 4
3 q\
of
0z
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_ 0q . 0q
of of
f=uz B Oy
of of Oof

Want: 55 Oy Be
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_ 0q . 0q
of of
f=uz B Oy
of of Oof

Want: 55 Oy Be
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. of of of
Want: 55 Oy Be
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f(z,y,2) = (z +y)z
eg.x=-2,y=52z=-4

_ 09 _ 1 09 _
of of
f=gqz % = %% — 4 Chain rule: Oy
oF _ 9F o
- of of of Oy 0Og oy
Want: 3.5 5, 2
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. of of of
Want: 55 Oy Be
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f =% £ = Z, o q Chain rule: Oz
of _ of &
af 8f Bf or Bq oz

Want: 3.5 5, 2
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-] activations

B
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Andrej Karpathy

-] activations

“local gradient”

gradients
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Andrej Karpathy

-] activations

“local gradient”

OL
0z

gradients
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-] activations

“local gradient”
OL
/ &

gradients
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-] activations

“local gradient”
OL
% az
oL

gradients
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Convolutional Neural Networks (CNN)

Neural network with specialized
connectivity structure

Stack multiple stages of feature
extractors

Higher stages compute more global,
more invariant, more abstract features

Classification layer at the end

ﬂ“;i
ol

z BoE

[ |
=
F |
: |
| X |
¥ |
o |
I3
'y |
e d
-1
> |

C3:f. maps 16@10x10

INPUT g,é) ggg;uare maps S4:f. maps 16@5x5
32x32 S2: f. maps C5: layer ’ OUTPUT
6@14x14 120 P layer "0

I | FuIIconrl-ection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to docuipgent
recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.

Adapted from Rob Fergus


http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Convolutional Neural Networks (CNN)

 Feed-forward feature extraction: [ Output (class probs) ]
1. Convolve input with learned filters ﬁ
2. Apply non-linearity
3. Spatial pooling (downsample)

Spatial pooling

{}

Non-linearity

[ 1
[ |
{} !

[ Convolution J
[ |

« Supervised training of convolutional
filters by back-propagating
classification error

(Learned)

{}

Input Images

Adapted from Lana Lazebnik



1. Convolution

Apply learned filter weights
One feature map per filter

Stride can be greater than
1 (faster, less memory)

Feature Map



2. Non-Linearity

* Per-element (independent)

« Some options:
 Tanh £
: 1/(1+exp(-x))
* Rectified linear unit (ReLU)
— Avoids saturation issues

Adapted from Rob Fergus



3. Spatial Pooling

* Sum or max over non-overlapping /
overlapping regions

224x224x64 Single depth slice
112x112x64 4
pool % I 2 | 4
—_— max pool with 2x2 filters
aNeeNl 7 | 8 and stride 2 6
3 | 2 NG 3
l T 1 | 2
> o 112 "
224 downsampling y -
112
224
128

Rob Fergus, figure from Andrej Karpathy



3. Spatial Pooling

* Sum or max over non-overlapping /
overlapping regions
* Role of pooling:

* Invariance to small transformations
« Larger receptive fields (neurons see more of input)

Sum

Adapted from Rob Fergus



Convolutions: More detall

32x32x3 image

32 height

3 depth

130
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Convolutions: More detall

32x32x3 image

5x5x3 filter
32 £/
Il Convolve the filter with the image
l.e. “slide over the image spatially,
computing dot products”

