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Motivation

e What's the data we’ve learned from thus far?
e Labeled static datasets

— Expensive to obtain
— Doesn’t match how humans learn

e Alternatives
— Unsupervised learning (no labels)

— Self-supervised learning (“fake” /emergent labels)
— Embodied/active learning (agents in environments)



Self-supervised learning



Unsupervised Visual Representation
Learning by Context Prediction

Carl Doersch, Alexei Efros and Abhinav Gupta
ICCV 2015



ImageNet + Deep Learning

» Beagle

- Image Retrieval

- Detection (RCNN)

- Segmentation (FCN)
- Depth Estimation

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



ImageNet + Deep Learning
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Geometry? Boundaries?

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Context as Supervision

[Collobert & Weston 2008; Mikolov et al. 2013]

store-bought gimmicks and appliances, the toasters and
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Semantics from a non-semantic task

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Relative Position Task

{aad bk [] & 8 possible locations

ndoly Smpl Pach
Sample Second Patch

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Patch Embedding

CNN Note: connects across instances!

Doersch et aI. ’Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Architecture
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015




What is learned?

ImageNet AlexNet

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Pre-Training for R-CNN

Y NG
1. Input 2. Extract region
Image proposals (~2k)

=] warped region

P aeroplane? no.
, .

person? yes.

tvmonitor? no.

3. Compute
CNN features

!

4. Classify
regions

Pre-train on relative-position task, w/o labels

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

[Girshick et al. 2014]



VOC 2007 Performance

(pretraining for R-CNN)

54.2
46.3

40.7

% Average Precision

ImageNet Labels Ours No Pretraining

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Shuffle and Learn: Unsupervised Learning
using Temporal Order Verification

Ishan Misra, C. Lawrence Zitnick, and Martial Hebert
ECCV 2016



(a)

Positive Tuples (b) Negative Tuples
Temporally Correct order ' :

Original video

Temporally Incorrect order

Fig.1: (a) A video imposes a natural temporal structure for visual data. In many
cases, one can easily verify whether frames are in the correct temporal order (shuffied
or not). Such a simple sequential verification task captures important spatiotemporal
signals in videos. We use this task for unsupervised pre-training of a Convolutional
Neural Network (CNN). (b) Some examples of the automatically extracted positive
and negative tuples used to formulate a classification task for a CNN.

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



(a) Data Sampling (b) Triplet Siamese network for sequence

verification
Input Tuple Pt AlexNet architecture
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Fig. 2: (a) We sample tuples of frames from high motion windows in a video. We form
positive and negative tuples based on whether the three input frames are in the correct
temporal order. (b) Our triplet Siamese network architecture has three parallel network
stacks with shared weights upto the £c7 layer. Each stack takes a frame as input, and
produces a representation at the f£c7 layer. The concatenated fc7 representations are
used to predict whether the input tuple is in the correct temporal order.

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



Table 2: Mean classification accuracies over the 3 splits of UCF101 and HMDB51
datasets. We compare different initializations and finetune them for action recognition.

Dataset Initialization Mean Accuracy
UCF101 Random 38.6
(Ours) Tuple verification 50.2
HMDB51 Random 13.3
UCF Supervised 15.2
(Ours) Tuple verification 18.1

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



Momentum Contrast for
Unsupervised Visual Representation Learning

Kaiming He, Haogi Fan, Yuxin Wu, Saining Xie, Ross Girshick
CVPR 2020



Highlights

« Unsupervised pre-training: supervised counterparts
* ... iIn 7/ vision tasks on detection, segmentation

¢...by margins in some tasks

e ... scaled out to images

He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



Unsupervised learning in NLP: BERT
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He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



Analogy in Computer Vision

query keys feature of /\%N
|—>- loss «— feature of ¥ J1

feature of @
feature of

encoder feature of “
feature of """

dictionary

He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



Contrastive Learning

dictionary
query keys

—— loss «——

feature of ¥
) )

encoder encoder

Hadsell et al. CVPR2006,
Wuet al. CVPR 2018, ...

He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



Our Method: Momentum Contrast (MoCo)

 Contrastive learning as dictionary look-up

Consider an encoded query ¢ and a set of encoded sam-
L ples {kq, k1, k2, ...} that are the keys of a dictionary. As-
e La rge d]Ctlonary sume that there is a single key (denoted as £ ) in the dic-
tionary that ¢ matches. A contrastive loss [29] is a function
whose value is low when ¢ is similar to its positive key k.
and dissimilar to all other keys (considered negative keys
e Consistent dlctlonary for ¢). With similarity measured by dot product, a form of
a contrastive loss function, called InfoNCE [46], 1s consid-
ered in this paper:

L,=—log ffp(q'k’*m (1)
2 i—o eXp(q-ki/T)

where 7 1s a temperature hyper-parameter per [61]. The sum
is over one positive and K negative samples. Intuitively,
this loss is the log loss of a (K +1)-way softmax-based clas-
sifier that tries to classify g as k.. Contrastive loss functions
can also be based on other forms [29, 59, 61, 36], such as
margin-based losses and variants of NCE losses.

