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Course Info

• Course website: 
http://people.cs.pitt.edu/~kovashka/cs3710_fa23       

• Instructor: Adriana Kovashka 
(kovashka@cs.pitt.edu)

• Office: Sennott Square 5325

• Class: Mon/Wed, 9:30am-10:45am

• Office hours: by appointment 

• Zoom (for some appointments): 
https://pitt.zoom.us/s/4168010698 

http://people.cs.pitt.edu/~kovashka/cs3710_fa23
mailto:kovashka@cs.pitt.edu
https://pitt.zoom.us/s/4168010698


About the Instructor

Born 1985 in 
Sofia, Bulgaria

Got BA in 2008 at
Pomona College, CA
(Computer Science & 
Media Studies)

Got PhD in 2014
at University of 
Texas at Austin
(Computer Vision)



Course Goals

• To learn about state-of-the-art approaches to 
computer vision tasks 

• To think critically about vision approaches, see 
strengths, weaknesses, and connections 
between works

• To conduct research with contributions 
including novel methods, method comparison 
and method/data analysis  



Note on Course Climate

• Some may be more familiar with the subject 
of the seminar, some less, and that’s ok!

• Please respect each other and listen to each 
other carefully 

• You will need to collaborate on the course 
project–work hard, be fair and honest, and try 
to talk through problems

• Talk to instructor openly



Plan for First Three Classes

• Course logistics

• Students introduce themselves

• What is computer vision?

• Preview readings 

• Paper presentation signups (by Sept. 1)

• Some basics

• Preliminary project pitches exercise 



Policies and Schedule 

https://people.cs.pitt.edu/~kovashka/cs3710_fa23/

Highlights:

• Paper presentations 

• Project logistics 

• Readings and schedule 

https://people.cs.pitt.edu/~kovashka/cs3710_fa23/


Questions?



Blitz introductions (30 sec)

• What is your name?

• What one thing outside of school are you 
passionate about?

• What is your current or planned research about?

• What do you hope to get out of this class? 
(Optional)

• When you speak, please remind me your name



What is Computer Vision?



What is computer vision?

           Done?

Kristen Grauman (adapted)

"We see with our brains, not with our eyes“ (Oliver Sacks and others)



• Automatic understanding of images and video

– Algorithms and representations to allow a machine to 

recognize objects, people, scenes, and activities

– Algorithms to mine, search, and interact with visual data 

– Computing properties and navigating within the 3D world 

using visual data 

– Generating realistic synthetic visual data

Adapted from Kristen Grauman

What is computer vision?
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Kristen Grauman



Visual search, organization

Image or video 

archives

?

Query

1

2

3

Relevant 

content

Kristen Grauman



Measurement

Real-time stereo Structure from motion

NASA Mars Rover

Pollefeys et al.

Multi-view stereo for

community photo collections

Goesele et al.

Slide credit: L. Lazebnik



Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018

Generation



Redmon et al., CVPR 2016

Recognition in novel modalities



Chen et al., CVPR 2017

Learning from weak supervision



Bagautdinov et al., CVPR 2017

Understanding activities and intents



Vicol et al., CVPR 2018

Understanding stories in film



Das et al., CVPR 2018

Reasoning and acting: 

Embodied question answering



Related disciplines

Cognitive 

science

Algorithms

Image 

processing

Artificial 

intelligence

Graphics
Machine 

learning
Computer 

vision

Kristen Grauman



Why vision?
• Images and video are everywhere!

Personal photo albums

Surveillance and security

Movies, news, sports

Medical and scientific images

Adapted from Lana Lazebnik



• As image sources multiply, so do applications

– Relieve humans of boring, easy tasks

– Perception for robotics / autonomous agents

– Organize and give access to visual content

– Description of content for the visually impaired

– Human-computer interaction

– Fun applications (e.g. art styles to my photos)

– …

– What else?

Adapted from Kristen Grauman

Why vision?



YouTube link

Seeing AI

https://www.youtube.com/watch?v=R2mC-NUAmMk
https://www.youtube.com/watch?v=R2mC-NUAmMk


Why are these tasks challenging?



Recognition: What objects do you see?

carriage
horse

person

person

truck

street

building

table

balcony

car



Detection: Where are the cars?



Activity: What is this person doing?



Scene: Is this an indoor scene?



Instance: Which city? Which building?



Visual question answering: 
Why is there a carriage in the street?



Why is vision difficult?

• Ill-posed problem: real world much more 

complex than what we can measure in 

images

– 3D → 2D

– Motion → static

• Impossible to literally “invert” image formation 

process with limited information

– Need information outside of this particular image 

to generalize what image portrays (e.g. to resolve 

occlusion)  

Adapted from Kristen Grauman



Challenges: many nuisance parameters

Illumination Object pose Clutter

ViewpointIntra-class 

appearance
Occlusions

Kristen Grauman



Challenges: intra-class variation

slide credit: Fei-Fei, Fergus & Torralba 

CMOA Pittsburgh



Challenges: importance of context

slide credit: Fei-Fei, Fergus & Torralba 



• Thousands to millions of pixels in an image

• 3,000-30,000 human recognizable object categories

• 30+ degrees of freedom in the pose of articulated 

objects (humans)

• Billions of images indexed by Google Image Search

• 1.424 billion smart camera phones sold in 2015

• About half of the cerebral cortex in primates is 

devoted to processing visual information [Felleman 

and van Essen 1991]

Kristen Grauman

Challenges: Complexity



Challenges: Limited supervision

MoreLess

Kristen Grauman



Problem with categorization 
(Borges' Animals)

“These ambiguities, redundancies and deficiencies recall 
those that Dr. Franz Kuhn attributes to a certain Chinese 
dictionary entitled The Celestial Emporium of Benevolent 
Knowledge. In its remote pages it is written that animals 
can be divided into (a) those belonging to the Emperor, 
(b) those that are embalmed, (c) those that are tame, (d) 
pigs, (e) sirens, (f) imaginary animals, (g) wild dogs, (h) 
those included in this classification, (i) those that are 
crazy-acting, (j) those that are uncountable, (k) those 
painted with the finest brush made of camel hair, (l) 
miscellaneous, (m) those which have just broken a vase, 
and (n) those which, from a distance, look like flies.“

Jorge Luis Borges, The Analytical Language of John Wilkins, https://www.entish.org/essays/Wilkins.html 

https://www.entish.org/essays/Wilkins.html


Preview of Readings



Radford et al. "Learning Transferable Visual Models From Natural Language Supervision." ICML 2021. 



Gu et al. "Open-vocabulary Object Detection via Vision and Language Knowledge Distillation." ICLR 2021. 



Gupta and Kembhavi. "Visual Programming: Compositional visual reasoning without training." CVPR 2023. 



Zhou et al. "Learning to Prompt for Vision-Language Models." IJCV 2022. 



Pratt et al. "What does a platypus look like? Generating customized prompts for zero-shot image classification." ICCV 2023. 



Hoffman et al. "Cycada: Cycle-consistent adversarial domain adaptation." ICML 2018. 



Kalluri et al. "GeoNet: Benchmarking Unsupervised Adaptation across Geographies." CVPR 2023. 



Tan et al. "Language-Guided Audio-Visual Source Separation via Trimodal Consistency." CVPR 2023.



Grauman et al. "Ego4D: Around the World in 3,000 Hours of Egocentric Video." CVPR 2022. 



Ye et al. "Interpreting the Rhetoric of Visual Advertisements." TPAMI 2019. 



Gafni et al. "Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors.” ECCV 2022.



Ahn et al. "Do As I Can, Not As I Say: Grounding Language in Robotic Affordances." CoRL 2023.



Paper Presentation Sign-ups

https://docs.google.com/spreadsheets/d/14g6_finym215L
qDZ2qnAE57bU5j5M9uHz3Tmmgq484U/edit?usp=sharing 

https://docs.google.com/spreadsheets/d/14g6_finym215LqDZ2qnAE57bU5j5M9uHz3Tmmgq484U/edit?usp=sharing
https://docs.google.com/spreadsheets/d/14g6_finym215LqDZ2qnAE57bU5j5M9uHz3Tmmgq484U/edit?usp=sharing


Some Basics
(breezing through to establish common 

ground…)

 Convolutional networks

Recurrent networks 
Transformers

Self-supervised learning



Image formation

Slide credit: Derek Hoiem

(film)



Slide credit: Derek Hoiem, Steve Seitz

Digital images

• Sample the 2D space on a regular grid

• Quantize each sample (round to nearest integer)



• Sample the 2D space on a regular grid

• Quantize each sample (round to nearest integer)

• What does quantizing signal look like? 

