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Plan for this lecture

• What is classification? 

• Support vector machines

– Separable case / non-separable case

– Linear / non-linear (kernels)

– The importance of generalization

• Convolutional neural networks



• Given a feature representation for images, how 

do we learn a model for distinguishing features 

from different classes?

Zebra

Non-zebra

Decision

boundary

Slide credit: L. Lazebnik

Classification



Classification
• Assign input vector to one of two or more classes

• Input space divided into decision regions

separated by decision boundaries

Slide credit: L. Lazebnik



Examples of image classification

• Two-class (binary): Cat vs Dog

Adapted from D. Hoiem



Examples of image classification

• Multi-class (often): Object recognition

Caltech 101 Average Object Images
Adapted from D. Hoiem



Examples of image classification

• Place recognition

Places Database [Zhou et al. NIPS 2014]
Slide credit: D. Hoiem

http://places.csail.mit.edu/places_NIPS14.pdf


Examples of image classification

• Material recognition

[Bell et al. CVPR 2015]
Slide credit: D. Hoiem

http://arxiv.org/pdf/1412.0623.pdf


Examples of image classification

• Image style recognition

[Karayev et al. BMVC 2014] Slide credit: D. Hoiem

http://arxiv.org/pdf/1311.3715.pdf


Recognition: A machine 

learning approach



The machine learning 

framework

• Apply a prediction function to a feature representation of 

the image to get the desired output:

f(    ) = “apple”

f(    ) = “tomato”

f(    ) = “cow”
Slide credit: L. Lazebnik



The machine learning 

framework

y* = f(x)

• Training: given a training set of labeled examples {(x1,y1), 

…, (xN,yN)}, estimate the prediction function f by minimizing 

the prediction error on the training set, e.g. |f(xi) – yi|

– Evaluate multiple hypotheses f1, f2, fH … and pick the best one as f

• Testing: apply f to a never before seen test example x and 

output the predicted value y* = f(x)

output (may differ from 

ground-truth label y)

prediction 

function

image / image feature

Slide credit: L. Lazebnik



Prediction

The old-school way

Training 

Labels
Training 

Images

Training

Training

Image 

Features

Image 

Features

Testing

Test Image

Learned 

model

Learned 

model

Slide credit: D. Hoiem and L. Lazebnik



The simplest classifier

f(x) = label of the training example nearest to x

• All we need is a distance function for our inputs

• No training required!

Test 

example
Training 

examples 

from class 1

Training 

examples 

from class 2

Slide credit: L. Lazebnik



K-Nearest Neighbors classification

k = 5

Slide credit: D. Lowe

• For a new point, find the k closest points from training data

• Labels of the k points “vote” to classify

If query lands here, the 5 

NN consist of 3 negatives 

and 2 positives, so we 

classify it as negative.

Black = negative

Red = positive



Nearest Neighbors according to bag of SIFT + color histogram + a few others

Slide credit: James Hays

im2gps: Estimating  Geographic Information from a Single Image 
James Hays and Alexei Efros, CVPR 2008

Where was this image taken?



Linear classifier

• Find a linear function to separate the classes

f(x) = sgn(w1x1 + w2x2 + … + wDxD) = sgn(w  x)

Slide credit: L. Lazebnik



• What should the weights be?

x1

x2

(0, 0)

• Decision = sign(wTx) = sign(w1*x1 + w2*x2)

Linear classifier

(1, 0)

w
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Linear classifiers

• Find linear function to separate positive and 

negative examples

0:negative

0:positive

+

+

b

b

ii

ii

wxx

wxx

Which line

is best?

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

A

B
C

D

Not seen until test time, 

of class blue

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines 

• Discriminative 

classifier based on 

optimal separating 

line (for 2d case)

• Maximize the 

margin between the 

positive and 

negative training 

examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)( positive
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MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

For support, vectors, 1=+ bi wx

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)( positive

−+−=

+=

by

by

iii

iii

wxx

wxx

Support vectors

For support, vectors, 1=+ bi wx
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For support vectors:

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)( positive
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MarginSupport vectors

For support, vectors, 1=+ bi wx

Distance between point 

and line: ||||

||

w

wx bi +

Therefore, the margin is  2 / ||w||

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Finding the maximum margin line

1. Maximize margin 2/||w||

2. Correctly classify all training data points:

Quadratic optimization problem:

Minimize

Subject to  yi(w·xi+b) ≥ 1

wwT

2

1

1:1)(negative

1:1)( positive
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One constraint for each 

training point.