32

Andrej Karpathy



Convolutions: More detall

Convolution Layer
__— 32x32x3 Image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wiz+b

~~~ 1number:

Andrej Karpathy



Convolutions: More detall

Convolution Layer

o

[

32

——0

32

Andrej Karpathy

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

/
Z

1

28
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Convolutions: More detall

Convolution Layer consider a second, green filter

— 32x32x3 image activation maps

{ P 5x5x3 filter %/ 28
=0

convolve (slide) over all

spatial locations /

32 / 28

3 1

134
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Convolutions: More detall

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

activation maps

27'

ANNN

32

28

Convolution Layer

7

We stack these up to get a “new image” of size 28x28x6!

NN NN
. . . . N

32 ) 28

3 6

. . N

Andrej Karpathy



Convolutions: More detall

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONY,
RelLU
e.g. 6

5x5x3
32 filters 28

Andrej Karpathy



Convolutions: More detall

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g. 6 e.g. 10
5x5x3 5x5x6
32 filters 28 filters 24

Andrej Karpathy



Convolutions: More detall

[From recent Yann

Preview LeCun slides]

Low-Level| |Mid-Level| |[High-Level|] | Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

138
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Convolutions: More detall

, CRECINSEESEMNZIIAFNENESEORSETISEERRERG
one filter => _
one activation map example 5x5 filters
’ - (32 total)

Activations:

We call the layer convolutional
because it is related to convolution
of two signals:

k k
Gli,j1= > Y. Hlu,v]F[i+ u,j+ v]

u=—kv=-—Fk

Element-wise multiplication and sum
of a filter and the signal (image)

139

Adapted from Andrej Karpathy, Kristen Grauman



Convolutions: More detall

A closer look at spatial dimensions:

32

Andrej Karpathy

32

=

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

/
Iz

1

28
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Convolutions: More detall

A closer look at spatial dimensions:

/X7 Input (spatially)
assume 3x3 filter

Andrej Karpathy



Convolutions: More detall

A closer look at spatial dimensions:

/X7 Input (spatially)
assume 3x3 filter

Andrej Karpathy



Convolutions: More detall

A closer look at spatial dimensions:

/X7 Input (spatially)
assume 3x3 filter
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Convolutions: More detall

A closer look at spatial dimensions:

/X7 Input (spatially)
assume 3x3 filter

Andrej Karpathy



Convolutions: More detall

A closer look at spatial dimensions:

Andrej Karpathy

/X7 Input (spatially)
assume 3xa3 filter
=> 5X5 output



Convolutions: More detall

A closer look at spatial dimensions:

2
/X7 Iinput (spatially)

assume 3x3 filter
applied with stride 2

Andrej Karpathy



Convolutions: More detall

A closer look at spatial dimensions:

2
/X7 Iinput (spatially)

assume 3x3 filter
applied with stride 2

Andrej Karpathy



Convolutions: More detall

A closer look at spatial dimensions:

7

Andrej Karpathy

/X7 Iinput (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!



Convolutions: More detall

A closer look at spatial dimensions:

2
/X7 Iinput (spatially)

assume 3x3 filter
applied with stride 3?7

Andrej Karpathy



Convolutions: More detall

A closer look at spatial dimensions:

7

Andrej Karpathy

/X7 Iinput (spatially)
assume 3x3 filter
applied with stride 3?7

doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

150



Convolutions: More detail

N

Output size:
(N-F)/stride +1

eg.N=7,F=3:
stride1=>(7-3)/1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=2.33:\

Andrej Karpathy



Convolutions: More detall

n practice: Common to zero pad the border
0O/0|0|O0O|0 O
e.g. input 7x7

° 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0
0

(recall:)

(N -F)/stride + 1

Andrej Karpathy



Convolutions: More detall

n practice: Common to zero pad the border

0[{0|0|0|0]|O

e.g. input 7x7
3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?

/X7 output!

Andrej Karpathy



Convolutions: More detall

0

0

0

0

0

0

0

0

0

Andrej Karpathy

n practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

/X7 output!
In general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 => zero pad with 1

F =5 => zero pad with 2

F =7 =>zero pad with 3

(N + 2*padding - F) / stride + 1



Convolutions: More detail

Examples time:

Input volume: 32x32x3
10 5x5x3 filters with stride 1, pad 2

Output volume size: ?

Andrej Karpathy

N

N




Convolutions: More detail

Examples time:

Input volume: 32x32x3
10 5x5x3 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Andrej Karpathy

N

N




Convolutions: More detail

Examples time:

Input volume: 32x32x3
10 5x5x3 filters with stride 1, pad 2

Number of parameters in this layer?

Andrej Karpathy

N

N




Convolutions: More detall

Examples time: / /

Input volume: 32x32x
10 5x5x3 filters with stride 1, pad 2 L

N
N

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params  (+1 for bias)
=> 76*10 =760

Andrej Karpathy




Putting it all together

RELU RELU RELU RELU RELU RELU
CONVlCONVl CONVlCONVl CONVlCONVl FC
car

EIELEER

—

WA NGRS

A EETEIVE R

il

1 1) 1" I 6

Andrej Karpathy
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Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]



http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

« Activations projected « Patches from validation images that give
down to pixel level maximal activation of a given feature map
via decovolution

161
Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]



http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

162

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]



http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]


http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Occlusion experiments

(d) Classifier, probability

(a) Input Image of correct class \
v 2} .
TR

(as a function of the
position of the
square of zeros in
the original image)

True Label: Afghan Hound

[Zeiler & Fergus 2014]
164

Andrej Karpathy



Occlusion experiments

(d) Classifier, probability

(a) Input Image of correct class \
- o
S e :

¥ '% '

(as a function of the
position of the
square of zeros in
the original image)

True Label: Afghan Hound

[Zeiler & Fergus 2014]
165
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What image maximizes a class score?

55

Repeat:
1. Forward animage
Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest

2.
3. Backprop to image
4. Do an “image update”

166
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What image maximizes a class score?

Flamingo Pelican Hartebeest Billiard Table

Ground Beetle Indian Cobra Station Wagon Black Swan

[Understanding Neural Networks Through Deep Visualization, Yosinski et al. , 2015]
http://yosinski.com/deepvis

167
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http://yosinski.com/deepvis

Shape vs texture

(a) Texture image (b) Content image

(c) Texture-shape cue conflict
81.4% Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan

Figure 1: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c¢) an image with a
texture-shape cue conflict, generated by style transfer between the first two images.

100100100100 99 g7 99 100100 g3 100100100100

(=]
)
I

7]
=
8
(3

original greyscale silhouette

texture

Figure 2: Accuracies and example stimuli for five different experiments without cue conflict.

ImageNet-trained CNNs are biased towards texture; increasing shape bias improves
accuracy and robustness [Geirhos et al., ICLR 2019]



https://openreview.net/forum?id=Bygh9j09KX

A Basic Architecture: AlexNet
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Figure from http://www.mdpi.com/2072-4292/7/11/14680/htm



Case Study: AlexNet

[Krizhevsky et al. 2012] Q_S\ h 1L
Full (simplified) AlexNet architecture: N S,.t.--i';'ss - ey g T 2w
[227X227X3] INPUT of4 - pooling pooling

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad O
[27x27x96] MAX POOLL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] 4096 neurons

[4096] 4096 neurons

[1000] 1000 neurons (class scores)

Details/Retrospectives:

-first use of ReLU

-used Norm layers (not common anymore)
-heavy data augmentation

-dropout 0.5

-batch size 128

-SGD Momentum 0.9

-Learning rate le-2, reduced by 10
manually when val accuracy plateaus

-L2 weight decay 5e-4

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: VGGNet

ConvNet Conhg-uration i |
A A-LRN B C || D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
[Simonyan and Zisserman, 2014] Mmput (224 x 221 RGB imag})

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

Only 3)(3 CONV Strlde 1’ pad 1 conv3-128 | conv3-128 (c:(c:::g:iiz conv3-128 { conv3-128 W conv3-128

conv3-128 N conv3-128 [ conv3-128