• Image thus represented as a matrix of integer values.

Adapted from S. Seitz

2D

1D

5.9                  4.6

Digital images

6                    5



Slide credit: Kristen Grauman

Digital color images



R G B

Color images, 
RGB color space:

Split image into 
three channels

Digital color images

Adapted from Kristen Grauman



Images as Matrices

• Vectors and matrices are just collections of 
ordered numbers that represent something: 
movements in space, word counts, movie 
ratings, pixel brightnesses, etc. 

Fei-Fei Li 3



Vectors have two main uses

• Vectors can represent an 
offset in 2D or 3D space

• Points are just vectors 
from the origin

Fei-Fei Li 61

• Data can also be treated 
as a vector

• Such vectors don’t have a 
geometric interpretation, 
but calculations like 
“distance” still have value



Vector

• A column vector                    where

• A row vector                    where

        denotes the transpose operation

Fei-Fei Li 62



• L1 norm

• L2 norm

• Lp norm (for real numbers p ≥ 1)

Norms



• L1 (Manhattan) distance 

• L2 (Euclidean) distance

Distances



Example: Feature representation

• A vector representing measurable characteristics 
of a data sample we have

• E.g. a glass of juice can be represented via its 
color = {yellow=1, red=2, green=3, purple=4} and 
taste = {sweet=1, sour=2} 

• A given glass i can be represented as a vector: xi = 
[3 2] represents green, sour juice

• For D features, this defines a D-dimensional space 
where we can measure similarity between 
samples



Example: Feature representation

0 1 2 3 4

2

1

color

taste

E.g. a glass of juice can be represented via its 
color = {yellow=1, red=2, green=3, purple=4} 
and taste = {sweet=1, sour=2} 

x2 = [3 2]x1 = [1 2]

x3 = [1 1]

L2 distance:
d(x1, x2) = sqrt(4+0)
d(x1, x3) = sqrt(0+1)
d(x2, x3) = sqrt(4+1)

L1 distance:
d(x1, x2) = 2+0
d(x1, x3) = 0+1
d(x2, x3) = 2+1



Inner (Dot) Product

• Multiply corresponding entries of two vectors 
and add up the result

• x·y is also |x||y|Cos( angle between x and y )

• If B is a unit vector, then A·B gives the length 
of A which lies in the direction of B (projection)

Fei-Fei Li 67

(if B is unit-length hence norm is 1)



Image/ Video

Pixels

Traditional Recognition Approach

Hand-designed

feature extraction 

(SIFT+BOW, HOG)

Trainable

classifier

• Features are key to recent progress in recognition, but 

research shows they’re flawed… Where next? 

Object

Class

Adapted from Lana Lazebnik, figures from Vondrick: http://www.cs.columbia.edu/~vondrick/ihog/ijcv.pdf 

68

http://www.cs.columbia.edu/~vondrick/ihog/ijcv.pdf


What about learning the features?

• Learn a feature hierarchy all the way from pixels to 

classifier

• Each layer extracts features from the output of 

previous layer

• Train all layers jointly

Layer 1 Layer 2 Layer 3 Object 

Class

Image/ 

Video

Pixels

Lana Lazebnik

69



“Shallow” vs. “deep” architectures

Hand-designed

feature extraction

Trainable

classifier

Image/ 

Video

Pixels

Object

Class

Layer 1 Layer N
Simple 

classifier
Object 

Class

Image/ 

Video

Pixels

Traditional recognition: “Shallow” architecture

Deep learning: “Deep” architecture

…

Lana Lazebnik

70



Neural network definition

• Activations: 

• Nonlinear activation function h (e.g. sigmoid, 

RELU):
Figure from Christopher Bishop 

Recall SVM: 

wTx + b

71



• Layer 2

• Layer 3 (final)

• Outputs (e.g. sigmoid/softmax)

• Finally:

Neural network definition

(binary)

(multiclass)

(binary)

72



Sigmoid

tanh tanh(x)

ReLU max(0,x)

Maxout  

ELU

Activation functions

Andrej Karpathy

Leaky ReLU

max(0.1x, x)

73



A multi-layer neural network

• Nonlinear classifier

• Can approximate any continuous function to arbitrary 

accuracy given sufficiently many hidden units

Lana Lazebnik

74



Inspiration: Neuron cells

• Neurons

• accept information from multiple inputs, 

• transmit information to other neurons.

• Multiply inputs by weights along edges

• Apply some function to the set of inputs at each node

• If output of function over threshold, neuron “fires”

Text: HKUST, figures: Andrej Karpathy

75



Biological analog

A biological neuron An artificial neuron

Jia-bin Huang

76



Hubel and Weisel’s architecture Multi-layer neural network

Adapted from Jia-bin Huang

Biological analog

77



Deep neural networks

• Lots of hidden layers

• Depth = power (usually)

• “With great power comes great responsibility”

Figure from http://neuralnetworksanddeeplearning.com/chap5.html 
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How do we train deep neural networks? 

• The goal is to find such a set of weights that 

allow the activations/outputs to match the 

desired output: f(W, xi) ~ yi

• Unfortunately, no closed-form solution for 

weights W, but we can express our objective

• We want to minimize a loss function (a 

function of the weights in the network), we’ll 

do so iteratively

• For now let’s simplify and assume there’s a 

single layer of weights in the network 

79



Classification goal

Example dataset: CIFAR-10  

10 labels

50,000 training images  

each image is 32x32x3

10,000 test images

Andrej Karpathy

80



Classification scores

[32x32x3]

array of numbers 0...1  

(3072 numbers total)

f(x,W)

image parameters

10 numbers,  

indicating class  

scores

Andrej Karpathy

81



Linear classifier 

[32x32x3]

array of numbers 0...1

10 numbers,  

indicating class  

scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1

Andrej Karpathy

82



Linear classifier 

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Andrej Karpathy

83



Linear classifier 

Going forward: Loss function/Optimization

1. Define a loss function  

that quantifies our  

unhappiness with the  

scores across the training  

data.

2. Come up with a way of  

efficiently finding the  

parameters that minimize  

the loss function  

(optimization)

TODO:

Andrej Karpathy

cat  

car  

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

84



Linear classifier 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:

cat  

car  

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Adapted from Andrej Karpathy

85



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:

cat  

car  

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

Adapted from Andrej Karpathy

Want: syi
 >= sj + 1, for j != yi

i.e. sj – syi
 + 1 <= 0

If true, loss is 0

If false, loss is magnitude of violation

86



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 5.1 - 3.2 + 1)

+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

cat

car  

frog

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1

Losses: 2.9

Adapted from Andrej Karpathy
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Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

cat 3.2

car 5.1

frog -1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0

Adapted from Andrej Karpathy
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Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)

= max(0, 5.3 + 1) 

   + max(0, 5.6 + 1)

= 6.3 + 6.6

= 12.9

cat

car  

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0 12.9

Adapted from Andrej Karpathy
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Linear classifier: Hinge loss 

cat  

car  

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

and the full training loss is the mean  

over all examples in the training data:

L = (2.9 + 0 + 12.9)/3
2.9 0 12.9Losses: = 15.8 / 3 = 5.3

Lecture 3 - 12

Adapted from Andrej Karpathy
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Linear classifier: Hinge loss 

Adapted from Andrej Karpathy
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Linear classifier: Hinge loss 

Weight Regularization
λ = regularization strength  

(hyperparameter)

In common use:  

L2 regularization  

L1 regularization

Dropout (will see later)

Adapted from Andrej Karpathy

92



scores = unnormalized log probabilities of the classes

where

Want to maximize the log likelihood, or (for a loss function)  

to minimize the negative log likelihood of the correct class:

cat  

car  

frog

3.2

5.1

-1.7

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy

maximize

minimize
93



cat  

car  

frog

unnormalized log probabilities

24.5

164.0

0.18

3.2

5.1

-1.7

exp normalize

unnormalized probabilities

0.13

0.87

0.00

probabilities

L_i = -log(0.13)

= 0.89

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy
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Other losses

• Triplet loss (Schroff, FaceNet)

• Anything you want! 

a denotes anchor

p denotes positive

n denotes negative

95



How to minimize the loss function? 