Note sign trick.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Finding the maximum margin line

• Solution: = i iii y xw 

Support 

vector

Learned

weight

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Finding the maximum margin line

• Solution:

b = yi – w·xi (for any support vector)

• Classification function:

• Notice that it relies on an inner product between the test

point x and the support vectors xi

• (Solving the optimization problem also involves

computing the inner products xi · xj between all pairs of

training points)

= i iii y xw 
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+=
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If f(x) < 0, classify as negative, otherwise classify as positive.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Inner product

Adapted from Milos Hauskrecht
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• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Andrew Moore

Nonlinear SVMs



Φ:  x→ φ(x)

• General idea: the original input space can 

always be mapped to some higher-dimensional 

feature space where the training set is 

separable:

Andrew Moore

Nonlinear SVMs



Nonlinear kernel: Example

• Consider the mapping ),()( 2xxx =
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Svetlana Lazebnik



• The linear classifier relies on dot product between 

vectors K(xi,xj) = xi · xj

• If every data point is mapped into high-dimensional 

space via some transformation Φ:  xi → φ(xi ), the dot 

product becomes: K(xi,xj) = φ(xi ) · φ(xj)

• A kernel function is similarity function that 

corresponds to an inner product in some expanded 

feature space

• The kernel trick: instead of explicitly computing the 

lifting transformation φ(x), define a kernel function K 

such that: K(xi,xj) = φ(xi ) · φ(xj)

Andrew Moore

The “Kernel Trick”



Examples of kernel functions

◼ Linear:

◼ Polynomials of degree up to d:

◼ Gaussian RBF:

◼ Histogram intersection:
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Hard-margin SVMs

Maximize margin

The w that minimizes…



Maximize margin Minimize misclassification

Slack variable

The w that minimizes…

Misclassification 
cost

# data samples

Soft-margin SVMs

Figure from Chris Bishop



What about multi-class SVMs?

• Unfortunately, there is no “definitive” multi-
class SVM formulation

• In practice, we have to obtain a multi-class 
SVM by combining multiple two-class SVMs 

• One vs. others
• Training: learn an SVM for each class vs. the others

• Testing: apply each SVM to the test example, and assign it 
to the class of the SVM that returns the highest decision 
value

• One vs. one
• Training: learn an SVM for each pair of classes

• Testing: each learned SVM “votes” for a class to assign to 
the test example

Svetlana Lazebnik



Multi-class problems

One-vs-all (a.k.a. one-vs-others)
• Train K classifiers

• In each, pos = data from class i, neg = data from classes other 

than i

• The class with the most confident prediction wins

• Example: 

– You have 4 classes, train 4 classifiers

– 1 vs others: score 3.5

– 2 vs others: score 6.2

– 3 vs others: score 1.4

– 4 vs other: score 5.5

– Final prediction: class 2



Multi-class problems

One-vs-one (a.k.a. all-vs-all)
• Train K(K-1)/2 binary classifiers (all pairs of classes)

• They all vote for the label

• Example:

– You have 4 classes, then train 6 classifiers

– 1 vs 2, 1 vs 3, 1 vs 4, 2 vs 3, 2 vs 4, 3 vs 4

– Votes: 1, 1, 4, 2, 4, 4 

– Final prediction is class 4



Some SVM packages

• LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/

• LIBLINEAR 

https://www.csie.ntu.edu.tw/~cjlin/liblinear/

• SVM Light http://svmlight.joachims.org/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://svmlight.joachims.org/


Linear classifiers vs nearest neighbors

• Linear pros:

+ Low-dimensional parametric representation

+ Very fast at test time

• Linear cons:

– Can be tricky to select best kernel function for a problem

– Learning can take a very long time for large-scale problem

• NN pros:

+ Works for any number of classes

+ Decision boundaries not necessarily linear

+ Nonparametric method

+ Simple to implement

• NN cons:

– Slow at test time (large search problem to find neighbors)

– Storage of data

– Especially need good distance function (but true for all classifiers)

Adapted from L. Lazebnik



• What do we want? 
– High accuracy on training data? 
– No, high accuracy on unseen/new/test data!
– Why is this tricky?

• Training data
– Features (x) and labels (y) used to learn mapping f

• Test data
– Features (x) used to make a prediction
– Labels (y) only used to see how well we’ve learned f!!!

• Validation data
– Held-out set of the training data
– Can use both features (x) and labels (y) to tune parameters of 

the model we’re learning

Training vs Testing



Generalization

• How well does a learned model generalize from 

the data it was trained on to a new test set?

Training set (labels known) Test set (labels 

unknown)

Slide credit: L. Lazebnik



• Underfitting: Models with too 

few parameters are 

inaccurate because of a large 

bias (not enough flexibility).