He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



queue:

Large Dictionary previous batches
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He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



Consistent Dictionary fom
query keys -~ updating encoder:
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He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



Consistent Dictionary from
- updating encoder

query keys

—— loss «——
feature of [F¥# ~
encoder momentum

encoder slowly update
0, :=m-9k+(1—m)'9q

He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



Results: ImageNet Linear Classifiers
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He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020
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Results: Transferring Features

VOC 2007 Detection, Faster R-CNN, ResNet-50

pre-train | RelPos, by [10] Multi-task [10] Jigsaw, by [22] LocalAgg [60]
super. IN-1M 74.2 74.2 0.5 74.6
unsup. IN-1M 66.8 (—7.4) 70.5 (=3.7) 61.4 (—-9.1) 69.1 (—5.5)

Previous:
behind supervised pre-training

He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



Results: Transferring Features

VOC 2007 Detection, Faster R-CNN, ResNet-50

pre-train RelPos, by [10] Multi-task [10] Jigsaw, by [22] LocalAgg [60] MoCo
super. IN-1M 74.2 74.2 703 74.6 74.4
unsup. IN-1M 66.8 (—7.4) 70.5 (=3.7) 61.4 (—9.1) 69.1 (-5.5) 74.9 (+0.5)

MoCo:
supervised pre-training

He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



Results: Transferring Features

VOC 2007 Detection, Faster R-CNN, ResNet-50

APsq
pre-train | RelPos, by [10] Multi-task [10] Jigsaw, by [22] LocalAgg [60] MoCo
super. IN-1M 74.2 74.2 70.5 74.6 74.4
unsup. IN-1M 66.8 (—7.4) 70.5 (=3.7) 61.4(-9.1) 69.1 (=5.5) 74.9 (+0.5)
unsup. IN-14M - - 69.2 (—1.3) - 75.2 (+0.8)
unsup. IG-1B - - - - 75.6 (+1.2)
MoCo:
benefit from images

He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



Results: Transferring Features

VOC 2007 Detection, Faster R-CNN, ResNet-50

APs AP AP
pre-train MoCo MoCo MoCo
super. IN-1M 74.4 42.4 427

unsup. IN-1M 74.9 (4+0.5) 46.6 (+4.2) 50.1 (+7.4)
unsup. IN-14M  75.2 (+0.8) 46.9 (+4.5) 50.2 (+7.5)
unsup. IG-1B 75.6 (+1.2) 47.6 (+5.2) 51.7 (-+9.0)

MoCo:
big gains in stringent metrics

AP5

He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



Results: Transferring Features

pre-train APs AP AP7s AP APD APS N APK APIK
random init. 64.4 379 38.6 ) ) ).0 3 5
super. IN-1M 814 54.0 59.1 40.6 61.3 444 36.8 58.1 39.5
MoCo IN-1M 81.1 (—0.3) 54.6 (+0.6) 59.9 (+0.8) 40.8 (+02) 61.6(+03) 44.7 (+0.3)| 36.9 (+0.1) 58.4 (+0.3) 39.7 (4+0.2)
MoCo IG-1B 81.6 (+0.2) 55.5 (+1.5) 61.2 (+2.1) 41.1 (+05) 61.8(+05 45.1(+0.7)| 37.4 (+0.6) 59.1 (+1.0) 40.2 (+0.7)
(a) Faster R-CNN, R50-dilated-C5 (b) Mask R-CNN, R50-FPN, 2x schedule
pre-train APs AP AP7s APPP AP AP ApP™K APZE APIK
random init. 60.2 33.8 33.1 ( ) 3 I 3
super. IN-1IM 81.3 53.5 58.8 40.0 59.9 43.1 34.7 56.5 36.9
MoCo IN-1M 81.5 (+0.2) 55.9 (+24) 62.6 (+3.8) 40.7 (+0.7) 60.5 (+0.6) 44.1 (+1.00| 35.4 (+0.7) 57.3 (+0.8) 37.6 (+0.7)
MoCo IG-1B 82.2 (+0.9) 57.2 (+3.7) 63.7 (+4.9) 41.1 (+1.1y 60.7 (+0.8) 44.8 (+1.7)| 35.6 (+0.9) 57.4 (+0.9) 38.1 (+1.2)
(b) Faster R-CNN, R50-C4 (d) Mask R-CNN, R50-C4, 2 x schedule