Andrej Karpathy
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How to minimize the loss function? 

In 1-dimension, the derivative of a function is:

In multiple dimensions, the gradient is the vector of (partial derivatives):

Adapted from Andrej Karpathy, definition/equation from https://en.wikipedia.org/wiki/Gradient 

97

https://en.wikipedia.org/wiki/Gradient


Loss gradients

• Different notations:

• i.e. how does the loss change as a function 

of the weights

• We want to change weights in a way that 

makes the loss decrease as fast as possible  

98



Gradient descent

• We’ll update weights

• Move in direction opposite to gradient:

L

Learning rate
Time

Figure from Andrej Karpathy

original W

negative gradient direction
W_1

W_2

99



Gradient descent

• Iteratively subtract the gradient with respect 

to the model parameters (w)

• I.e. we’re moving in a direction opposite to 

the gradient of  the loss

• I.e. we’re moving towards smaller loss

100



How to compute the loss/gradient?

• In classic gradient descent, we compute the 

gradient from the loss for all training 

examples

• Mini-batch gradient descent: Only use some 

of the data for each gradient update, cycle 

through training examples multiple times 
• Each time we’ve cycled through all of them once is called 

an ‘epoch’

• Allows faster training (e.g. on GPUs), parallelization

• Some benefits for learning due to randomness 

101



Andrej Karpathy

Learning rate selection

The effects of step size (or “learning rate”)

102

https://www.deeplearning.ai/ai-notes/optimization/ 

https://www.deeplearning.ai/ai-notes/optimization/


Gradient descent in multi-layer nets

• We’ll update weights

• Move in direction opposite to gradient:

• How to update the weights at all layers?

• Answer: backpropagation of error from 

higher layers to lower layers

103



Backpropagation: Graphic example

First calculate error of output units and use this 

to change the top layer of weights.

output

hidden

input

Calculate how to 

update weights into j 

(update at end of iter)

Adapted from Ray Mooney, equations from Chris Bishop

k

j

i

w(2)

w(1)

104



Backpropagation: Graphic example

Next calculate error for hidden units based on 

errors on the output units it feeds into.

output

hidden

input

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop
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Backpropagation: Graphic example

Finally update bottom layer of weights based on 

errors calculated for hidden units.

output

hidden

input

Update weights into i

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Lecture 4 - 10

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 11

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 12

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 13

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 14

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 15

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 16

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 17

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 18

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

Lecture 4 - 19

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 20

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

Lecture 4 - 21

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f

activations

Lecture 4 - 22

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

Lecture 4 - 23

Andrej Karpathy

“local gradient”

f

gradients
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 24

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 25

Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 26

Andrej Karpathy

123



Convolutional Neural Networks (CNN)

• Neural network with specialized 

connectivity structure

• Stack multiple stages of feature 

extractors

• Higher stages compute more global, 

more invariant, more abstract features

• Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document 

recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.
Adapted from Rob Fergus
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http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


• Feed-forward feature extraction: 

1. Convolve input with learned filters

2. Apply non-linearity 

3. Spatial pooling (downsample)

• Supervised training of convolutional 

filters by back-propagating 

classification error

Adapted from Lana Lazebnik

Convolutional Neural Networks (CNN)

Input Image

Convolution 

(Learned)

Non-linearity

Spatial pooling

Output (class probs)

…
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1. Convolution

• Apply learned filter weights

• One feature map per filter

• Stride can be greater than 

1 (faster, less memory)

Input Feature Map

.

.

.

Adapted from Rob Fergus
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2. Non-Linearity

• Per-element (independent)

• Some options:
• Tanh

• Sigmoid: 1/(1+exp(-x))

• Rectified linear unit  (ReLU)

– Avoids saturation issues

Adapted from Rob Fergus
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3. Spatial Pooling

• Sum or max over non-overlapping / 
overlapping regions

Rob Fergus, figure from Andrej Karpathy
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3. Spatial Pooling

• Sum or max over non-overlapping / 
overlapping regions

• Role of pooling:
• Invariance to small transformations

• Larger receptive fields (neurons see more of input)

Max

Sum

Adapted from Rob Fergus
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32

3

32x32x3 image

width

height

32

depth

Convolutions: More detail

Andrej Karpathy
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32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,  

computing dot products”

Convolutions: More detail

Andrej Karpathy
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32

32

3

Convolution Layer

32x32x3 image  

5x5x3 filter

1 number:
the result of taking a dot product between the  

filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutions: More detail

Andrej Karpathy
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32

32

3

Convolution Layer
activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all  

spatial locations

Convolutions: More detail

Andrej Karpathy
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32

32

3

Convolution Layer

32x32x3 image  

5x5x3 filter

activation maps

1

28

28

convolve (slide) over all  

spatial locations

consider a second, green filter

Convolutions: More detail

Andrej Karpathy
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32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Convolutions: More detail

Andrej Karpathy
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with  

activation functions

32

32

3

28

28

6

CONV,  

ReLU

e.g. 6  

5x5x3  

filters

Convolutions: More detail

Andrej Karpathy
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Preview: ConvNet is a sequence of Convolutional Layers, interspersed with  

activation functions

32

32

3

CONV,  

ReLU

e.g. 6  

5x5x3  

filters 28

28

6

CONV,  

ReLU

e.g. 10  

5x5x6  

filters

CONV,  

ReLU

….

10

24

24

Convolutions: More detail

Andrej Karpathy
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Preview
[From recent Yann  

LeCun slides]

Convolutions: More detail

Andrej Karpathy
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example 5x5 filters
(32 total)

We call the layer convolutional  

because it is related to convolution  

of two signals:

Element-wise multiplication and sum 

of  a filter and the signal (image)

one filter =>

one activation map

Convolutions: More detail

Adapted from Andrej Karpathy, Kristen Grauman
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A closer look at spatial dimensions:

32

32

3

activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all  

spatial locations

Convolutions: More detail

Andrej Karpathy
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7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy
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7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy
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7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy
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7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy
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=> 5x5 output

7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy
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7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy
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7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy
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7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

=> 3x3 output!

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy
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7x7 input (spatially)  

assume 3x3 filter  

applied with stride 3?

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy
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7x7 input (spatially)  

assume 3x3 filter  

applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!

cannot apply 3x3 filter on  

7x7 input with stride 3.

Convolutions: More detail

Andrej Karpathy
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N

F

F

N

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride 1 => (7 - 3)/1 + 1 = 5

stride 2 => (7 - 3)/2 + 1 = 3

stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Convolutions: More detail

Andrej Karpathy

151



In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1

Convolutions: More detail

Andrej Karpathy
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In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy
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In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with  

stride 1, filters of size FxF, and zero-padding with  

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1  

F = 5 => zero pad with 2  

F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy

(N + 2*padding - F) / stride + 1
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Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Output volume size: ?

Convolutions: More detail

Andrej Karpathy
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Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Convolutions: More detail

Andrej Karpathy
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Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Number of parameters in this layer?

Convolutions: More detail

Andrej Karpathy
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Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?  

each filter has 5*5*3 + 1 = 76 params

=> 76*10 = 760

Convolutions: More detail

Andrej Karpathy
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Putting it all together

Andrej Karpathy
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Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

160

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

• Patches from validation images that give 

maximal activation of a given feature map 

• Activations projected 

down to pixel level 

via decovolution 
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http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
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http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]
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Occlusion experiments

(as a function of the  

position of the  

square of zeros in  

the original image)

Andrej Karpathy

[Zeiler & Fergus 2014]
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Occlusion experiments

(as a function of the  

position of the  

square of zeros in  

the original image)

[Zeiler & Fergus 2014]

Andrej Karpathy
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What image maximizes a class score?

Repeat:

1. Forward an image

2. Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest

3. Backprop to image

4. Do an “image update”

Andrej Karpathy
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What image maximizes a class score?