: maxpool
and 2X2 MAX POOL Strlde 2 conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 [ conv3-256
conv3-256 | conv3-256 | conv3-256 | cony conv3-256 W conv3-256
/fnvjlj?: conv3-256 [ conv3-256
conv3-256
maxpool

conv3-512 | conv3-512 | conv3-512 | conv3-512 § conv3-512 [ conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 § conv3-512 [ conv3-512
convl-512 | conv3-512 [ conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 W conv3-512

best model conv3-512 | conva-512 | comv3-512 | comv3:512 | comva-512 | comvd-si2

convl-512 | conv3-512 [§ conv3-512

conv3-512
maxpool
FC-4096
FC-4096
11.2% top 5 error in ILSVRC 2013 sl
->
Table 2: Number of parameters (in millions).
7.3% top 5 error Network AAIRN [ B [ C [ D [ E
Number of parameters 133 133 ] 134 | 138 | 144
171
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Case Study: GooglLeNet

Filter
concatenation

ﬂ‘\

o 78 TE 58
" wé 5"
2 N
3 A B

1x1 convolutions

ﬂﬁon s

Andrej Karpathy

3x3 convolutions 5x5 convolutions 1x1 convolutions
“ : )
1x1 convolutions 3x3 max pooling

Previous layer

[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

172



Case Study: ResNet

Andrej Karpathy

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

Research

MSRA @ ILSVRC & COCO 2015 Competitions

* 1st places in all five main tracks
* ImageNet Classification: “Ultra-deep” (quote Yann) 152-layer nets
* ImageNet Detection: 16% better than 2nd
* ImageNet Localization: 27% better than 2nd
* COCO Detection: 11% better than 2nd
* COCO Segmentation: 12% better than 2nd

*improvements are relative numbers

ZICCV

g He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015

Slide from Kaiming He’s presentation https://www.youtube.com/watch?v=1PGL]-uKT1w
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https://www.youtube.com/watch?v=1PGLj-uKT1w

Case Study: ResNet

Revolution of Depth

152 layers

[ 22 layers ] 19 Iayers

\67

357 l I

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

wlccv

h—ww-m-—-—-

shallow

28.2

ILSVRC'10

‘Research

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.

(slide from Kaiming He's presentation)

Andrej Karpathy
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. i 1
Case Study: ResNet
[He et al., 2016]
Very deep networks using residual F00 + ¢ [ remw
connections C'P
- 152-layer model for ImageNet X
- ILSVRC’15 classification winner F& relu identity
(3.57% top 5 error)
- Swept all classification and e
detection competitions in v
ILSVRC’15 and COCQO’15! Residual block e

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: ResNet
[He et al., 2016]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

Training error
Test error

lterations lterations

Q: What's strange about these training and test curves?
[Hint: look at the order of the curves]

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it's not caused by overfitting!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: ResNet
[He et al., 2016]

Hypothesis: the problem is an optimization problem, deeper models are harder to
optimize

The deeper model should be able to perform at
least as well as the shallower model.

A solution by construction is copying the learned

layers from the shallower model and setting
additional layers to identity mapping.

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: ResNet
[He et al., 2016]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

H(x) = F(x) + X | relu
H(x)/ ( ) ( ) T~ F(X) + X
GP Use layers to
fit residual
X F(X) = H(X) - X
relu " relu Identity in(s,t)ead (gf)
H(x) directly
T
X X
“Plain” layers Residual block

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: ResNet
[He et al., 2016]

Full ResNet architecture:

T relu

- Stack residual blocks F(X) + X

- Every residual block
has two 3x3 conv

layers F)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

relu

X
Residual block

X
identity

3x3 cony, 512

|__3x3conv, 512 |
3x3 cony, 512

3x3 conv, 512, /2

Q
O
O

X nv, 128,

O
|___3x3conv, 64 |
| 3x3conv. 64 |

3x3 conv, 64
| 3x3conv, 64 |

O
| 3x3conv. 64 |
| 3x3conv. 64 |

@,

o0y




Training: Best practices

e Data

« Center (subtract mean from) your data
« Use data augmentation
« Use mini-batch

* Weights/activations
« To initialize weights, use “Xavier initialization”
« Use regularization
 Use RELU (most common), don’t use sigmoid

* Hyperparameters:

« Learning rate: too high? Too low?
« Use cross-validation to pick

180



Over-training prevention

* Running too many epochs can result in over-fitting.

error

on test data

on training data

—
0 # training epochs

« Keep a hold-out validation set and test accuracy on it
after every epoch. Stop training when additional
epochs actually increase validation error.

Adapted from Ray Mooney



Regularization: Dropout

Without dropout

(a) Standard Neural Net

« Randomly turn off some neurons
* Allows individual neurons to independently be
responsible for performance

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 24514]

Adapted from Jia-bin Huang


http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Data Augmentation (Jittering)

Create virtual training samples

» Horizontal flip
« Random crop
« Color casting
« Geometric distortion

183

Jia-bin Huang, Image: https://github.com/aleju/imgaug



https://github.com/aleju/imgaug

Transfer Learning

If you want to
NNs”

“You need a lot of&
tra@

184
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Transfer Learning with CNNs

 The more weights you need to learn, the
more data you need

« That's why with a deeper network, you need
more data to train than for a shallower net

* One possible solution:

hidden layer 1 hidden layer 2  hidden laver 3

Set these to the already learned Learn these on your own task
weights from another network

185



Transfer Learning with CNNs

image

conv-64
conv-64
maxpool

conv-128 more generic

conv-128

maxpool

conv-256
conv-256

more specific

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

Adapted from Andrej Karpathy

very similar very different
dataset dataset

very little data | Use simple You're in
classifier from trouble... Try
top layer simple classifier

from different
stages

quite a lot of
data

Finetune a few
layers

Finetune a
larger number of
layers

186




Pre-training on ImageNet

 Have a source domain and target domain

« Train a network to classify ImageNet classes
« Coarse classes and ones with fine distinctions (dog breeds)

 Remove last layers and train layers to
replace them, that predict target classes

Training images Source task Source task labels
Convolutional layers Fully-connected layers AR SRpa
1: Feature ,1 Wall clock
learning C1-C2-C3-CA4-C5 [+ rc6 p* FC7 FC8 1.
4096 or
ey 6144-dim Green snake
1 ) \ | vector :
\I' H Yorkshire terrier
2: Feature Transfer
transfer parameters :
T _ . Chair
e
‘ : I Back d
. e ackgroun
3 : Classifier ' C1-C2-C3-C4-C5 b rce b re7 —— fca —»! kcb s -
learning 4096 or wr
6144.dim N Person
9216-dim 4096 or vector
44-
el 6:,edg:m TV/monitor
Traini = Slid h New adaptation {
raining images Sliding patches layers trained
Target task oh target task Target task labels 187

Oquab et al., “Learning and Transferring Mid-Level Image Representations...”, CVPR 2014



Transfer learning with CNNSs Is pervasive...

classifier Image Captioning

 § Karpathy and Fei-Fei, “Deep Visual-
Rol pooling Semantic Alignments for Generating

Image Descriptions”, CVPR 2015
propoy =3

<
Region Proposal Network,
feature maps

CNN pretrained
on ImageNet

“straw” “hat” END

conv layers

START “straw” “hat”

Object Detection
Ren et al., “Faster R-CNN* NIPS 2015

188

Adapted from Andrej Karpathy



Semantic segmentation

Extract Run through Classify
patch a CNN center pixel

E@E%ow
- J,

Repeat for
every pixel

189
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Analysis of pre-training on ImageNet

¢ Source:
distinguish 1000 ImageNet categories (incl. many dog breeds)

Target tasks:

* oObject detection and action recognition on PASCAL

e scene recognition on SUN

* Pre-training with 500 images per class is about
as good as pre-training with 1000

* Pre-training with 127 classes is about as good
as pre-training with 1000

* Pre-training with (fewer classes, more images
per class) > (more classes, fewer images)

« Small drop In if classes with fine-grained
distinctions removed from pre-training set 1w

Huh et al., “What makes ImageNet good for transfer learning?”, arxiv 2016



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

\ e.g. image captioning
image -> sequence of words

Andrej Karpathy



Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

he|=|fw (ht—h xt)

new state / old state input vector at
some time step

some function
with parameters W

Andrej Karpathy




Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Example

target chars:

output layer

hidden layer

input layer