VOC 07+12 COCO Detection
Detection COCO Instance seg.

surpass, +4.9 AP surpass

He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



Results: Transferring Features

COCO keypoint detection

COCO dense pose estimation

pre-train APYP APY APY pre-train AP .»\P';‘,"‘ AP}
super. IN-IM 65.8 86.9 719 super. IN-IM 48.3 85.6 50.6
MoCo IN-IM 66.8 (+1.0 87.4 (+0.5) 72.5 (+0.6, MoCo IN-IM 50.1 (+1.8 86.8 (+1.2) 539 (+3.3
MoCo 1G-1B 66.9 (+1.1 87.8 (+0.9) 73.0 (+1.1 MoCo 1G-1B 50.6 (+2.3 87.0(+1.4) 543 (+3.7

COCO Keypoint

LVIS instance segmentation
pre-train APk APZY APIX
super. IN-IMT | 244 37.8 25.8
MoCo IN-IM | 241(=03) 374(—04) 255(—03)
MoCo 1G-1B 249(+05)  382(+04) 264 (+0.6

LVIS

Instance seg.

Cityscapes instance seg. Semantic
pre-train APTK :\P!,‘f Cityscapes
super. IN-1M | 32.9 59.6 T4.6
MoCo IN-1IM [ 32.3(—0.6) 593 (—03)| 75.3 (+0.7)
MoCo IG-1B | 32.9( 0.0) 603 (+0.7)] 75.5 (+0.9)

Cityscapes
Semantic seg.

COCO Dense pose

AP75

Semantic
pre-train voC
super. IN-IM | 74.4
MoCo IN-IM | 72.5(-1.9)
MoCo 1G-1B 73.6(-0.8)

VOC
Semantic seg.
-0.8 point

He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



A Simple Framework for Contrastive
Learning of Visual Representations

Ting Chen, Simon Kornblith, Mohammad Norouzi,
Geoffrey Hinton

ICML 2020
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1. Augmentation

Preparing similar pairs in a batch

)
Batch Size AuRlé::]ec::::;ion Augmented Images
N=2 g =2N=2*2=4

(T)
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Raw Images Training Data




Encoder Component of Framework

2. Representation
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_ Encoder _
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Transformed
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3. Projection

Projection Head Component

Representation

hj Zj
— Tl Dense Relu Dense »[ ] —

Maximize
similarity

— I TTh- Dense Relu Dense »[ | | | —
hj Ij

Projection Head
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Calculated Embeddings

Batch

Augmented

Images

Pairwise cosine similarity

i

~

Similarity Calculation of Augmented Images

similarity( m , i )

- COSINne
similarity

(

Zj Zj
LIl Ll

)

4. Learning

SRR CaTPATITPATY

T = temperature
hyperparameter. It can scale
the input and widen the
range [-1, 1] of cosine
similarity

||z|| = vector norm




4. Learning

first image 05 E ﬁ

Probability

m E Pair 1

|
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e
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NCE (Noise Contrastive Estimator)
NT-Xent (Normalized Temperature-Scaled Cross-Entropy Loss).

exp(si;)

1(i,j) = —log

_similarity( @ )

4. Learning

Zﬁil 1[k!=i]EXP(Si__k} 1[k!=i] = 1 iff k!=i

I(mi) ='|Og( similarity(mﬂ) . esim"arimE) . esimilarity() )

Interchanged

similarity(

£

a)

(48 ) =-Iog(

e

e
similarity( 5 M) + similarity[E) + esimilaritY() )
e




4. Learning

— iNg (2k — 1,2k) +1(2k, 2k — 1)]
Pair 1 Loss (k=1) Pair 2 Loss (k=2)
[
- [1( S ]) 18] [3)] + [ @) + (e )]
B 2% 2

Update encoder f(.) and projection head g(.) to minimize this loss



5. Adaptation

Usage on downstream tasks

Representation
o ! ‘ \ hj
| § Encoder

Encoder [TT]

Base Encoder

f()

For downstream task,
use representation from the encoder,
not projection head

classification, detection, ...