[Understanding Neural Networks Through Deep Visualization, Yosinski et al. , 2015]

http://yosinski.com/deepvis

Andrej Karpathy
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Shape vs texture

ImageNet-trained CNNs are biased towards texture; increasing shape bias improves 

accuracy and robustness [Geirhos et al., ICLR 2019]

https://openreview.net/forum?id=Bygh9j09KX


Figure from http://www.mdpi.com/2072-4292/7/11/14680/htm 

A Basic Architecture: AlexNet
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[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:  

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0  

[27x27x96] MAX POOL1: 3x3 filters at stride 2  

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2  

[13x13x256] MAX POOL2: 3x3 filters at stride 2  

[13x13x256] NORM2: Normalization layer  

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1  

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1  

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1  

[6x6x256] MAX POOL3: 3x3 filters at stride 2

Details/Retrospectives:

-first use of ReLU

-used Norm layers (not common anymore)

-heavy data augmentation

-dropout 0.5

-batch size 128

-SGD Momentum 0.9

-Learning rate 1e-2, reduced by 10  

manually when val accuracy plateaus

-L2 weight decay 5e-4

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: AlexNet



Case Study: VGGNet

Only 3x3 CONV stride 1, pad 1  

and  2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013

->

7.3% top 5 error

[Simonyan and Zisserman, 2014]

Andrej Karpathy
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[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Case Study: GoogLeNet

Andrej Karpathy
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Slide from Kaiming He’s presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

Case Study: ResNet

Andrej Karpathy
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(slide from Kaiming He’s presentation)

Case Study: ResNet

Andrej Karpathy
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Case Study: ResNet
[He et al., 2016]

Very deep networks using residual  

connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner  

(3.57% top 5 error)

- Swept all classification and  

detection competitions in  

ILSVRC’15 and COCO’15!

..

.

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

What happens when we continue stacking deeper layers on a “plain” convolutional  

neural network?

Q: What’s strange about these training and test curves?  

[Hint: look at the order of the curves]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it’s not caused by overfitting!



Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Hypothesis: the problem is an optimization problem, deeper models are harder to  

optimize

The deeper model should be able to perform at  

least as well as the shallower model.

A solution by construction is copying the learned  

layers from the shallower model and setting  

additional layers to identity mapping.

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



relu

Case Study: ResNet
[He et al., 2016]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a  

desired underlying mapping

X

identity

F(x) + x

F(x)

relu

relu

X
Residual block

X
“Plain” layers

H(x)

Use layers to  

fit residual  

F(x) = H(x) - x

instead of  

H(x) directly

H(x) = F(x) + x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



..

.

Case Study: ResNet
[He et al., 2016]

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:

- Stack residual blocks
- Every residual block 

has  two 3x3 conv 

layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Training: Best practices

• Data
• Center (subtract mean from) your data

• Use data augmentation 

• Use mini-batch 

• Weights/activations
• To initialize weights, use “Xavier initialization” 

• Use regularization

• Use RELU (most common), don’t use sigmoid

• Hyperparameters:
• Learning rate: too high? Too low? 

• Use cross-validation to pick
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Over-training prevention

• Running too many epochs can result in over-fitting.

• Keep a hold-out validation set and test accuracy on it 
after every epoch. Stop training when additional 
epochs actually increase validation error.

0 # training epochs

e
rr

o
r

on training data

on test data

Adapted from Ray Mooney
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Regularization: Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

•   Randomly turn off some neurons

•   Allows individual neurons to independently be 

responsible for performance

Adapted from Jia-bin Huang
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http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


Data Augmentation (Jittering)

Create virtual training samples
• Horizontal flip

• Random crop

• Color casting

• Geometric distortion

Jia-bin Huang, Image: https://github.com/aleju/imgaug 
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Transfer Learning

“You need a lot of a data if you want to  

train/use CNNs”

Andrej Karpathy
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Transfer Learning with CNNs

• The more weights you need to learn, the 

more data you need

• That’s why with a deeper network, you need 

more data to train than for a shallower net

• One possible solution: 

Set these to the already learned 

weights from another network

Learn these on your own task
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more generic

more specific

Lecture 11 - 34

very similar  

dataset

very different  

dataset

very little data Use simple  

classifier from 

top  layer

You’re in  

trouble… Try  

simple classifier  

from different 

stages

quite a lot of  

data

Finetune a few  

layers

Finetune a  

larger number of  

layers

Transfer Learning with CNNs

Adapted from Andrej Karpathy
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Pre-training on ImageNet

• Have a source domain and target domain

• Train a network to classify ImageNet classes
• Coarse classes and ones with fine distinctions (dog breeds)

• Remove last layers and train layers to 

replace them, that predict target classes

Oquab et al., “Learning and Transferring Mid-Level Image Representations…”, CVPR 2014 
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Transfer learning with CNNs is pervasive…

Object Detection  
Ren et al., “Faster R-CNN“, NIPS 2015

Image Captioning

Karpathy and Fei-Fei, “Deep Visual-

Semantic Alignments for Generating 

Image Descriptions”, CVPR 2015

CNN pretrained  

on ImageNet

Adapted from Andrej Karpathy
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Extract  

patch

CNN

Run through  

a CNN

COW

Classify  

center pixel

Repeat for  

every pixel

Lecture 13 - 28

Semantic segmentation

Andrej Karpathy
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Analysis of pre-training on ImageNet

• Source: 
• distinguish 1000 ImageNet categories (incl. many dog breeds)

• Target tasks: 
• object detection and action recognition on PASCAL

• scene recognition on SUN 

• Pre-training with 500 images per class is about 

as good as pre-training with 1000

• Pre-training with 127 classes is about as good 

as pre-training with 1000

• Pre-training with (fewer classes, more images 

per class) > (more classes, fewer images) 

• Small drop in if classes with fine-grained 

distinctions removed from pre-training set 
Huh et al., “What makes ImageNet good for transfer learning?”, arxiv 2016
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Recurrent Networks offer a lot of flexibility:

e.g. image captioning

image -> sequence of words

Andrej Karpathy



Recurrent Neural Network

x

RNN

y

We can process a sequence of vectors x by  

applying a recurrence formula at every time step:

new state old state input vector at

some time step
some function

with parameters W

Andrej Karpathy



Character-level  

language model  

example

Vocabulary:  

[h,e,l,o]

Example training  

sequence:  

“hello”

Andrej Karpathy

Example

What kind of loss can we formulate?

What do we still need to specify, for this to work?



E
n
co

d
e
r 
R

N
N

Neural Machine Translation (NMT)

<START> he hit me with a pie

Source sentence (input)

il a m’ entarté

The sequence-to-sequence model

Encoding of the source sentence.

Target sentence (output)

D
e
co

d
e
r R

N
N

Encoder RNN produces  

an encoding of the  

source sentence.

Provides initial hidden state

for Decoder RNN.

Decoder RNN is a Language Model that generates  

target sentence, conditioned on encoding.

he

a
rg

m
a
x

a
rg

m
a
x

hit

a
rg

m
a
x

me

Note: This diagram shows test time behavior:

decoder output is fed in as next step’s input

with a pie <END>

a
rg

m
a
x

a
rg

m
a
x

a
rg

m
a
x

a
rg

m
a
x

Abigail See



Sequence-to-sequence: the bottleneck problem
E

n
co

d
e
r 
R

N
N

Source sentence (input)

<START> he hit me with a pieil a m’ entarté

he hit me with a pie <END>

D
e
co

d
e
r R

N
N

Target sentence (output)

Encoding of the

source sentence.

This needs to capture all  

information about the  

source sentence.

Information bottleneck!

Abigail See



Attention

• Attention provides a solution to the bottleneck problem.

• Core idea: on each step of the decoder, use direct 

connection to  the encoder to focus on a particular part of 

the source sequence

• First we will show via diagram (no equations), then we will 

show with equations

Abigail See



Sequence-to-sequence with attention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r R

N
N

A
tt
e
n
tio

n

sc
o
re

s

dot product

Source sentence (input)
Abigail See



Sequence-to-sequence with attention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r R

N
N

A
tt
e
n
tio

n

sc
o
re

s

dot product

Source sentence (input)
Abigail See



Sequence-to-sequence with attention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r R

N
N

A
tt
e
n
tio

n

sc
o
re

s

dot product

Source sentence (input)
Abigail See



Sequence-to-sequence with attention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r R

N
N

A
tt
e
n
tio

n

sc
o
re

s

dot product

Source sentence (input)
Abigail See



Sequence-to-sequence with attention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r R

N
N

A
tt
e
n
tio

n

sc
o
re

s

On this decoder timestep, we’re  

mostly focusing on the first  

encoder hidden state (”he”)

A
tt
e
n
tio

n

d
is

tr
ib

u
ti
o
n

Take softmax to turn the scores  

into a probability distribution

Source sentence (input)
Abigail See



Sequence-to-sequence with attention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r R

N
N

A
tt
e
n
tio

n

d
is

tr
ib

u
ti
o
n

A
tt
e
n
tio

n

sc
o
re

s

Attention  

output
Use the attention distribution to take a  

weighted sum of the encoder hidden  

states.