• Overfitting: Models with too 

many parameters are 

inaccurate because of a large 

variance (too much sensitivity 

to the sample).

Adapted from D. Hoiem

Red dots = training data (all that we see before we ship off our model!)

Green curve = true underlying model Blue curve = our predicted model/fit

Purple dots = possible test points

Generalization



• Components of generalization error 

– Noise in our observations: unavoidable

– Bias: how much the average model over all training sets differs 

from the true model

• Inaccurate assumptions/simplifications made by the model

– Variance: how much models estimated from different training 

sets differ from each other

• Underfitting: model is too “simple” to represent all the 

relevant class characteristics

– High bias and low variance

– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant 

characteristics (noise) in the data

– Low bias and high variance

– Low training error and high test error

Slide credit: L. Lazebnik

Generalization



Polynomial Curve Fitting

Slide credit: Chris Bishop



Sum-of-Squares Error Function

Slide credit: Chris Bishop



0th Order Polynomial

Slide credit: Chris Bishop



1st Order Polynomial

Slide credit: Chris Bishop



3rd Order Polynomial

Slide credit: Chris Bishop



9th Order Polynomial

Slide credit: Chris Bishop



Over-fitting

Root-Mean-Square (RMS) Error:

Slide credit: Chris Bishop



Data Set Size: 

9th Order Polynomial

Slide credit: Chris Bishop



Data Set Size: 

9th Order Polynomial

Slide credit: Chris Bishop



Regularization

Penalize large coefficient values

(Remember: We want to minimize this expression.)

Adapted from Chris Bishop



Regularization: 

Slide credit: Chris Bishop



Regularization: 

Slide credit: Chris Bishop



Polynomial Coefficients   

Slide credit: Chris Bishop



Polynomial Coefficients   

Adapted from Chris Bishop

No regularization Huge regularization



Regularization:           vs. 

Slide credit: Chris Bishop



Training vs test error

Training error

Test error

Underfitting Overfitting

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem



The effect of training set size

Many training examples

Few training examples

Complexity Low Bias

High Variance

High Bias

Low Variance

T
e
s
t 
E

rr
o
r

Slide credit: D. Hoiem



Choosing the trade-off between 

bias and variance

• Need validation set (separate from the test set)

Training error

Validation error

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem

Apply this model to test set



Summary of generalization

• Better to have smart features and simple 

classifiers than simple features and smart 

classifiers

• Use increasingly powerful classifiers with more 

training data

• As an additional technique for reducing variance, 

try regularizing the parameters

Slide credit: D. Hoiem



Plan for the rest of the lecture

Neural network basics
• Definition

• Loss functions

• Optimization w/ gradient descent and backpropagation 

Convolutional neural networks (CNNs)
• Special operations 

• Common architectures

Practical matters
• Getting started: Preprocessing, initialization, optimization, 

normalization

• Improving performance: regularization, augmentation, transfer

• Hardware and software

Understanding CNNs
• Visualization 

• Breaking CNNs



Neural network basics



ImageNet Challenge 2012

  

Validation classification

  

Validation classification

  

Validation classification

[Deng et al. CVPR 2009] 

• ~14 million labeled images, 20k 

classes

• Images gathered from Internet

• Human labels via Amazon Turk 

• Challenge: 1.2 million training images, 

1000 classes

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep 

Convolutional Neural Networks, NIPS 2012
Lana Lazebnik

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


ImageNet Challenge 2012

• AlexNet: Similar framework to LeCun’98 but:
• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)

• More data (106 vs. 103 images)

• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

• Better regularization for training (DropOut)

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep 

Convolutional Neural Networks, NIPS 2012
Adapted from Lana Lazebnik

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


ImageNet Challenge 2012

Krizhevsky et al. -- 16.4% error (top-5)

Next best (non-convnet) – 26.2% error
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What are CNNs? 

• Convolutional neural networks are a type of 

neural network with layers that perform 

special operations 

• Used in vision but also in NLP, biomedical etc. 

• Often they are deep

Figure from http://neuralnetworksanddeeplearning.com/chap5.html 



Traditional Recognition Approach

Hand-designed

feature extraction 

(e.g. SIFT, HOG)

Trainable

classifier

Image/ Video

Pixels

• Features are key to recent progress in recognition, 

but research shows they’re flawed…

• Where next? 

Object

Class

Adapted from Lana Lazebnik



What about learning the features?