Phan Anh VU

4 main findings aside the algorithm

Composition of multiple
augmentations

Unsupervised: stronger
augmentation than supervised

Cross entropy works well, but
requires 12 normalized
embeddings and proper
temperature hyperparameter

Better result: projection head in
training, but not downstream
task

Bigger batch size, longer training
= better (> supervised)

Deeper and wider network =
better (= supervised)




Phan Anh VU

Spatial / Geometric

Crop
Resize
Flip
Rotate
Cutout

1. Augmentation

Appearance

Color distortion: color
dropping, brightness,
contrast, saturation, hue
Gaussian blur

Sobel filtering



Train: random crop (with flip and resize), color 1 . A u g men ta t | on

distortion, and Gaussian blur

\EA

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

Phan Anh VU



C rI:IFl

Augmentation

Cubout

Colar

Composite augmentation
sobel I N - | | | | @ -> harder contrastive

Noise JEEE - - - - - - - M prediction task

siur [E) . . . . . . . -> petter representation

st transformation

15

Rotate

T Crop + color distortion = best
N performance

2nd transformation

Figure 5. Linear evaluation (ImageNet top-1 accuracy) under in-
dividual or composition of data augmentations, applied only to
one branch. For all columns but the last, diagonal entries corre-
spond to single transformation, and off-diagonals correspond to
composition of two transformations (applied sequentially). The
last column reflects the average over the row.

Phan Anh VU



Only cross entropy weighs the negatives

by their relative hardness
NT-Xent requires 12 norm and proper
temperature hyperparameter

Cross entropy, logistic, margin triplet

NT-Logi. NT-Logi.(sh) NT-Xent

509 51.6 57.5 579 63.9

Margin Margin (sh)

Table 4. Linear evaluation (top-1) for models trained with different
loss functions. “sh™ means using semi-hard negative mining.

Phan Anh VU

Loss function

f5 norm? T Contrastive acc. | T

| Entropy

90.5
87.8
68.2
59.1
91.7
92.1

—_—
-

0.05
0.1
0.5

1
10
100

p6 0o b =
LN

==
L LN

Table 5. Linear evaluation for models trained with different choices
of £ norm and temperature 7 for NT-Xent loss. The contrastive
distribution is over 40096 examples.



Linear classifier on top of frozen base network

* Supervised -7 SimCLR (4x)

#*SimCLR (2x)
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Figure 1. ImageNet top-1 accuracy of linear classifiers trained
on representations learned with different self-supervised methods

(pretrained on ImageNet). Gray cross indicates supervised ResNet-

50. Our method, SimCLR, is shown in bold.

Phan Anh VU

Benchmark

Fine tune whole base network

Method

Label fraction
Architecture 1% 10%
Top 5

Methods using other label-propagation:

Pseudo-label
VAT+Entropy Min.
UDA (w. RandAug)
FixMatch (w. RandAug)
S4L (Rot+VAT+En. M.)

ResNet50 51.6 324
ResNets0 47.0 834
ResNet50 - 38.5
ResNet50 - 39.1
ResNet50 (4 91.2

Methods using representation learning only:

InstDisc
BigBiGAN
FIEL

CPC v2
SimCLR (ours)
SimCLR (ours)
SimCLR (ours)

e

774
78.8
83.8
91.2
87.8
01.2
92.6

ResNet50
RevNet-50 (4 x)
ResNet-50
ResNet-161(*)
ResNet-50
ResNet-50 (2x)
ResNet-50 (4 x)

-] L Lh
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ek Ln
o
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Table 7. ImageNet accuracy of models trained with few labels.
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Abstract

Recently,  self-supervised learning methods like
MoCo [22], SimCLR [8], BYOL [20] and SwAV [7]
have reduced the gap with supervised methods. These
results have been achieved in a control environment, that is
the highly curated ImageNet dataset. However, the premise
of self-supervised learning is that it can leamn from any
random image and from any unbounded dataset. In this
work, we explore if self-supervision lives to its expectation
by training large models on random, uncurated images with
no supervision. Our final SElf-supERvised (SEER) model,
a RegNetY with |.3B parameters trained on IB random
images with 512 GPUs achieves 84.2% top-1 accuracy,
surpassing the best self-supervised pretrained model by 1%
and confirming that self-supervised learning works in a
real world setting. Interestingly, we also observe that self-
supervised models are good few-shot leamers achieving
77.9% top-1 with access to only 10% of ImageNet.