input chars: ¢

“n
e

1.0
2.2

-3.0

4.1

|

0.3

-0.1

0.9

S, [Feiearenisss .

A4

\

W_hh| -

What do we still need to specify, for this to work?

What kind of loss can we formulate?

Andrej Karpathy



Neural Machine Translation (NMT)

The sequence-to-sequence model
Target sentence (output)

Encoding of the source sentence. Al

NN 19pP03ad

T r N\
Provides initial hidden state . : .
h th a e <END>
for Decoder RNN. he toome w P
5 : & =
< 3 J 3
nd o) o) 0 o) o) o) o)
5 e| .|® ol |.|o s|os|of = |0
S e “|® o |’1e@ 1o o |0
S o) O [ O o O o
- .
il a m’  entarté <SIART> he hit
1§ v J
Source sentence (input) Decoder RNNis a Language Model that generates
target sentence, conditioned on encoding.
Encoder RNN produces
an encoding of the
source sentence.

Abigail See



Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.
This needs to capture all Target sentence (output)
iInformation about the A
source sentence. f . A

Information bottleneck!

Z —
o 0] @ 0] e O o @) @) o (@ o
E . ~ | . )I . ~ . ~ O ~ O o N O L O O O
g 0] @ @ |10 10 710 ol “10| °“|o O 0]
S o) O o) @ o 0 0 0 o) 0 0
c N

il a m’ entarté <SIART> he hit me with a pie

\ J
Y

Source sentence (input)

Abigail See

NN 19P03a(d



Attention

« Attention provides a solution to the bottleneck problem.

« Core idea: on each step of the decoder, use direct

connection to the encoder to focus on a particular part of
the source sequence

* First we will show via diagram (no equations), then we will
show with equations

Abigail See



Sequence-to-sequence with attention

dot product

Encoder Attention

@
Q
(0]
Q
m’ entarté <START>

(N J
Y

Source sentence (input)

Y — 0000

Abigail See

H_J

NN 19P03ad



Sequence-to-sequence with attention

dot product

S

= @

o

<

@ ° el (o] (o]

B S ol .Jo| Jo| .[eo

2 e @ e ®

L (0] (0] (0] 0]
il a m’ entarté <START>
4 J

Y

Source sentence (input)
Abigail See

H_J

NN 19P03ad



Sequence-to-sequence with attention

dot product

(e

S8 ‘

g 3

I

o) ° ° o] (o]

B S ol .Jo| Jo| .[eo

S & e[ e ) )

L (0] (0] (0] (0]
il a m’ entarté <START>
L J

Y

Source sentence (input)
Abigail See

H_J

NN 19P03ad



Sequence-to-sequence with attention

dot product

S

E’ @

5 5

<

O o [ (6)

B 5 ol .|o| o

8 04 e| 10 (0]

L e (& e
il a m’ entarté <START>
1\ )

Y

Source sentence (input)
Abigail See

NN 19P03ad



Sequence-to-sequence with attention

Attention
distribution
I_H

Attention
scores

Encoder
RNN
K_H

—> 0000

Abigail See

Onthis decoder timestep, we're

mostly focusing on the first
/ encoder hidden state ("he”)

Take softmax to turn the scores
into a probability distribution

N\

Y — 0000

entarté

J

Source sentence (input)

<START>

NN 19P03ad



Sequence-to-sequence with attention

Attention Use the attention distribution to take a
output weighted sum of the encoder hidden
.5 é states.
k= The attention output mostly contains
< % Information from the hidden statesthat
received high attention.
S %
<
@ 5}
ERRHE
i o
il a m’ entarté <START>
. )
Y

Source sentence (input)
Abigail See

NN 19P03ad



Sequence-to-sequence with attention

Attention he
output

-
e
.e®
-
. 0
-t O
.t
e
o

Attention
distribution
f_H
I

I
I
1
>

Attention
scores

@ ) o ) o) o
B < ol .ol fo| .|o o
S & o[ —le el e >l o
5 e o o T o
il a m’ entarté <START>
L J
Y

Source sentence (input)
Abigail See

Concatenate attention output
with decoder hidden state, then
use to compute yi as before

NN 19P03ad



Attention: in equations

- We have encoder hidden states hq,...,hy € R?
- On timestep t, we have decoder hidden state s; € R"
. We get the attention score e’ for this step:

el =[s'hy,...,s] hy] € RY

«  We take softmax to get the attention distribution ot for this step (this is
a probability distribution and sums to 1)

o' = softmax(e’) € RY

- Weuse o' totake a weighted sum of the encoder hidden states to
get the attention output a;

a; — Z Ckfhz < Rh
=1

- Finally we concatenate the attention output a; with the decoder
hidden state s: and proceed as in the non-attention seg2seq model

las; s;] € R?P
Abigail See



Attention is great

Attention significantly improves NMT performance

* It's very useful to allow decoder to focus on certain parts of the source
Attention solves the bottleneck problem

- Attention allows decoder to look directly at source; bypass bottleneck
Attention helps with vanishing gradient problem

- Provides shortcut to faraway states

Attention provides some interpretability
- By inspecting attention distribution, we can see

what the decoder was focusing on f.z e 5 < &
* We get (soft) alignment for free! a
« This is cool because we never explicitly trained m’

an alignment system entarte

« The network just learned alignment by itself

Abigail See



Attention is a general Deep Learning technique

- We've seen that attention is a great way to improve the
sequence-to-segquence model for Machine Translation.

- However: You can use attention in many architectures (not
just seg2seq) and many tasks (not just MT)

 More general definition of attention:

» Glven a set of vector values, and a vector query,
attention is a technique to compute a weighted sum of
the values, dependent on the query.

* We sometimes say that the query attends to the values.

« For example, in seg2seq + attention model, each decoder
hidden state (query) attends to all encoder hidden states
(values).

Abigail See



Image Captioning

“straw” “hat” END

START “straw” “hat”

CVPR 2015:

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Adapted from Andrej Karpathy



Image Captioning

Recurrent Neural Network

Convolutional Neural Network

Andrej Karpathy



Image Captioning

. conv-128
~ conv-128
maxpool

_ conv-256

~ conv-256
. maxpool

. conv-512

 conv-512

_maxpool

‘f conv-512
_ conv-512

Andrej Karpathy

x0
<START>

<START>

testimage



Image Captioning

test image

~_maxpool

' conv-128

~ conv-128
 maxpool

__conv-256 y0

‘_ conv-256

__maxpool T before:
h =tanh(W,, * x + W, * h)

_ conv-512
. conv-512

~maxpool hO

Wih

. conv-512

_ conv-512

~ maxpool

T now:
h=tanh(W,, *x+ W, *h + W, *im)

 FC-4096 @
T I U 967 <START>

Im

<START>

Andrej Karpathy



' conv-128

conv-128

~ maxpool

__conv-256

conv-256

. maxpool

 FC-4096

 conv-512
~ conv-512.
~ maxpool

Andrej Karpathy

Image Captioning

conv-512

yO

hO

x0

<START>

<START>

straw

sample!

testimage



Image Captioning

testimage

' conv-128

~ conv-128
~ maxpool

_ conv-256 yO v

~ conv-256

— L]

. conv-512
[

~conv-512

‘f conv-512

conv-512 T T
" maxpool

e bbb = X0
. FC-4096 <START> straw

<START>

Andrej Karpathy



Image Captioning

testimage

. conv-128

~ conv-128
~ maxpool

| conv-256 YO y1

. conv-256

= 1

. conv-512

convs12 sample!

hO | hl

. conv-512
| conv-512 T T
~_maxpool

_ FC-4096 o

e <START> straw hat

. FC-4096

<START>

Andrej Karpathy



Image Captioning

- test image

~ conv-64

__conv-64

 maxpool

. conv-128

_ conv-128
maxpool

. conv-256 y0 yl y2
. conv-256

= L1

| conv-512

. conv-512

{ maxgool ho == hl = h2

[ conv-512 '

- maxpool

\—FEA mw‘64 <START> straw hat

<START>

Andrej Karpathy



Image Captioning

_ conv-128
. conv-128

. maxpool

__conv-256
conv-256 ]
~_maxpool

_conv-512
__conv-512
~_maxpool

. conv-512
. conv-512
L maxpool
~ FC-4096
__FC-4096

Adapted from Andrej Karpathy

testimage

Caption generated:
“straw hat”

\ sample

<END> token

=> finish.

yO yl y2
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Issues with recurrent models:
Linear interaction distance

* O(sequence length) steps for distant word pairs to interact means:
* Hard to learn long-distance dependencies (because gradient problems!)

* Linear order of words is “baked in”; not necessarily the right way to think about
sentences...

—'.'C —_— — 00 — —>I

T
—>000 ——H> ——> o000 > —>-

The chef who ...

Info of chef has gone through
O(sequence length) many layers!

Adapted from John Hewitt



Issues with recurrent models:
Lack of parallelizability

* Forward and backward passes have O(sequence length) unparallelizable operations
* GPUs can perform a bunch of independent computations at once!

e But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

* Inhibits training on very large datasets!

”jﬂ . ...aiﬂE

hy h;

Numbers indicate min # of steps before a state can be computed

John Hewitt



If not recurrence, then what?
How about attention?

* Attention treats each word’s representation as a query to access and
incorporate information from a set of values.
* We saw attention from the decoder to the encoder; today we’ll think about
attention within a single sentence.
* |f attention gives us access to any state... maybe we can just use
attention and don’t need the RNN?
* Number of unparallelizable operations not tied to sequence length.
* All words interact at every layer!

to all words in

attention previous layer;

most arrows here

embedding . . . . . . . . are omitted