The attention output mostly contains  

information from the hidden states that  

received high attention.

Source sentence (input)
Abigail See



Sequence-to-sequence with attention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r R

N
N

A
tt
e
n
tio

n

d
is

tr
ib

u
ti
o
n

A
tt
e
n
tio

n

sc
o
re

s

Attention  

output
Concatenate attention output  

with decoder hidden state, then 

use to compute 𝑦1 as before

𝑦1

he

Source sentence (input)
Abigail See



Attention: in equations

• We have encoder hidden states

• On timestep t, we have decoder hidden state

• We get the attention scores for this step:

• We take softmax to get the attention distribution

a probability distribution and sums to 1)

for this step (this is 

• We use    to take a weighted sum of the encoder hidden states to 

get the attention output

• Finally we concatenate the attention output      with the decoder 

hidden state        and proceed as in the non-attention seq2seq model

Abigail See



Attention is great

• Attention significantly improves NMT performance

• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem

• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem

• Provides shortcut to faraway states

• Attention provides some interpretability

• By inspecting attention distribution, we can see  

what the decoder was focusing on

• We get (soft) alignment for free!

• This is cool because we never explicitly trained  

an alignment system

• The network just learned alignment by itself
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Abigail See



Attention is a general Deep Learning technique

• We’ve seen that attention is a great way to improve the

sequence-to-sequence model for Machine Translation.

• However: You can use attention in many architectures (not 

just seq2seq) and many tasks (not just MT)

• More general definition of attention:

• Given a set of vector values, and a vector query, 

attention is a  technique to compute a weighted sum of 

the values,  dependent on the query.

• We sometimes say that the query attends to the values.

• For example, in seq2seq + attention model, each decoder  

hidden state (query) attends to all encoder hidden states  

(values).
Abigail See



CVPR 2015:

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei  

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.  

Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Adapted from Andrej Karpathy

Image Captioning



Convolutional Neural Network

Recurrent Neural Network

Andrej Karpathy

Image Captioning



test image

x0
<START>

<START>

Andrej Karpathy

Image Captioning



h0

y0

<START>

test image

before:

h = tanh(Wxh * x + Whh * h)

now:

h = tanh(Wxh * x + Whh * h + Wih * im)

im

Wih

Andrej Karpathy

Image Captioning

x0
<START>



h0

y0

test image

sample!

straw

<START>

Andrej Karpathy

Image Captioning

x0
<START>



h0

y0

test image

h1

y1

straw

<START>

Andrej Karpathy

Image Captioning

x0
<START>



h0

y0

test image

h1

y1

sample!

straw hat

<START>

Andrej Karpathy

Image Captioning

x0
<START>



h0

y0

test image

h1

y1

h2

y2

straw hat

<START>

Andrej Karpathy

Image Captioning

x0
<START>



h0

y0

test image

h1

y1

h2

y2

sample

<END> token

=> finish.

straw hat

<START>

Adapted from Andrej Karpathy

Image Captioning

Caption generated:
“straw hat”

x0
<START>



• O(sequence length) steps for distant word pairs to interact means:

• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; not necessarily the right way to think about 
sentences…

The chef who … was

Info of chef has gone through 
O(sequence length) many layers!

Adapted from John Hewitt

Issues with recurrent models: 
Linear interaction distance



• Forward and backward passes have O(sequence length) unparallelizable operations

• GPUs can perform a bunch of independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

• Inhibits training on very large datasets!

h1 h2

0

1 T

hT

T-11

2

2

3

Numbers indicate min # of steps before a state can be computed

John Hewitt

Issues with recurrent models: 
Lack of parallelizability



• Attention treats each word’s representation as a query to access and 
incorporate information from a set of values.

• We saw attention from the decoder to the encoder; today we’ll think about
attention within a single sentence.
• If attention gives us access to any state… maybe we can just use 

attention and don’t need the RNN?

• Number of unparallelizable operations not tied to sequence length.

• All words interact at every layer!

attention 

embedding
h1 h2

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

hT

attention
All words attend
to all words in 
previous layer; 
most arrows here 
are omitted

If not recurrence, then what? 
How about attention?

Adapted from John Hewitt



• We have some keys 𝑘1, 𝑘2, … , 𝑘𝑇. Each key is 𝑘𝑖 ∈ ℝ𝑑

• We have some values 𝑣1, 𝑣2, … , 𝑣𝑇. Each value is 𝑣𝑖 ∈ ℝ𝑑

• Attention operates on queries, keys, and values.

1 2 𝑇 • We have some queries 𝑞 , 𝑞 , … , 𝑞 . Each query is 𝑞i ∈ ℝ𝑑

• In self-attention, the queries, keys, and values are drawn from the same source.

• For example, if the output of the previous layer is 𝑥1, … , 𝑥𝑇, (one vec per word) 
we could let 𝑣𝑖 = 𝑘𝑖 = 𝑞𝑖 = 𝑥𝑖 (that is, use the same vectors for all of them!)

• The (dot product) self-attention operation is as follows:

The number of queries 
can differ from the 
number of keys and
values in practice.

𝑖 𝑗  𝑗

Compute key- 
query affinities

𝑖 j𝑒 = 𝑞i
𝖳𝑘 𝛼 =

exp(𝑒𝑖𝑗)

Σ 𝑗'

Compute attention 
weights from affinities

(softmax)

output = Σ 𝑗 𝛼 𝑣𝑖  𝑖 𝑗   𝑗

Compute outputs as 
weighted sum of values

exp(𝑒𝑖𝑗’ )

John Hewitt

Self-Attention



𝑤1

The

𝑞1𝑘1 𝑣1

𝑤2

chef

𝑞2

𝑤3

who

𝑤𝑇

food

𝑘𝑇 𝑞𝑇 𝑣𝑇

…

𝑞1𝑘1 𝑣1 𝑘2 𝑞2 𝑞3𝑣2 𝑘3 𝑣3 𝑘𝑇 𝑞𝑇 𝑣𝑇

…
self-attention

𝑘2 𝑣2 𝑘3 𝑞3 𝑣3

• In the diagram at the right, we 
have stacked self-attention 
blocks, like we might stack LSTM 
layers.

• Can self-attention be a drop-in
replacement for recurrence?

• No. It has a few issues, which
we’ll go through.

• First, self-attention is an 
operation on sets. It has no 
inherent notion of order.

self-attention

Self-attention doesn’t know the order of its inputs.

Self-Attention

John Hewitt



Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep 
learning magic! It’s all just 
weighted averages

• Need to ensure we don’t 
“look at the future” when 
predicting a sequence

• Like in machine translation

• Or language modeling

Solutions
• Add position 

representations to the 
inputs

• Easy fix: apply the same 
feedforward network to each 
self- attention output.

• Mask out the future by 
artificially setting attention 
weights to 0!

John Hewitt

Barriers and solutions for Self-Attention as a 
building block



• Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝑝𝑖  ∈ ℝ𝑑 , for 𝑖 ∈ {1,2, … , 𝑇} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝑝𝑖 to our inputs!

• Let 𝑣𝑖 ‘, 𝑘𝑖 ‘, 𝑞𝑖 ‘ be our old values, keys, and queries.

Fixing the first self-attention problem: 
Sequence order

𝑣𝑖  = 𝑣𝑖 ‘ + 𝑝𝑖
𝑞𝑖  = 𝑞𝑖 ‘ + 𝑝𝑖
𝑘𝑖  = 𝑘𝑖 ‘ + 𝑝𝑖

In deep self-attention 
networks, we do this at the 
first layer! You could 
concatenate them as well, 
but people mostly just add…

John Hewitt



• Pros:

• Periodicity indicates that maybe “absolute position” isn’t as important

• Maybe can extrapolate to longer sequences as periods restart!

• Cons:

• Not learnable; also the extrapolation doesn’t really work!

• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

sin(𝑖/100002∗1/𝑑) 

cos(𝑖/100002∗1/𝑑)

𝑝𝑖 =

𝑑

sin(𝑖/100002∗2/𝑑)
𝑑

cos(𝑖/100002∗2/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence
D

im
en

si
o

n

John Hewitt

Position representation vectors through sinusoids



• Note that there are no elementwise 
nonlinearities in self-attention; 
stacking more self-attention layers 
just re-averages value vectors

• Easy fix: add a feed-forward network
to post-process each output vector.

𝑚𝑖 = 𝑀𝐿𝑃 output𝑖
= 𝑊2 ∗ ReLU 𝑊1 × output𝑖 + 𝑏1 + 𝑏2

𝑤1

The

𝑤2

chef

𝑤3

who

𝑤𝑇

food

…

Intuition: the FF network processes the result of attention

FF FF FF

self-attention

FF

…

FF FF FF

self-attention

FF

Adding nonlinearities in self-attention

John Hewitt



• To use self-attention in 
decoders, we need to ensure 
we can’t peek at the future.

• At every timestep, we could 
change the set of keys and 
queries to include only past 
words. (Inefficient!)

• To enable parallelization, we 
mask out attention to future 
words by setting attention 
scores to −∞.

𝑒𝑖𝑗 = 

−∞ −∞ −∞ −∞

−∞ −∞ −∞

−∞ −∞

−∞

The

chef

who

[START]

For encoding 
these words

We can look at these 
(not greyed out) words

Masking the future in self-attention

𝑞i
𝖳 𝑘𝑗 , 𝑗 < 𝑖

−∞, 𝑗 ≥ 𝑖

John Hewitt



• Self-attention:

• The basis of the method.

• Position representations:

• Specify the sequence order, since self-attention is an unordered function of its 
inputs.

• Nonlinearities:

• At the output of the self-attention block

• Frequently implemented as a simple feed-forward network.

• Masking:

• In order to parallelize operations while not looking at the future.

• Keeps information about the future from “leaking” to the past.

• That’s it! But this is not the Transformer model we’ve been hearing about.

Necessities for a self-attention building block:

John Hewitt



Transformer Overview

Attention is all you need. 2017.  Aswani, 

Shazeer, Parmar, Uszkoreit,  Jones, 

Gomez, Kaiser, Polosukhin  

https://arxiv.org/pdf/1706.03762.pdf 

• Non-recurrent sequence-to-  

sequence encoder-decoder model

• Task: machine translation  

with parallel corpus

• Predict each translated word

• Final cost/error function is  

standard cross-entropy error 

on top of a softmax classifier

This and related figures from paper ⇑

Christopher Manning

https://arxiv.org/pdf/1706.03762.pdf


The Transformer Encoder-Decoder 
[Vaswani et al., 2017]

Next, let’s look at the Transformer Encoder and Decoder Blocks

What’s left in a Transformer Encoder Block that we haven’t covered?

1. Key-query-value attention: How do we get the 𝑘, 𝑞, 𝑣 vectors from a single word embedding?

2. Multi-headed attention: Attend to multiple places in a single layer!

3. Tricks to help with training!

1. Residual connections

2. Layer normalization

3. Scaling the dot product

4. These tricks don’t improve what the model is able to do; they help improve the training process

John Hewitt

https://arxiv.org/pdf/1706.03762.pdf


The Transformer Encoder: 
Key-Query-Value Attention

• We saw that self-attention is when keys, queries, and values come from the same
source. The Transformer does this in a particular way:

• Let 𝑥1, … , 𝑥𝑇 be input vectors to the Transformer encoder; 𝑥𝑖 ∈ ℝ𝑑

• Then keys, queries, values are:

• 𝑘𝑖 = 𝐾𝑥𝑖, where 𝐾 ∈ ℝ𝑑×𝑑 is the key matrix.

• 𝑞𝑖 = 𝑄𝑥𝑖, where Q ∈ ℝ𝑑×𝑑 is the query matrix.

• 𝑣𝑖 = 𝑉𝑥𝑖, where V ∈ ℝ𝑑×𝑑 is the value matrix.

• These matrices allow different aspects of the 𝑥 vectors to be used/emphasized in 
each of the three roles.

John Hewitt



• Let’s look at how key-query-value attention is computed, in matrices.

• Let 𝑋 = 𝑥1; … ; 𝑥𝑇 ∈ ℝ𝑇×𝑑 be the concatenation of input vectors.

• First, note that 𝑋𝐾 ∈ ℝ𝑇×𝑑, 𝑋𝑄 ∈ ℝ𝑇×𝑑, 𝑋𝑉 ∈ ℝ𝑇×𝑑.

• The output is defined as output = softmax 𝑋𝑄 𝑋𝐾  T × 𝑋𝑉.

= 𝑋𝑄𝐾𝖳  𝑋𝖳

∈ ℝ𝑇×𝑇

All pairs of 
attention scores!

output ∈ ℝ𝑇×𝑑

=

𝐾𝖳  𝑋𝖳

𝑋𝑄

First, take the query-key dot 
products in one matrix
multiplication: 𝑋𝑄 𝑋𝐾

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

𝑋𝑄𝐾𝖳  𝑋𝖳softmax 𝑋𝑉

The Transformer Encoder: 
Key-Query-Value Attention

John Hewitt



• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝖳𝑄𝖳𝐾𝑥𝑗  is high, but maybe we want

𝑑×

to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices
𝑑

• Let, 𝑄𝑃, 𝐾𝑃, 𝑉𝑃 ∈ ℝ ℎ , where ℎ is the number of attention heads, and 𝑃 ranges
from 1 to ℎ.

• Each attention head performs attention independently:

𝑃• output𝑃 = softmax 𝑋𝑄𝑃𝐾𝖳𝑋𝖳  ∗ 𝑋𝑉𝑃, where output𝑃 ∈ ℝ𝑑/ℎ

• Then the outputs of all the heads are combined!

• output = 𝑌[output1; … ; outputℎ], where 𝑌 ∈ ℝ𝑑×𝑑

• Each head gets to “look” at different things, and construct value vectors
differently.

John Hewitt

The Transformer Encoder: 
Multi-headed attention



• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝖳𝑄𝖳𝐾𝑥𝑗  is high, but maybe we want

𝑑×

to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices
𝑑

• Let, 𝑄𝑃, 𝐾𝑃, 𝑉𝑃 ∈ ℝ ℎ , where ℎ is the number of attention heads, and 𝑃 ranges
from 1 to ℎ.

𝑋

𝑄 =
𝑋𝑄

Single-head attention
(just the query matrix)

𝑋

Multi-head attention
(just two heads here)

𝑄1 𝑄2 =
𝑋𝑄1 𝑋𝑄2

Same amount of 
computation as 
single-head self- 
attention!

John Hewitt

The Transformer Encoder: 
Multi-headed attention



Attention visualization in layer 5

• Words start to pay attention to other words in sensible ways

Christopher Manning



Attention visualization: Implicit anaphora resolution

In 5th layer. Isolated attentions from just the word ‘its’ for attention heads 5 and 6.  
Note that the attentions are very sharp for this word.

Christopher Manning



I kicked the ball

Who

Did what?

To whom?

I kicked the ball

Ashish Vaswani

Parallel attention heads



• One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

• However, its total number of operations grows as 𝑂 𝑇2𝑑 , where 𝑇 is the 
sequence length, and 𝑑 is the dimensionality.

= 𝑋𝑄𝐾𝖳  𝑋𝖳

∈ ℝ𝑇×𝑇

Need to compute all 
pairs of interactions!
𝑂 𝑇2𝑑𝐾𝖳  𝑋𝖳

𝑋𝑄

Quadratic computation as function of seq. length

• Think of 𝑑 as around 𝟏, 𝟎𝟎𝟎.

• So, for a single (shortish) sentence, 𝑇 ≤ 30; 𝑇2 ≤ 𝟗𝟎𝟎.

• In practice, we set a bound like 𝑇 = 512.

• But what if we’d like 𝑻 ≥ 𝟏𝟎, 𝟎𝟎𝟎? For example, to work on long documents?

John Hewitt



• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, BigBird [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, like local 
windows, looking at everything, and random interactions.

Recent work on improving on quadratic self-
attention cost

John Hewitt

https://arxiv.org/pdf/2007.14062.pdf


In modern NLP:

• All (or almost all) parameters in NLP
networks are initialized via pretraining.

• Pretraining methods hide parts of the input  
from the model, and train the model to  
reconstruct those parts.