1. Introduction

A recent trend shows that well-tailored model pre-
traymne anoroaches (weaklv-cupnerviced. semi-supervised

84}
s 83 T el
- )('
5 P il
2 81 ‘
€L
s )k " SEER
B 80} o SwAV
7 =fe- SimCLRv2
79} { ViT
50M_ 100M 500M 1B

Number of Parameters

Figure 1: Performance of large pretrained models on ImageNet. We
pretrain our SEER models n an uncurated and random images. They
are RegNel archilectures [40] trained with the SwAY sell-supervised
method [7] We compare with the original models trained in Caron et
al. [7] as well as the pretraining on curated data from SimCLRv2 [9] and
ViT |14]. The network architectures are dillferent. We report the top-1
accuracy after finetuning on ImageNet.



Learning image representations tied to
ego-motion

Dinesh Jayaraman and Kristen Grauman
ICCV 2015



The kitten carousel experiment
[Held & Hein, 1963]
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Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Problem with today’s visual learning

Status quo: Learn from
“disembodied” bag of
labeled snapshots.

Our goal: Learn in the
context of acting and moving
In the world.

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Our idea: Ego-motion < vision

Goal: Teach computer vision system the connection:
“*how | move” & “how my visual surroundings change”

Ego-motion motor signals Unlabeled video

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion < vision: view prediction

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion < vision for recognition

Learning this connection requires:

—_—

» Depth, 3D geometry Also key to
» Semantics — recognition!
» Context

Can be learned without manual labels!

Our approach: unsupervised feature learning
using egocentric video + motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of
transformations

z(gx) = z(X)
\ _J
/Equivariant features : predictably responsive to N

some classes of transformations, through simple
mappings (e.d., linear)

“‘equivariance map”
z(gx) =~ M,z(X)

e %

Invariance discards information;
equivariance organizes lit.

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach idea: Ego-motion equivariance

Training data Equivariant embedding

Unlabeled video + organized by ego-motions
motor signals

Pairs of frames related by
similar ego-motion should
be related by same
feature transformation

motor signal

time -

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach overview

Our approach: unsupervised feature learning using
egocentric video + motor signals

1. Extract training frame pairs from video
2. Learn ego-motion-equivariant image features

3. Train on target recognition task in parallel

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Training frame pair mining

Discovery of ego-motion clusters

yaw change

forward distance

e @

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion equivariant feature learning

Given: Desired: for all motions g and all images x,
Zo(gX) =~ M,Zg(X)

Unsupervised training

»
- Al
: |
r % o
g ’
By
B : 4

| Myzg(X;) — Zo(gX;) Il2

nuu:"u:unQ

ax loss L. (Xy, Vi)

class yy e\,M andéW' intly trained

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Summary

/Ego-motion training pairs Neural network training Equwarlant embeddlb

4 left turn

A s left turn # ~uright turn
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APPROACH

Scene and object recognition Next-best view selectlon
N R Football field? g
5 Pagoda?
fﬂ Airport?
o Cathedral? -
Army base?
cup frying pan

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Results: Recognition

Learn from unlabeled car video (KITTI)

s % Bl -

’, Geiger et al, IJRR '13

Exploit features for static scene classification
(SUN, 397 classes)

Xiao et al, CVPR 10

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Results: Recognition

Do ego-motion equivariant features improve recognition?

6 labeled training

" ~ KITTI—SUN |, BSEetd | examples per class

1.5 397 classes ! 121
£ 1.02 ;

0.70 i

recognition accuracy (%)

0.5+
0.25 P . :
: invariance i
o :
< s & N <2
&0 2 AN SN oY
?:‘)(\ o8 0(\\6\6 0®e\® o
o

Up to 30% accuracy increase
over state of the art!

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



The Curious Robot: Learning Visual
Representations via Physical Interactions

Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han,
Yong-Lae Park, and Abhinav Gupta

ECCV 2016



Embodied representations

Conv Layer1 Filters Conv3 Neuron Activations Convjs Neuron Activations

Learned Visual Representation

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Grasping

Successful grasps

Unsuccessful grasps

Fig. 2. Examples of successful (left) and unsuccesful grasps (right). We use a patch
based representation: given an input patch we predict 18-dim vector which represents
whether the center location of the patch is graspable at 0°, 10°, ...170°.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Pushing

Objects and push action pairs

a * o

1
-

> )\
u\ \bu ‘
Initial state Final state Initial state Final state Initial state Final state

Fig. 4. Examples of initial state and final state images taken for the push action. The
arrows demonstrate the direction and magnitude of the push action.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Poking

Objects and poke tactile response pairs

-

Fig. 6. Examples of the data collected by the poking action. On the left we show the
object poked, and on the right we show force profiles as observed by the tactile sensor.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Pose/viewpoint invariance

Fig. 7. Examples of objects in different poses provided to the embedding network.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Representations from interactions
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Fig. 8. Our shared convolutional architecture for four different tasks.

shared

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Fig. 10. The first column corresponds to query image and rest show the retrieval. Note
how the network learns that cups and bowls are similar (row 5).