All words attend
attention .

h; h,

Adapted from John Hewitt



Self-Attention

* Attention operates on queries, keys, and values.

. . d The number of queries

* We have some queries g4, ¢, ..., qr- Each queryis g, € R can differ from the

« We have some keys k1, ko, ..., k7. Each keyisk; € R4 number of keys and
values in practice.

» We have some values vy, vy, ..., vr. Each valueis v; € R4

In self-attention, the queries, keys, and values are drawn from the same source.

* For example, if the output of the previous layer is x4, ..., X7, (one vec per word)
we could let v; = k; = q; = x; (that is, use the same vectors for all of them!)
* The (dot product) self-attention operation is as follows:

expLe;;
e.. =alk. o = p(ey) output; =X ; aij v
ij = 4K i3 j &Y
j' exp(e;;)
Compute key- Compute attention Compute outputs as
query affinities weights from affinities weighted sum of values
(softmax)

John Hewitt



Self-Attention

In the diagram at the right, we
have stacked self-attention
blocks, like we might stack LSTM
layers.

Can self-attention be a drop-in
replacement for recurrence?

No. It has a few issues, which
we’ll go through.

First, self-attention is an
operation on sets. It has no
inherent notion of order.

John Hewitt

—
—

! I

self-attention

ki g1 vi ky q2 v2 k3 q3 v3 kr qr vr
AN % N N
! ! !

self-attention

ki g1 v1 ky q2 v k3 g3 v3 kr qr vr
w1 w» w3 wr
The chef who food

Self-attention doesn’t know the order of its inputs.




Barriers and solutions for Self-Attention as a
building block

John Hewitt

Barriers

Doesn’t have an inherent
notion of order!

No nonlinearities for deep
learning magic! It’s all just
weighted averages

Need to ensure we don’t
“look at the future” when
predicting a sequence

* Like in machine translation
* Or language modeling

Solutions

Add position
representations to the
inputs

Easy fix: apply the same
feedforward network to each
self- attention output.

Mask out the future by
artificially setting attention
weights to 0!



Fixing the first self-attention problem:
Sequence order

e Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

* Consider representing each sequence index as a vector

p; € R4, fori € {1,2,...,T} are position vectors

* Don’t worry about what the p; are made of yet!
* Easy to incorporate this info into our self-attention block: just add the p; to our inputs!

« Letwv; k; q;‘beouroldvalues, keys, and queries.

v, =v; + Di In deep self-attention
g =q;'+ p; n.etworks, we do this at the
ki = k' + p first layer! You could
' l l concatenate them as well,
but people mostly just add...

John Hewitt



Position representation vectors through sinusoids

* Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

(sin(i/100002%1/d) ) SIS LTSS S, -:""sé-f'
COS(i/lOOOOZ*l/d) g _-; ___5‘-/ - —
pl. e : % —
. S
a a
sin(i/lOOOOZ*CZI/d)
; 2%5/d
KCOS(l/lOOOO 2 .)/ Index in the sequence

* Pros:
* Periodicity indicates that maybe “absolute position” isn’t as important
* Maybe can extrapolate to longer sequences as periods restart!

* Cons:
* Not learnable; also the extrapolation doesn’t really work!

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

John Hewitt



Adding nonlinearities in self-attention

* Note that there are no elementwise
nonlinearities in self-attention;
stacking more self-attention layers
just re-averages value vectors

* Easy fix: add a feed-forward network
to post-process each output vector.

m; = MLP (output;)
= W, * ReLU Wy X output; + by ) + b,

FF
!

self-attention

— T
-
— T

'|'|
— il

L b 4
FF
! ! ! !

self-attention

W1 1'% w3 wr

The chef who food

Intuition: the FF network processes the result of attention

John Hewitt




Masking the future in self-attention

* To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

* At every timestep, we could
change the set of keys and
queries to include only past
words. (Inefficient!)

* To enable parallelization, we
mask out attention to future
words by setting attention
scores to —oo,

eij =

John Hewitt

For encoding
these words

q1'Tkj»j<i

—00,j =1

[START]

—

The

chef

who

We can look at these
(not greyed out) words

\

&
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Necessities for a self-attention building block:

John Hewitt

Self-attention:
* The basis of the method.
Position representations:

 Specify the sequence order, since self-attention is an unordered function of its
inputs.

Nonlinearities:
* At the output of the self-attention block
* Frequently implemented as a simple feed-forward network.
Masking:
* In order to parallelize operations while not looking at the future.
* Keeps information about the future from “leaking” to the past.

That’s it! But this is not the Transformer model we’ve been hearing about.



Transformer Overview

Attention is all you need. 2017. Aswani,
Shazeer, Parmar, Uszkoreit, Jones,
Gomez, Kaiser, Polosukhin

« Non-recurrent sequence-to-
sequence encoder-decoder model

 Task: machine translation
with parallel corpus

 Predict each translated word

« Final cost/error function is
standard cross-entropy error
on top of a softmax classifier

This and related figures from paper 1

Christopher Manning
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https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder-Decoder

Next, let’s look at the Transformer Encoder and Decoder Blocks

What's left in a Transformer Encoder Block that we haven’t covered?
1. Key-query-value attention: How do we get the k, g, v vectors from a single word embedding?
2. Multi-headed attention: Attend to multiple places in a single layer!
3. Tricks to help with training!
Residual connections
Layer normalization

1

2

3. Scaling the dot product

4. These tricks don’t improve what the model is able to do; they help improve the training process

John Hewitt


https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder:
Key-Query-Value Attention

* We saw that self-attention is when keys, queries, and values come from the same
source. The Transformer does this in a particular way:

* Let x1, ..., x7 be input vectors to the Transformer encoder; x; € R4

* Then keys, queries, values are:
« k; = Kx;, where K € R%%4 js the key matrix.
* q; = Qx;, where Q € R%%? s the query matrix.

« v;= Vx;, where V € R%%4 js the value matrix.

* These matrices allow different aspects of the x vectors to be used/emphasized in
each of the three roles.

John Hewitt



The Transformer Encoder:
Key-Query-Value Attention

* Let’s look at how key-query-value attention is computed, in matrices.
* Let X = [x4; ...; xr | € RT*4 be the concatenation of input vectors.
* First, note that XK € RT*4, XQ € RT*4, XV € RTxq,
* The output is defined as output = softmax(XQ(XK)") x XV.

First, take the query-key dot All pairs of
products in one matrix X0 = XQKTXT attention scores!
multiplication: XQ (XK T yT

(XK) KT X e RTXT

Next, softmax, and

compute the weighted softmax| xokTxT | xy =
average with another

. T . Txd
matrix multiplication. output € R

John Hewitt



The Transformer Encoder:
Multi-headed attention

John Hewitt

What if we want to look in multiple places in the sentence at once?

* For word i, self-attention “looks” where xTQTKxj is high, but maybe we want
to focus on different j for different reasons?

We’'ll define multiple attention “heads” through multiple Q,K,V matrices
Let, Qp, Kp, Vp € ]Rdx%, where h is the number of attention heads, and P ranges
from 1 to h.
Each attention head performs attention independently:
« outputp = softmax(XQpK'XT) * XVp, where outputp € R4/%
Then the outputs of all the heads are combined!
- output = Y[outputy; ...; output,], where Y € R4xd

Each head gets to “look” at different things, and construct value vectors
differently.



The Transformer Encoder:
Multi-headed attention

John Hewitt

What if we want to look in multiple places in the sentence at once?

* For word i, self-attention “looks” where xTQTKxj is high, but maybe we want
to focus on different j for different reasons?

We’'ll define multiple attention “heads” through multiple Q,K,V matrices

d
Let, Qp, Kp,Vp € ]Rdxﬁ, where h is the number of attention heads, and P ranges
from 1 to h.

Single-head attention Multi-head attention
(just the query matrix) (just two heads here) Same amount of
computation as
single-head self-
attention!
X XQ X XQ1 XQ>
Q = Q102 =
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Attention visualization: Implicit anaphoraresolution

application
should

The
Law
will
never
be
perfect
but

its

be

just
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is

what
we

are
missing
in

my
opinion
<EQOS>
<pad>

The

be
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what
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my
opinion

should
<EOS>
<pad>

application
missing

In 5t layer. Isolated attentions from just the word ‘its’ forattention heads 5 and 6.