• This has been exceptionally effective at  
building strong:

• representations of language

• parameter initializations for strong NLP
models.

… the movie was …

𝒚

Pretrained jointly

[This model has learned how to represent  
entire sentences through pretraining]

Pretraining models

Adapted from John Hewitt



The neural architecture influences the type of pretraining, and natural use cases.

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• Wait, how do we pretrain them?

Encoder-  

Decoders

Pretraining for three types of architectures

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Adapted from John Hewitt



Recall the language modeling task:

• Model 𝑝𝜃 𝑤𝑡 𝑤1:𝑡−1), the probability  
distribution over words given their past  
contexts.

• There’s lots of data for this! (In English.)

Pretraining through language modeling:

• Train a neural network to perform language  
modeling on a large amount of text.

• Save the network parameters.

Decoder
(Transformer, LSTM, ++ )

Iroh goes to make tasty tea

goes

Pretraining through language modeling 
[Dai and Le, 2015]

to make tasty tea END

John Hewitt

https://arxiv.org/pdf/1511.01432.pdf


Pretraining can improve NLP applications by serving as parameter initialization.

Decoder
(Transformer, LSTM, ++ )

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)

Lots of text; learn general things!

Decoder
(Transformer, LSTM, ++ )

☺/

The Pretraining / Finetuning Paradigm

Step 2: Finetune (on your task)

Not many labels; adapt to the task!

… the movie was …

John Hewitt



There’s increasing evidence that pretrained models learn a wide variety of things about
the statistical properties of language:

• Stanford University is located in , California. [Trivia]

• I put fork down on the table. [syntax]

• The woman walked across the street, checking for traffic over shoulder. [coreference]

• I went to the ocean to see the fish, turtles, seals, and . [lexical semantics/topic]

• Overall, the value I got from the two hours watching it was the sum total of the popcorn
and the drink. The movie was . [sentiment]

• Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his  
destiny. Zuko left the . [some reasoning – this is harder]

• I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, [some basic
arithmetic; they don’t learn the Fibonnaci sequence]

• Models also learn – and can exacerbate racism, sexism, all manner of bad biases.

Adapted from John Hewitt

Capturing meaning via context: 

What kinds of things does pretraining learn?



So far, we’ve looked at language model pretraining. But encoders get bidirectional  
context, so we can’t do language modeling!

Idea: replace some fraction of words in the  
input with a special [MASK] token; predict  
these words.

ℎ1, … , ℎ𝑇 = Encoder 𝑤1, … , 𝑤𝑇

𝑦𝑖 ∼ 𝐴𝑤𝑖 + 𝑏

Only add loss terms from words that are  
“masked out.” If 𝑥 ’ is the masked version of  𝑥, 
we’re learning 𝑝𝜃(𝑥|𝑥’  ). Called Masked LM.

I [M] to the [M]

went store

𝐴, 𝑏

ℎ1, … , ℎ𝑇

[Devlin et al., 2018]

Pretraining encoders: 
What pretraining objective to use?

John Hewitt

https://arxiv.org/pdf/1810.04805.pdf


Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a  
pretrained Transformer, a model they labeled BERT.

Some more details about Masked LM for BERT:

• Predict a random 15% of (sub)word tokens.

• Replace input word with [MASK] 80% of the time

• Replace input word with a random token 10% of  
the time

• Leave input word unchanged 10% of the time (but  
still predict it!)

• Why? Doesn’t let the model get complacent and not  
build strong representations of non-masked words.  
(No masks are seen at fine-tuning time!)

• Too little masking: Too expensive to train
• Too much masking: Not enough context

[Predict these!]

I pizza to the [M]

storewent to

Transformer  
Encoder

[Devlin et al., 2018]

[Masked][Replaced] [Not replaced]

John Hewitt / Christopher Manning

BERT: Bidirectional Encoder Representations from 
Tranformers

https://arxiv.org/pdf/1810.04805.pdf


• Additional task: Next sentence prediction

• To learn relationships between sentences, predict whether  

Sentence B is actual sentence that proceeds Sentence A, or a  

random sentence

Adapted from Christopher Manning

BERT: Bidirectional Encoder Representations from 
Tranformers



• The pretraining input to BERT was two separate 

contiguous chunks of text:

• In addition to masked input reconstruction, BERT was trained to predict 

whether one chunk follows the other or is randomly sampled.

• Later work has argued this “next sentence prediction” is not necessary.

[Devlin et al., 2018, Liu et al., 2019]

Adapted from John Hewitt

BERT: Bidirectional Encoder Representations from 
Tranformers

https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/abs/1907.11692


BERT: Bidirectional Encoder Representations from 
Tranformers

[Devlin et al., 2018]

Details about BERT

• Two models were released:

• BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.

• BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.

• Trained on:

• BooksCorpus (800 million words)

• English Wikipedia (2,500 million words)

• Pretraining is expensive and impractical on a single GPU.

• BERT was pretrained with 64 TPU chips for a total of 4 days.

• (TPUs are special tensor operation acceleration hardware)

• Finetuning is practical and common on a single GPU

• “Pretrain once, finetune many times.”

John Hewitt

https://arxiv.org/pdf/1810.04805.pdf


2018’s GPT was a big success in pretraining a decoder!

• Transformer decoder with 12 layers.

• 768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.

• Byte-pair encoding with 40,000 merges

• Trained on BooksCorpus: over 7000 unique books.

• Contains long spans of contiguous text, for learning long-distance dependencies.

• The acronym “GPT” never showed up in the original paper; it could stand for
“Generative PreTraining” or “Generative Pretrained Transformer”

John Hewitt

Generative Pretrained Transformer (GPT) 
[Radford et al., 2018]

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf


How do we format inputs to our decoder for finetuning tasks?

Natural Language Inference: Label pairs of sentences as entailing/contradictory/neutral

Premise: The man is in the doorway

Hypothesis: The person is near the door

Radford et al., 2018 evaluate on natural language inference.

Here’s roughly how the input was formatted, as a sequence of tokens for the decoder.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

The linear classifier is applied to the representation of the [EXTRACT] token.

entailment

Generative Pretrained Transformer (GPT) 
[Radford et al., 2018]

John Hewitt

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf


We mentioned how pretrained decoders can be used in their capacities as language models.  

GPT-2, a larger version of GPT trained on more data, was shown to produce relatively  

convincing samples of natural language.

John Hewitt

Increasingly convincing generations (GPT2) 
[Radford et al., 2018]

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf


Let’s take a look at the assumptions we’ve made about a language’s vocabulary.

We assume a fixed vocab of tens of thousands of words, built from the training set.  

All novel words seen at test time are mapped to a single UNK.

word  

hat  

learn

taaaaasty  

laern

vocab mapping  

pizza (index)  

tasty (index)  

UNK (index)  

UNK (index)  

UNK (index)

embedding

Transformerify 

Common
words

Variations

misspellings

novel items

John Hewitt

Aside: Word structure and subword models



Finite vocabulary assumptions make even less sense in many languages.

• Many languages exhibit complex morphology, or word structure.

• The effect is more word types, each occurring fewer times.

Example: Swahili verbs can have  
hundreds of conjugations, each  
encoding a wide variety of  
information. (Tense, mood,  
definiteness, negation, information  
about the object, ++)

Here’s a small fraction of the
conjugations for ambia – to tell.

[Wiktionary]

John Hewitt

Aside: Word structure and subword models

https://en.wiktionary.org/wiki/ambia


Subword modeling in NLP encompasses a wide range of methods for reasoning about  
structure below the word level. (Parts of words, characters, bytes.)

• The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).

• At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword.

3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained
models.

[Sennrich et al., 2016, Wu et al., 2016]

John Hewitt

Aside: The byte-pair encoding algorithm

https://www.aclweb.org/anthology/P16-1162.pdf
https://arxiv.org/pdf/1609.08144.pdf


Common words end up being a part of the subword vocabulary, while rarer words are split  
into (sometimes intuitive, sometimes not) components.

In the worst case, words are split into as many subwords as they have characters.

word vocab mapping  

hat

learn

taa## aaa## sty  

la## ern##  

Transformer## ify

embedding

hat  

learn

taaaaasty  

laern

Transformerify 

Common
words

Variations

misspellings

novel items

John Hewitt

Aside: Word structure and subword models



So far, we’ve interacted with pretrained models in two ways:

• Sample from the distributions they define (maybe providing a prompt)

• Fine-tune them on a task we care about, and take their predictions.