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Table 1. Classification accuracy on ImageNet Household, UW RGBD and Caltech-256

Household UW RGBD Caltech-256

Root network with random init. 0.250 0.468 0.242
Root network trained on robot tasks (ours) 0.354 0.693 0.317
AlexNet trained on ImageNet 0.625 0.820 0.656

Table 2. Image Retrieval with Recall@k metric

Instance level Category level
k=1 k=5 k=10 k=20| k=1 k=5 k=10 k=20
Random Network 0.062 0.219 0.331 0.475 | 0.150 0.466 0.652 0.800
Our Network 0.720 0.831 0.875 0.909 | 0.833 0.918 0.946 0.966
AlexNet 0.686 0.857 0.903 0.941 | 0.854 0.953 0.969 0.982

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Guiding Exploratory Behaviors for
Multi-Modal Grounding of Linguistic Descriptions

Jesse Thomason, Jivko Sinapov, Ray Mooney, Peter Stone
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RGB image convl conv2 conv3 spatial softmax feature motor
points torques

- fully fully fully
expected connected connected connected
2D position RelLU RelLU linear
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robot
configuration
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Figure 2: Visuomotor policy architecture. The network contains three convolutional lay-
ers, followed by a spatial softmax and an expected position layer that converts pixel-wise
features to feature points, which are better suited for spatial computations. The points are

concatenated with the robot configuration, then passed through three fully connect utomatlcally
to produce the torques. C] PRI ocisivein
pose data
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Object-Graphs for Context-Aware
Category Discovery

Yong Jae Lee and Kristen Grauman
CVPR 2010



Goal

Unlabeled Image Data Dlscovered categories

* Discover new object categories, based on their relation
to categories for which we have trained models

Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010



Existing approaches

Previous work treats unsupervised visual discovery as
an appearance-grouping problem.

Can you identify the recurring pattern?

d Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010



Our idea

How can seeing previously learned objects in novel
images help to discover new categories?

Can you identify the recurring pattern?

Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010



Our idea

Discover visual categories within unlabeled images by
modeling interactions between the unfamiliar regions
and familiar objects.

Q
#

Can you identify the recurring pattern?

d Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010



Context-aware visual discovery

sky

house

drive-
way ?

grass

Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010



Learn Detect Object-level

Discover
Models Unknowns Context y

Clusters from region-region affinities

Unknown
Regions

K (si,55) = Kapp(5i585) + Kovj—grapn(Si, S5)

Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010



Object Discovery Accuracy
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Examples of Discovered Categories




Discussion

Many types of supervision have been tried

What other types of supervision “for free” can
we use?

What kind of data to use?

How do we know if a certain supervision type
would work?



Embodied learning



Reinforcement Learning

State s, Reward r,

Action a,
Next state st+1

Environment

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

—
M —F >

F77 77777777 777777777 7777777777

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Go

A BCDEFGH )] KLMNUOPOQRST

19 19

18 /R 18

17 () 17

16 i 16

15 ‘.qi(}_(/ 15

i: ‘ i: Objective: Win the game!

12 12

- hd ., State: Position of all pieces

9 s Action: Where to put the next piece down
; i > Reward: 1 if win at the end of the game, 0 otherwise
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Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



How can we mathematically formalize the RL problem?

State s, Reward r,

Action a,
Next state st+1

Environment

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

world

Defined by: (S, A, R, P,~)

. set of possible states

. set of possible actions

. distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
. discount factor

LEFAE 0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Markov Decision Process

- At time step t=0, environment samples initial state s, ~ p(s,)
- Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r,~ R(. | s,, &)

- Environment samples next state s,,, ~ P(. | s, a,)

- Agent receives reward r,and next state s, ,

- Anpolicy u is a function from S to A that specifies what action to take in
each state

t
- Objective: find policy u* that maximizes cumulative discounted reward: Z"f Tt
t=>0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



A simple MDP: Grid World

actions = { states
1. right — *
2. left <— Set a negative “reward”
3. u I o for each transition
- (e.9.r=-1)
4. down 1
}

Objective: reach one of terminal states (greyed out) in
least number of actions

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



A simple MDP: Grid World

* 1]

SEGERSE IEE

SRR D

Random Policy Optimal Policy

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



The optimal policy u*™
We want to find optimal policy u* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



The optimal policy u*™

We want to find optimal policy u* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Formally: 7* = argmaxE
T