Note that the attentions are very sharp for this word.
Christopher Manning



Parallel attention heads

Ashish Vaswani



Quadratic computation as function of seq. length

One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

« However, its total number of operations grows as O (T?d), where T is the
sequence length, and d is the dimensionality.

Need to compute all
XQ = XQKTXT pairs of interactions!

KT XT e RTXT 0(T?d)

* Think of d as around 1, 000.
* So, for a single (shortish) sentence, T < 30; T2 < 900.
* In practice, we set a bound like T = 512.

* But what if we'd like T > 10,0007? For example, to work on long documents?

John Hewitt



Recent work on improving on quadratic self-
attention cost

* Considerable recent work has gone into the question, Can we build models like
Transformers without paying the O (T?) all-pairs self-attention cost?

* For example, BigBird [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, like local
windows, looking at everything, and random interactions.

] . ]
B ] ] ]
I [] ]
M
O O
] [ O]

1 I [

(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

John Hewitt


https://arxiv.org/pdf/2007.14062.pdf

Pretraining models

In modern NLP:

e All (or almost all) parameters in NLP y
networks are initialized via pretraining. g
* Pretraining methods hide parts of the input IHIHIHIHIHI
from the model, and train the model to | Pretrained jointly
reconstruct those parts. M M D -
* This has been exceptionally effective at ! _
building strong: ... the movie was ...

* representations of language

* parameter initializations for strong NLP

[This model has learned how to represent
models.

entire sentences through pretraining]

Adapted from John Hewitt



Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

Adapted from John Hewitt

Encoders

Decoders

Encoder-
Decoders

Gets bidirectional context — can condition on future!
Wait, how do we pretrain them?

Language models! What we’ve seen so far.
Nice to generate from; can’t condition on future words

Good parts of decoders and encoders?
What’s the best way to pretrain them?



Pretraining through language modeling
[Dai and Le, 2015]

Recall the language modeling task:

e Model pg(W|w1.t—1), the probability
distribution over words given their past goes to make tasty tea END
contexts.

* There’s lots of data for this! (In English.)

Pretraining through language modeling:

* Train a neural network to perform language I I
modeling on a large amount of text. roh  goes to make tasty tea

* Save the network parameters.

John Hewitt


https://arxiv.org/pdf/1511.01432.pdf

The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

Step 1: Pretrain (on language modeling) Step 2: Finetune (on your task)
Lots of text; learn general things! Not many labels; adapt to the task!
goes to make tasty tea END @/@

Iroh  goes to make tasty tea ... the movie was ...

John Hewitt



Capturing meaning via context:
What kinds of things does pretraining learn?

There’s increasing evidence that pretrained models learn a wide variety of things about
the statistical properties of language:

Stanford University is located in , California. [Trivia]

| put___fork down on the table. [syntax]

The woman walked across the street, checking for traffic over____shoulder. [coreference]
| went to the ocean to see the fish, turtles, seals, and . [lexical semantics/topic]
Overall, the value | got from the two hours watching it was the sum total of the popcorn
and the drink. The movie was__. [sentiment]

Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his
destiny. Zuko left the . [some reasoning — this is harder]

| was thinking about the sequence thatgoes 1, 1, 2, 3,5, 8, 13,21, [some basic

arithmetic; they don’t learn the Fibonnaci sequence]
Models also learn — and can exacerbate racism, sexism, all manner of bad biases.

Adapted from John Hewitt



Pretraining encoders:
What pretraining objective to use?

So far, we've looked at language model pretraining. But encoders get bidirectional
context, so we can’t do language modeling!

Idea: replace some fraction of words in the
input with a special [MASK] token; predict
these words. I

hi, ..., hy = Encoder(wy, ..., wy)
yi~Aw;+ b

Only add loss terms from words that are
“masked out.” If x” is the masked version of x,
we’re learning pg(x|x”). Called Masked LM.

I  [M] to the [M]

John Hewitt


https://arxiv.org/pdf/1810.04805.pdf

BERT: Bidirectional Encoder Representations from
Tranformers

Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a
pretrained Transformer, a model they labeled BERT.

Some more details about Masked LM for BERT:

e Predict a random 15% of (sub)word tokens. [Predict these!] went to store
* Replace input word with [MASK] 80% of the time ! ! !
* Replace input word with a random token 10% of Transformer
the time Encoder

* Leave input word unchanged 10% of the time (but

still predict it!) | | | | |

*  Why? Doesn’t let the model get complacent and not I' pizza to the [M]

build strong representations of non-masked words. I

(No masks are seen at fine-tuning time!)
[Replaced] [Notreplaced] [Masked]

* Too little masking: Too expensive to train
¢ Too much masking: Not enough context [ ]

John Hewitt / Christopher Manning


https://arxiv.org/pdf/1810.04805.pdf

BERT: Bidirectional Encoder Representations from
Tranformers

« Additional task: Next sentence prediction
« To learn relationships between sentences, predict whether

Sentence B is actual sentence that proceeds Sentence A, or a
random sentence

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

Adapted from Christopher Manning



BERT: Bidirectional Encoder Representations from
Tranformers

* The pretraining input to BERT was two separate
contiguous chunks of text:

Input [CLS] | my dog is (cute | [SEP] he | likes || play | ##ing | [SEP]

Token

Embeddings E[CLS] Emy Edog t s Ecute E[SEP] Ehe EIikes Eplay E“ing E[SEP]
= = L ] L L ] e == = g = L ]

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
L ] L 5= = = £ L ] %= £ L L ]

Position

Embeddings EO El EZ E3 E4 ES E6 E7 E8 E9 E10

 |n addition to masked input reconstruction, BERT was trained to predict
whether one chunk follows the other or is randomly sampled.
 Later work has argued this “next sentence prediction” is not necessary.

Adapted from John Hewitt


https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/abs/1907.11692

BERT: Bidirectional Encoder Representations from
Tranformers

Details about BERT

 Two models were released:
* BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.
* BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.
* Trained on:
* BooksCorpus (800 million words)
* English Wikipedia (2,500 million words)
* Pretraining is expensive and impractical on a single GPU.
* BERT was pretrained with 64 TPU chips for a total of 4 days.
* (TPUs are special tensor operation acceleration hardware)
e Finetuning is practical and common on a single GPU
* “Pretrain once, finetune many times.”

John Hewitt


https://arxiv.org/pdf/1810.04805.pdf

Generative Pretrained Transformer (GPT)

[

]

2018’s GPT was a big success in pretraining a decoder!

Transformer decoder with 12 layers.
768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.
Byte-pair encoding with 40,000 merges
Trained on BooksCorpus: over 7000 unique books.
* Contains long spans of contiguous text, for learning long-distance dependencies.

The acronym “GPT” never showed up in the original paper; it could stand for
“Generative PreTraining” or “Generative Pretrained Transformer”

John Hewitt


https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Generative Pretrained Transformer (GPT)

[ ]

How do we format inputs to our decoder for finetuning tasks?
Natural Language Inference: Label pairs of sentences as entailing/contradictory/neutral
Premise: The man is in the doorway i

} entailment

Hypothesis: The person is near the door

Radford et al., 2018 evaluate on natural language inference.
Here’s roughly how the input was formatted, as a sequence of tokens for the decoder.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

The linear classifier is applied to the representation of the [EXTRACT] token.

John Hewitt


https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Increasingly convincing generations (GPT2)
[Radford et al., 2018]

We mentioned how pretrained decoders can be used in their capacities as language models.
GPT-2, a larger version of GPT trained on more data, was shown to produce relatively
convincing samples of natural language.

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned. silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

John Hewitt


https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Aside: Word structure and subword models

Let’s take a look at the assumptions we’ve made about a language’s vocabulary.