• Learn a feature hierarchy all the way from pixels to 

classifier

• Each layer extracts features from the output of 

previous layer

• Train all layers jointly

Layer 1 Layer 2 Layer 3 Object 

Class

Image/ 

Video

Pixels

Lana Lazebnik



“Shallow” vs. “deep” architectures

Hand-designed

feature extraction

Trainable

classifier

Image/ 

Video

Pixels

Object

Class

Layer 1 Layer N
Simple 

classifier
Object 

Class

Image/ 

Video

Pixels

Traditional recognition: “Shallow” architecture

Deep learning: “Deep” architecture

…

Lana Lazebnik



Neural network definition

• Activations: 

• Nonlinear activation function h (e.g. sigmoid, 

RELU):
Figure from Christopher Bishop 

Recall SVM: 

wTx + b



• Layer 2

• Layer 3 (final)

• Outputs

• Finally:

Neural network definition

(binary)

(multiclass)

(binary)



Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Activation functions

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Inspiration: Neuron cells

• Neurons

• accept information from multiple inputs, 

• transmit information to other neurons.

• Multiply inputs by weights along edges

• Apply some function to the set of inputs at each node

• If output of function over threshold, neuron “fires”

Text: HKUST, figures: Andrej Karpathy



Deep neural networks

• Lots of hidden layers

• Depth = power (usually)

Figure from http://neuralnetworksanddeeplearning.com/chap5.html 
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How do we train them? 

• The goal is to iteratively find such a set of 

weights that allow the activations/outputs to 

match the desired output

• We want to minimize a loss function

• The loss function is a function of the weights 

in the network

• For now let’s simplify and assume there’s a 

single layer of weights in the network 



Classification goal

Example dataset: CIFAR-10  

10 labels

50,000 training images  

each image is 32x32x3

10,000 test images.

Andrej Karpathy



Classification scores

[32x32x3]

array of numbers 0...1  

(3072 numbers total)

f(x,W)

image parameters

10 numbers,  

indicating class  

scores

Andrej Karpathy



Linear classifier 

[32x32x3]

array of numbers 0...1

10 numbers,  

indicating class  

scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1

Andrej Karpathy



Linear classifier 

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Andrej Karpathy



Linear classifier 

Going forward: Loss function/Optimization

1. Define a loss function  

that quantifies our  

unhappiness with the  

scores across the training  

data.

2. Come up with a way of  

efficiently finding the  

parameters that minimize  

the loss function.  

(optimization)

TODO:

Andrej Karpathy

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1



Linear classifier 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

Adapted from Andrej Karpathy

Want: syi
>= sj + 1

i.e. sj – syi
+ 1 <= 0

If true, loss is 0

If false, loss is magnitude of violation



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 5.1 - 3.2 + 1)

+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

cat

car  

frog

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1

Losses: 2.9

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

cat 3.2

car 5.1

frog -1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)

= max(0, 5.3 + 1) 

+ max(0, 5.6 + 1)

= 6.3 + 6.6

= 12.9

cat

car  

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0 12.9

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

and the full training loss is the mean  

over all examples in the training data:

L = (2.9 + 0 + 12.9)/3
2.9 0 12.9Losses: = 15.8 / 3 = 5.3

Lecture 3 - 12

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

Weight Regularization
λ = regularization strength  

(hyperparameter)

In common use:  

L2 regularization  

L1 regularization

Dropout (will see later)

Adapted from Andrej Karpathy



Want to maximize the log likelihood, or (for a loss function)  

to minimize the negative log likelihood of the correct class:cat

car

frog

3.2

5.1

-1.7

scores = unnormalized log probabilities of the classes.

where

Another loss: Softmax (cross-entropy)

Andrej Karpathy



cat

car

frog

unnormalized log probabilities

24.5

164.0

0.18

3.2

5.1

-1.7

exp normalize

unnormalized probabilities

0.13

0.87

0.00

probabilities

L_i = -log(0.13)

= 0.89

Another loss: Cross-entropy

Adapted from Fei-Fei, Johnson, Yeung

Probabilities  

must be >= 0

Probabilities  

must sum to 1

Aside:

- This is multinomial logistic regression

- Choose weights to maximize the likelihood of the observed x/y data

(Maximum Likelihood Estimation)



Another loss: Cross-entropy

Adapted from Fei-Fei, Johnson, Yeung

cat

car

frog

3.2

5.1

-1.7

24.5

164.0

0.18

0.13

0.87

0.00

exp normalize

Probabilities  

must be >= 0

Probabilities  

must sum to 1

compare 1.00

0.00

0.00

Kullback–Leibler

divergence

unnormalized

log-probabilities / logits
unnormalized

probabilities
probabilities correct

probs



Other losses

• Triplet loss (Schroff, FaceNet, CVPR 2015)

• Anything you want! 

a denotes anchor

p denotes positive

n denotes negative



How to minimize the loss function? 