Z’Yt?‘tlﬂ'] W|th 8p NP(S[}),ﬂt i W('|St)53t—|—l Np('|3t,,[1t)

t>0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, Iy, Sy, a5, I, .-

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
VT(s) = Zf}f Ti|So = 8, T
t>0

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E Z'ytrﬂ.s[} =Ss,a90 =@,

t>0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = mf‘XE nytrt|so =S,a0 = @, T
>0

Q* satisfies the following Bellman equation:
Q*(s,a) =Egneg {?" + v max Q*(s',a)|s, a,]

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+~yQ* (s, a’)

The optimal policy u* corresponds to taking the best action in any state as specified by Q*

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Solving for the optimal policy:
Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Qe a0 Q" (3,0)

function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(s,a;0): FC-4 (Q-values) < Last FC layer has 4-d

neural network output (if 4 actions),

with weights § FC-256 corresponding to Q(s,,
a,), Q(s, a,), Q(s, ay),

A single feedforward pass Q(sya,)

to compute Q-values for all

actions from the current Number of actions between 4-18

state => efficient! 11n g

|

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

depending on Atari game

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a; )
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6) )2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N - Initialize replay memory, Q-network
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a; )
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6) )2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights

for episode = 1, M do - Play M episodes (full games)
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do

With probability € select a random action a;,

otherwise select a; = max, Q*(¢(s¢),a; )

Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)

Store transition (@, ay, 7y, ¢re1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6) )2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do

Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;) *
fort =1,T do

With probability € select a random action a;,

otherwise select a; = max, Q*(¢(s¢),a; )

Execute action a; in emulator and observe reward r; and image z;

Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)

Store transition (@, ay, 7y, ¢re1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6) )2 according to equation 3
end for
end for

Initialize state
(starting game
screen pixels) at the
beginning of each
episode

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
for iv?thl’ Tl‘)iobili ; . _ - For each timestep t
ith probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a; ) of the game
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6) )2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity NV

Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do

With probability € select a random action a;, <
otherwise select a; = max, Q*(¢(s¢),a; )

Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)

Store transition (¢, @y, 7y, ¢¢+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

Skl T3 for terminal ¢,
g r; +ymaxy Q(¢j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 0))2 according to equation 3
end for
end for

With small probability,
select a random
action (explore),
otherwise select
greedy action from
current policy

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a; )
Execute action a; in emulator and observe reward r; and image z;

Set 8,1 = 84, a4, Ty and preprocess @y.1 = P(S141) - Take the action (a,),
Store transition (@, ay, 7y, ¢re1) in D and observe the
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D reward r,and next
Sety, = Tj , for terminal (.bj+1 state s, ,
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6) )? according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a; )
Execute action a; in emulator and observe reward r; and image z;
Set 841 = 84, a4, Ty41 and preprocess @1 = (841 e
Store transition (@, az, 7¢, G141 ) in D ( ) < Store transition in
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D replay memory
S . { Tj for terminal ¢,
ety; = . : . ’. : .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,

Perform a gradient descent step on (y; — Q(¢;, a;; 6) )2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a; )
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D _
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) fromD <« EXperience Replay:

Setq: — { T for terminal ¢, ; Sample a random
Yi r; + ymax, Q(¢j+1,a’;0)  for non-terminal ¢, , minibatch of transitions
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3 from replay memory
end for and perform a gradient
end for descent step

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand

Can we learn a policy directly, e.g. finding the best policy from a collection of
policies?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Policy Gradients

Formally, let's define a class of parameterized policies: IT = {7y,0 € R™}

For each policy, define its value:

J(@) =E Z Yire|me

t>0

We want to find the optimal policy 6* = arg max J(6)

How can we do this?
Gradient ascent on policy parameters!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



REINFORCE Algorithm (Williams 1992)

Gradient estimator: ~ VyJ(0) ~ Z r(7)Ve log mg(at|st)

t>0
Interpretation:
- If r(7) is high, push up the probabilities of the actions seen

- If r(7) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment
Is really hard. Can we help the estimator?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Policy Gradients
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Andrej Karpathy



Variance Reduction

Gradient estimator: Vg J(0) ~ ZT‘(T)VQ log mg(az|st)
>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

Ved(0) = Z (Z “rtr) Vo log me(as|st)

>0 \t/'>t

Fei-Fei Li, Ranjay Krishna, Danfei Xu



Variance Reduction

Gradient estimator: Vg J(8) & ZT‘(T)VQ log mo(a|st)

t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

Ved(0) = Z (Z “rtr) Vo log me(as|st)

t>0 \t'>t
Second idea: Use discount factor y to ignore delayed effects

VoJ (6 Z (Z ~ ) Vo log me(as|st)

t>0 \t'>t

Fei-Fei Li, Ranjay Krishna, Danfei Xu



Variance Reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

VoJ (0 Z (Z fyt e, — b(s¢) ) Vo log mg(a|st)

t>0 \t'>t

Fei-Fei Li, Ranjay Krishna, Danfei Xu



How to choose the baseline?