We assume a fixed vocab of tens of thousands of words, built from the training set.

All novel words seen at test time are mapped to a single UNK.

word vocab mapping embedding

Common hat pizza (index)

words learn tasty (index)

laern UNK (index)
Transformerify UNK (index)

misspellings

novel items

Variations { taaaaasty UNK (index)

John Hewitt



Aside: Word structure and subword models

Finite vocabulary assumptions make even less sense in many languages.

* Many languages exhibit complex morphology, or word structure.

* The effect is more word types, each occurring fewer times.

Example: Swahili verbs can have
hundreds of conjugations, each
encoding a wide variety of
information. (Tense, mood,
definiteness, negation, information
about the object, ++)

Here’s a small fraction of the
conjugations for ambia — to tell.

John Hewitt

_Non-finite forms )
Form Positive Negative
Infinitive kuambia . kutoambia
= __Simple finite forms
Positive form Sng_lar Plural |
Imperative ambia ) ambieni
ual huambia
Complex finite forms
i Persons Fersons | Classes
Polarity 1st 2nd 3rd  M-w M-mi Ma Ki-vi N ] Ku Pa Mu
Sg. Pl Sg. PI. $g./1  PL/2 3 4 5 6 7t 8 9 10 1/14 15/17 16 18
—— — —— v Past [less A]
Positive ;‘;"';‘,“"';’; &;‘;‘ﬁ;‘;‘:&?ﬁ \_y;‘;a""'ﬁ‘)?a m@';ﬁirgga aliambia  waliambia  uliambia iliambia liliambia  yaliambia  kiliambia  viliambia iliambia ziliambia uliambia  kuliambia = paliambia = muliambia
Negative | sikuambia ia hukuambia hakuambia = haikuambia _ hali i z il ia havil haikuambia hazi i g x b
‘ . Present [less A]
Positive "‘"aa;";’?f tunaambia = unaambia ~mnaambia anaambia wanaambia unaambia = inaambia = linaambia = yanaambia kinaambia = vinaambia = inaambia = zinaambia unaambia = kunaambia panaambia 'munaambia
Negative  siambii  hatuambii  huambii | hamambii  haambii hawaambii hauambii  haiambii haliambii hayaambii hakiambii haviambii  haiambii | haziambii hauambii hakuambii hapaambii hamuambii
uture [less A]
Positive  nitaambia | tutaambia utaambia mtaambia = ataambia  wataambia utaambia itaambia ltasmbia yataambia  kitaambia vitasmbia = itaambia | zitaambia utaambia | kutaambia pataambia mutaambia
Negative  sitaambia ja  hutaambia ia hataambia i ia | haitaambia | halitaambia ia hakitaambi ia haitaambia i i i i 1
Subjunctive [less A]
Positive  niambie  tuambie  uambie  mambie  aambie  waambie  uambie iambie liambie  yaambie  kiambie  viambie  iambie  ziambie  uambie | kuambie  paambie  muambie
Negative | nisiambie tusiambie usiambie msiambie asiambie | wasiambie usiambie _isiambie | lisiambie  yasiambie kisiambie visiambie isiambie  zisiambie usiambie  kusiambie pasiambie  musiambie
Present Conditional [less A]
Positive _ ningeambia ia ungeambia ia angeambia ungeambia _ ingeambia _ lingeambia  yangeambia | kingeambia vingeambia ingeambia | zingeambia ungeambia kungeambia pangeambia mungeambia
Negatvel| L L - i (] i 1 2 : i i ia ‘ a i a o8 i i a . 4 a a la
sgeambia| s a bia a g ia a a a a ia bia bia
X Past Conditional - : [less A]
Positive  ningaliambi fambi i lambi 2 flambia  ingaliambia  fingali ol i ia vingali ingaliambia zi flambi el o a1
o M fa a a a bia a_[oingabambk a bia a a  [oingalambia ETES a bla bia bia
Negatval "0 hawangalia i & g i ingali i 4 ingali i i i
bia a bia a mbia ia ia bia bia bia bia ia bia bia mbia
Conditional Contrary to Fact o [less A]
Positive ! fambia ingeliambia i el i i i ingeliambia zi lambi o o o
Gnomic [less A]
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[Wiktionary]


https://en.wiktionary.org/wiki/ambia

Aside: The byte-pair encoding algorithm

Subword modeling in NLP encompasses a wide range of methods for reasoning about
structure below the word level. (Parts of words, characters, bytes.)

* The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).
* At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword.
3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained
models.

John Hewitt


https://www.aclweb.org/anthology/P16-1162.pdf
https://arxiv.org/pdf/1609.08144.pdf

Aside: Word structure and subword models

Common words end up being a part of the subword vocabulary, while rarer words are split
into (sometimes intuitive, sometimes not) components.

In the worst case, words are split into as many subwords as they have characters.

word vocab mapping embedding
c hat hat
ommon I
words { learn learn
I
Variations { taaaaasty taa## aaa#t# sty
misspellings laern latt# erntt
novel items Transformerify Transformer# ify —

John Hewitt



GPT-3, in-context learning, very large models

So far, we’ve interacted with pretrained models in two ways:
« Sample from the distributions they define (maybe providing a prompt)
* Fine-tune them on a task we care about, and take their predictions.

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

GPT-3 is the canonical example of this. The largest T5 model had 11 billion parameters.
GPT-3 has 175 billion parameters.

John Hewitt



GPT-3, in-context learning, very large models

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

The in-context examples seem to specify the task to be performed, and the conditional
distribution mocks performing the task to a certain extent.

Input (prefix within a single Transformer decoder context):
“ thanks -> merci
hello -> bonjour
mint -> menthe
otter -> "
Output (conditional generations):

loutre...”

John Hewitt



Transformers in vision

Transformer Encoder
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Dosovitskiy, ICLR 2021, https://github.com/google-research/vision transformer https://www.youtube.com/watch?v=TrdevFK_am4



https://www.youtube.com/watch?v=TrdevFK_am4
https://github.com/google-research/vision_transformer

Cross-modal transformers
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Figure 1: Overview of the proposed UNITER model (best viewed in color), consisting of an Image Embedder,
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Image-Text Matching (ITM)

a Text Embedder and a multi-layer self-attention Transformer, learned through three pre-training tasks.

Chen et al., “UNITER: Learning UNiversal Image-TExt Representations”, ECCV 2020
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Cross-modal transformers
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Figure 1: Our VILBERT model consists of two parallel streams for visual (green) and linguistic

(purple) processing that interact through novel co-attentional transformer layers. This structure allows

for variable depths for each modality and enables sparse interaction through co-attention. Dashed

boxes with multiplier subscripts denote repeated blocks of layers.
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Lu et al., “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks”, NeurIPS 2019



Cross-modal transformers
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Figure 1: The LXMERT model for learning vision-and-language cross-modality representations. ‘Self” and
‘Cross’ are abbreviations for self-attention sub-layers and cross-attention sub-layers, respectively. ‘FF’ denotes
a feed-forward sub-layer.

Tan and Bansal, “LXMERT: Learning Cross-Modality Encoder Representationsfrom Transformers”, EMNLP 2019



Self-Supervised Learning

* Learn representations from context in raw data

* Language — predict nearby words [already covered]
— Transformers, BERT

e Vision — predict pixels from other pixels
— Predict nearby patches in an image
— Predict order of frames in a video
— Predict what you will see as you move
— Predict physics

Jitendra Malik: "Supervision is the opium of the Al researcher”
Alyosha Efros: "The Al revolution will not be supervised"
Yann LeCun: “Self-supervised learning is the cake, supervised learning is the icing on the
cake, reinforcement learning is the cherry on the cake"



Unsupervised Visual Representation
Learning by Context Prediction

Carl Doersch, Alexei Efros and Abhinav Gupta
ICCV 2015



ImageNet + Deep Learning

» Beagle

- Image Retrieval

- Detection (RCNN)

- Segmentation (FCN)
- Depth Estimation

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



ImageNet + Deep Learning
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Context as Supervision

[Collobert & Weston 2008; Mikolov et al. 2013]

store-bought gimmicks and appliances, the toasters and
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Semantics from a non-semantic task

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Relative Position Task

{aad bk [] & 8 possible locations
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
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Patch Embedding

CNN Note: connects across instances!

Doersch et aI.’Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



What is learned?

ImageNet AlexNet

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Pre-Training for R-CNN

Y NG
1. Input 2. Extract region
Image proposals (~2k)