Very large language models seem to perform some kind of learning without gradient  
steps simply from examples you provide within their contexts.

GPT-3 is the canonical example of this. The largest T5 model had 11 billion parameters.

GPT-3 has 175 billion parameters.

John Hewitt

GPT-3, in-context learning, very large models



Very large language models seem to perform some kind of learning without gradient  
steps simply from examples you provide within their contexts.

The in-context examples seem to specify the task to be performed, and the conditional  
distribution mocks performing the task to a certain extent.

Input (prefix within a single Transformer decoder context):

“ thanks -> merci  

hello -> bonjour  

mint -> menthe  

otter -> ”

Output (conditional generations):

loutre…”

John Hewitt

GPT-3, in-context learning, very large models



Transformers in vision

https://www.youtube.com/watch?v=TrdevFK_am4 Dosovitskiy, ICLR 2021, https://github.com/google-research/vision_transformer 

https://www.youtube.com/watch?v=TrdevFK_am4
https://github.com/google-research/vision_transformer


Cross-modal transformers

Chen et al., “UNITER: Learning UNiversal Image-TExt Representations”, ECCV 2020



Cross-modal transformers

Lu et al., “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks”, NeurIPS 2019



Cross-modal transformers

Tan and Bansal, “LXMERT: Learning Cross-Modality Encoder Representationsfrom Transformers”, EMNLP 2019



Self-Supervised Learning

• Learn representations from context in raw data

• Language – predict nearby words [already covered]
– Transformers, BERT

• Vision – predict pixels from other pixels
– Predict nearby patches in an image

– Predict order of frames in a video

– Predict what you will see as you move

– Predict physics

Jitendra Malik: "Supervision is the opium of the AI researcher"
Alyosha Efros: "The AI revolution will not be supervised"

Yann LeCun: “Self-supervised learning is the cake, supervised learning is the icing on the 
cake, reinforcement learning is the cherry on the cake"



Unsupervised Visual Representation 
Learning by Context Prediction

Carl Doersch, Alexei Efros and Abhinav Gupta

ICCV 2015



ImageNet + Deep Learning

Beagle

- Image Retrieval
- Detection (RCNN)
- Segmentation (FCN)
- Depth Estimation
- …

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



ImageNet + Deep Learning

Beagle

Do we even need semantic labels?
Pose?

Boundaries?Geometry?

Parts?
Materials?

Do we need this task?

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Context as Supervision
[Collobert & Weston 2008; Mikolov et al. 2013]

Deep
Net



Context Prediction for Images

A B

1 2 3

54

6 7 8
Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Semantics from a non-semantic task

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Randomly Sample Patch
Sample Second Patch

CNN CNN

Classifier

Relative Position Task
8 possible locations

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Architecture

Patch 2Patch 1

Fully connected

Max Pooling
LRN

Max Pooling
LRN

Convolution
Convolution
Convolution

Convolution

Convolution

Max Pooling

Max Pooling
LRN

Max Pooling
LRN

Fully connected

Convolution
Convolution
Convolution

Convolution

Convolution

Max Pooling

Softmax loss

Fully connected

Fully connected

Tied Weights

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



CNN CNN

Classifier

Patch Embedding

Input Nearest Neighbors

CNN Note: connects across instances!

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Ours

What is learned?

Input ImageNet AlexNet

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Pre-Training for R-CNN

Pre-train on relative-position task, w/o labels

[Girshick et al. 2014]Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



VOC 2007 Performance
(pretraining for R-CNN)

No PretrainingRel. PositionImageNet Labels

40.7

46.3

54.2

%
 A

ve
ra

ge
 P

re
ci

si
o

n

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Which will be better?

• Option 1: pretrain (unsup) on dataset B

• Option 2: pretrain (sup) on dataset A

• Test on dataset B



Shuffle and Learn: Unsupervised Learning 
using Temporal Order Verification

Ishan Misra, C. Lawrence Zitnick, and Martial Hebert 

ECCV 2016



Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016 



Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016 



Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016 



Learning image representations tied to 
ego-motion

Dinesh Jayaraman and Kristen Grauman

ICCV 2015



Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

The kitten carousel experiment
[Held & Hein, 1963]

active kitten passive kitten

Key to perceptual development:

self-generated motion + visual feedback



Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Problem with today’s visual learning

Status quo: Learn from 
“disembodied” bag of 
labeled snapshots.

Our goal: Learn in the 
context of acting and moving 
in the world.



Goal: Teach computer vision system the connection:

“how I move” ↔ “how my visual surroundings change”

Our idea: Ego-motion ↔ vision

+

Ego-motion motor signals Unlabeled video

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion ↔ vision: view prediction

After moving:

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion ↔ vision for recognition

Learning this connection requires: 

➢ Depth, 3D geometry

➢ Semantics

➢ Context

Can be learned without manual labels!

Also key to 

recognition!

Our approach: unsupervised feature learning 

using egocentric video + motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of 

transformations

𝐳 𝑔𝐱  ≈ 𝐳(𝐱)  

Invariance discards information;

equivariance organizes it. 

Equivariant features : predictably responsive to 

some classes of transformations, through simple 

mappings (e.g., linear)

𝐳 𝑔𝐱  ≈ 𝑀𝑔𝐳(𝐱)

“equivariance map”

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Equivariant embedding 

organized by ego-motions

Pairs of frames related by 

similar ego-motion should 

be related by same 

feature transformation

left turn

right turn

forward

Learn

Approach idea: Ego-motion equivariance

time →

m
o
to

r 
s
ig

n
a
l

Training data

Unlabeled video + 

motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach overview

Our approach: unsupervised feature learning using 

egocentric video + motor signals

1. Extract training frame pairs from video

2. Learn ego-motion-equivariant image features

3. Train on target recognition task in parallel

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Training frame pair mining

Discovery of ego-motion clusters

Right turn

=forward

=right turn

=left turn

y
a
w

 c
h

a
n

g
e

forward distance

𝑔

𝑔

𝑔

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



∥ 𝑀𝑔𝐳𝛉(𝐱𝑖) − 𝐳𝛉(𝑔𝐱𝑖) ∥𝟐

Ego-motion equivariant feature learning

𝐱𝑖

𝑔𝐱𝑖

𝐳𝛉(𝐱𝑖)

𝐳𝛉(𝑔𝐱𝑖)

𝑀𝑔

Desired: for all motions 𝑔 and all images 𝐱, 

𝐳𝛉 𝑔𝐱  ≈ 𝑀𝑔𝐳𝛉(𝐱)  

𝛉

𝛉

Given:

𝛉 𝐳𝛉(𝐱𝑘)𝐱𝑘 𝑊 softmax loss 𝐿𝐶(𝐱𝑘 , y𝑘)

Unsupervised training

Supervised training

𝐳𝛉(𝑔𝐱𝑖)

𝐳𝛉(𝐱𝑖) 𝑀𝑔

Feature space

class y𝑘 𝛉, 𝑀𝑔 and 𝑊 jointly trained

𝑔

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Results: Recognition

Learn from unlabeled car video (KITTI)

Exploit features for static scene classification 

(SUN, 397 classes)

Geiger et al, IJRR ’13

Xiao et al, CVPR ’10
Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



KITTI ⟶ SUN

Do ego-motion equivariant features improve recognition?

397 classes

re
c
o

g
n

it
io

n
 a

c
c
u

ra
c
y
 (

%
)

Results: Recognition

6 labeled training 

examples per class

Up to 30% accuracy increase 

over state of the art!

0.25

0.70

1.02

1.21

1.58

invariance

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



The Curious Robot: Learning Visual 
Representations via Physical Interactions

Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han,    
Yong-Lae Park, and Abhinav Gupta 

ECCV 2016



Embodied representations

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Grasping

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Pushing

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Poking

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Representations from interactions

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



SimCLR - A Simple Framework for Contrastive 
Learning of Visual Representations

Chen et al., “SimCLR - A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



https://amitness.com/2020/03/illustrated-simclr/

x t

t’

ResNet50

Output of the last 
average pooling layer

Multi Layer 
Perceptron (2)

Chen et al., “SimCLR - A Simple Framework for Contrastive Learning of Visual Representations”, ICML 2020



He et al., “Masked Autoencoders Are Scalable Vision Learners”, CVPR 2022
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