Want to push up the probability of an action from a state, if this action was
better than the expected value of what we should get from that state.

Intuitively, we are happy with an action a. in a state s,if Q" (s¢;a¢) — V7™ (sy)
Is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator:

VoJ(0) ~ Z(Q“f" (s¢,at) — V7™ (s¢)) Vg logme(at|st)

t>0

Fei-Fei Li, Ranjay Krishna, Danfei Xu



Policy Gradients

* Objective: YiAilog p(yilxi)
* X, = state
* y. = sampled action

* A = “advantage” e.g. +1/-1 for win/lose in
simplest version, or discounted, or
improvement over “baseline”

Adapted from Andrej Karpathy



Policy Gradients vs Q-Learning

Policy gradients suffers from high variance and
instability; might want to make gradients smaller (e.g.
relative to a baseline)

Policy gradients can handle continuous action spaces
(Gaussian policy)

Estimating exact value of state-action pairs vs choosing
what actions to take (value not important)

Step-by-step (did | correctly estimate the reward at this
time) vs delayed feedback (run policy and wait until
game terminates)



Actor-Critic Algorithm

We can combine Policy Gradients and Q-learning by training both an
actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor
how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values
of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay

- Remark: we can define by the advantage function how much an
action was better than expected A" (s,a) = Q™(s,a) — V™(s)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Example Q Network
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ages, positive and negative proxy images, and taken actions. It predicts the best action given
a specific state. Inputs are denoted with dotted lines. Please see text for further explanation.

Murrugarra-Llerena and Kovashka, “Image Retrieval with Mixed Initiative and Multimodal Feedback”, BMVC 2018



RL for navigation

target-driven visual navigation

\J update
observation

— | act < target 1

i
y
o

Fig. 1. The goal of our deep reinforcement learning model is to navigate
towards a visual target with a minimum number of steps. Our model takes
the current observation and the image of the target as input and generates
an action in the 3D environment as the output. Our model learns to navigate
to different targets in a scene without re-training.

Zhu et al., “Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning”, ICRA 2017



RL for navigation

Figure 1: Our goal is to use scene priors to improve navigation in unseen scenes and towards novel
objects. (a) There is no mug in the field of view of the agent, but the likely location for finding a
mug is the cabinet near the coffee machine. (b) The agent has not seen a mango before, but it infers
that the most likely location for finding a mango is the fridge since similar objects such as apple

appear there as well. The most likely locations are shown with the orange box.
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Figure 2: Overview of the architecture. Our model to incorporate semantic knowledge into se-
mantic navigation. Specifically, we learn a policy network that decides an action based on the visual
features of the current state, the semantic target category feature and the features extracted from the
knowledge graph. We extract features from the parts of the knowledge graph that are activated.

Yang et al., “Visual Semantic Navigation using Scene Priors”, ICLR 2019



RL for question-answering

)&

) ‘»"»& Q: What color is the car?
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Figure 1: Embodied Question Answering — EmbodiedQA— tasks
agents with navigating rich 3D environments in order to answer
questions. These agents must jointly learn language understand-
ing, visual reasoning, and goal-driven navigation to succeed.

Das et al., “Embodied Question Answering”, CVPR 2018



RL for question-answering
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Figure 4: Our PACMAN navigator decomposes navigation into a planner and a controller. The planner selects actions and the controller
executes these actions a variable number of times. This enables the planner to operate on shorter timescales, strengthening gradient flows.

Das et al., “Embodied Question Answering”, CVPR 2018



Recurrent Attention Model

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeun

Softmax
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RL for object detection

Sequence of attended regions to localize the object

Figure 1. A sequence of actions taken by the proposed algorithm
to localize a cow. The algorithm attends regions and decides how
to transform the bounding box to progressively localize the object.

Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015



RL for object detection

Horizontal moves Vertical moves Scale changes Aspect ratio changes
Right Left Down Bigger Smaller Fatter Taller Trigger

Figure 2. Illustration of the actions in the proposed MDP, giving 4
degrees of freedom to the agent for transforming boxes.
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Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015
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