=] warped region

P aeroplane? no.
, .

person? yes.

tvmonitor? no.

3. Compute
CNN features

!

4. Classify
regions

Pre-train on relative-position task, w/o labels

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

[Girshick et al. 2014]



VOC 2007 Performance

(pretraining for R-CNN)

54.2
46.3

40.7

% Average Precision

ImageNet Labels Rel. Position No Pretraining

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Which will be better?

e Option 1: pretrain (unsup) on dataset B
e Option 2: pretrain (sup) on dataset A
* Test on dataset B



Shuffle and Learn: Unsupervised Learning
using Temporal Order Verification

Ishan Misra, C. Lawrence Zitnick, and Martial Hebert
ECCV 2016



(a)

Positive Tuples (b) Negative Tuples
Temporally Correct order ' :

Original video

Temporally Incorrect order

Fig.1: (a) A video imposes a natural temporal structure for visual data. In many
cases, one can easily verify whether frames are in the correct temporal order (shuffied
or not). Such a simple sequential verification task captures important spatiotemporal
signals in videos. We use this task for unsupervised pre-training of a Convolutional
Neural Network (CNN). (b) Some examples of the automatically extracted positive
and negative tuples used to formulate a classification task for a CNN.

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



(a) Data Sampling (b) Triplet Siamese network for sequence

verification
Input Tuple Pt AlexNet architecture

D

Frame Motion

awry,

Positive Tuples

fe8

fi D

concatenation
classification

fo fe fa
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sampling |
to high |

motion |

windows \
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Fig. 2: (a) We sample tuples of frames from high motion windows in a video. We form
positive and negative tuples based on whether the three input frames are in the correct
temporal order. (b) Our triplet Siamese network architecture has three parallel network
stacks with shared weights upto the £c7 layer. Each stack takes a frame as input, and
produces a representation at the f£c7 layer. The concatenated fc7 representations are
used to predict whether the input tuple is in the correct temporal order.

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



Table 2: Mean classification accuracies over the 3 splits of UCF101 and HMDB51
datasets. We compare different initializations and finetune them for action recognition.

Dataset Initialization Mean Accuracy
UCF101 Random 38.6
(Ours) Tuple verification 50.2
HMDB51 Random 13.3
UCF Supervised 15.2
(Ours) Tuple verification 18.1

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



Learning image representations tied to
ego-motion

Dinesh Jayaraman and Kristen Grauman
ICCV 2015



The kitten carousel experiment
[Held & Hein, 1963]
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Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Problem with today’s visual learning

Status quo: Learn from
“disembodied” bag of
labeled snapshots.

Our goal: Learn in the
context of acting and moving
In the world.

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Our idea: Ego-motion < vision

Goal: Teach computer vision system the connection:
“*how | move” & “how my visual surroundings change”

Ego-motion motor signals Unlabeled video

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion < vision: view prediction

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion < vision for recognition

Learning this connection requires:

—_—

» Depth, 3D geometry Also key to
» Semantics — recognition!
» Context

Can be learned without manual labels!

Our approach: unsupervised feature learning
using egocentric video + motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of
transformations

z(gx) = z(X)
\ _J
/Equivariant features : predictably responsive to N

some classes of transformations, through simple
mappings (e.d., linear)

“‘equivariance map”
z(gx) =~ M,z(X)

e %

Invariance discards information;
equivariance organizes It.

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach idea: Ego-motion equivariance

Training data Equivariant embedding

Unlabeled video + organized by ego-motions
motor signals

'

@ Pairs of frames related by
2 R } similar ego-motion should
= time — be related by same

feature transformation

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach overview

Our approach: unsupervised feature learning using
egocentric video + motor signals

1. Extract training frame pairs from video
2. Learn ego-motion-equivariant image features

3. Train on target recognition task in parallel

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Training frame pair mining

Discovery of ego-motion clusters

yaw change

forward distance

o

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion equivariant feature learning

Given: Desired: for all motions g and all images x,
Zo(gX) =~ M,Zg(X)

Unsupervised training

»
- Al
: |
r % o
g ’
By
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| Myzg(X;) — Zo(gX;) Il2

nuu:"u:unQ

ax loss Lq-(Xx, V%)

class yy, B\,M andéW' ii)ntly trained

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Results: Recognition

Learn from unlabeled car video (KITTI)

s % Bl -

’, Geiger et al, IJRR '13

Exploit features for static scene classification
(SUN, 397 classes)

Xiao et al, CVPR 10

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Results: Recognition

Do ego-motion equivariant features improve recognition?

DU o B

1.5 397 classes ! 121
£ 1.02 ;

6 labeled training
examples per class

0.70 i

recognition accuracy (%)

0.5}
0.25 . . :
: Invariance :
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Up to 30% accuracy increase
over state of the art!

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



The Curious Robot: Learning Visual
Representations via Physical Interactions

Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han,
Yong-Lae Park, and Abhinav Gupta

ECCV 2016



Embodied representations

Conv Layer1 Filters Conv3 Neuron Activations Convjs Neuron Activations

Learned Visual Representation

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Grasping

Successful grasps Unsuccessful grasps

Fig. 2. Examples of successful (left) and unsuccesful grasps (right). We use a patch
based representation: given an input patch we predict 18-dim vector which represents
whether the center location of the patch is graspable at 0°, 10°, ...170°.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Pushing

Objects and push action pairs

a * o

1
-

> )\
u\ \bu ‘
Initial state Final state Initial state Final state Initial state Final state

Fig. 4. Examples of initial state and final state images taken for the push action. The
arrows demonstrate the direction and magnitude of the push action.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Poking

Objects and poke tactile response pairs

-

Fig. 6. Examples of the data collected by the poking action. On the left we show the
object poked, and on the right we show force profiles as observed by the tactile sensor.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Representations from interactions
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Fig. 8. Our shared convolutional architecture for four different tasks.
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Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Fig. 10. The first column corresponds to query image and rest show the retrieval. Note
how the network learns that cups and bowls are similar (row 5).

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Table 1. Classification accuracy on ImageNet Household, UW RGBD and Caltech-256

Household UW RGBD Caltech-256

Root network with random init. 0.250 0.468 0.242
Root network trained on robot tasks (ours) 0.354 0.693 0.317
AlexNet trained on ImageNet 0.625 0.820 0.656

Table 2. Image Retrieval with Recall@k metric

Instance level Category level
k=1 k=5 k=10 k=20| k=1 k=5 k=10 k=20
Random Network 0.062 0.219 0.331 0.475 | 0.150 0.466 0.652 0.800
Our Network 0.720 0.831 0.875 0.909 | 0.833 0.918 0.946 0.966
AlexNet 0.686 0.857 0.903 0.941 | 0.854 0.953 0.969 0.982

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



SimCLR - A Simple Framework for Contrastive
Learning of Visual Representations

Chen et al., “SImCLR - A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



SIMCLR Framework
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Chen et al., “SImCLR - A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



J

encoder —> decoder

input

(

B Il i

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) 1s masked out. The
encoder 1s applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

He et al., “Masked Autoencoders Are Scalable Vision Learners”, CVPR 2022
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