Andrej Karpathy



How to minimize the loss function? 

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives).

Andrej Karpathy



gradient dW:

[-2.5,

0.6,

0,

0.2,

0.7,

-0.5,

1.1,

1.3,

-2.1,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

dW = ...

(some function  

data and W)

Andrej Karpathy



Loss gradients

• Denoted as (diff notations):

• i.e. how does the loss change as a function 

of the weights

• We want to change the weights in such a 

way that makes the loss decrease as fast as 

possible  



Gradient descent

• We’ll update weights

• Move in direction opposite to gradient:

L

Learning rate
Time

Figure from Andrej Karpathy

original W

negative gradient direction
W_1

W_2



Gradient descent

• Iteratively subtract the gradient with respect 

to the model parameters (w)

• I.e. we’re moving in a direction opposite to 

the gradient of  the loss

• I.e. we’re moving towards smaller loss



Mini-batch gradient descent

• In classic gradient descent, we compute the 

gradient from the loss for all training 

examples

• Could also only use some of the data for 

each gradient update

• We cycle through all the training examples 

multiple times 

• Each time we’ve cycled through all of them 

once is called an ‘epoch’

• Allows faster training (e.g. on GPUs), 

parallelization



Andrej Karpathy

Learning rate selection

The effects of step size (or “learning rate”)



Gradient descent in multi-layer nets

• We’ll update weights

• Move in direction opposite to gradient:

• How to update the weights at all layers?

• Answer: backpropagation of error from 

higher layers to lower layers



Backpropagation: Graphic example

First calculate error of output units and use this 

to change the top layer of weights.

output

hidden

input

Update weights into j

Adapted from Ray Mooney, equations from Chris Bishop

k

j

i

w(2)

w(1)



Backpropagation: Graphic example

Next calculate error for hidden units based on 

errors on the output units it feeds into.

output

hidden

input

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop



Backpropagation: Graphic example

Finally update bottom layer of weights based on 

errors calculated for hidden units.

output

hidden

input

Update weights into i

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop



Computing gradient for each weight

• We need to move weights in direction 

opposite to gradient of loss wrt that weight: 

wkj = wkj – η dE/dwkj (output layer)

wji = wji – η dE/dwji (hidden layer)

• Loss depends on weights in an indirect way, 

so we’ll use the chain rule and compute:

dE/dwkj = dE/dyk dyk/dak dak/dwkj

dE/dwji = dE/dzj dzj/daj daj/dwji



Gradient for output layer weights

• Loss depends on weights in an indirect way,   

so we’ll use the chain rule and compute:

dE/dwkj = dE/dyk dyk/dak dak/dwkj

• How to compute each of these?

• dE/dyk : need to know form of error function
• Example: if E = (yk – yk’)

2, where yk’ is the ground-truth 

label, then dE/dyk = 2(yk – yk’)

• dyk/dak : need to know output layer activation
• If h(ak)=σ(ak), then d h(ak)/d ak = σ(ak)(1-σ(ak))

• dak/dwkj : zj since ak is a linear combination
• ak = wk:

T z = Σj wkj zj



Gradient for hidden layer weights

• We’ll use the chain rule again and compute:

dE/dwji = dE/dzj dzj/daj daj/dwji

• Unlike the previous case (weights for output 
layer), the error (dE/dzj) is hard to compute 

(indirect, need chain rule again)

• We’ll simplify the computation by doing it 

step by step via backpropagation of error

• You could directly compute this term– you 

will get the same result as with backprop (do 

as an exercise!)



Gradients – slightly different notation

• The following is a framework, slightly imprecise

• Let us denote the inputs at a layer by in, the 

linear combination of inputs computed at that 
layer as raw, the activation as act

• We define a new quantity that will roughly 
correspond to accumulated error, err

• Then we can write the updates as

w = w – η * err * in

• We can compute error as:

err = d E / d act * d act / d raw 



Gradients – slightly different approach

• We’ll write the weight updates as follows

➢wkj = wkj - η δk zj for output units

➢wji = wji - η δj xi for hidden units

• What are δk, δj? 
• They store error, gradient wrt raw activations (i.e. dE/da)

• They’re of the form dE/dzj dzj/daj

• The latter is easy to compute – just use derivative of 

activation function

• The former is easy for output – e.g. (yk – yk’)

• It is harder to compute for hidden layers

• dE/dzj = ∑k wkj δk (see Bishop book Eq. 5.56)

Figure from Chris Bishop



Example algorithm for sigmoid, L2 error

• Initialize all weights to small random values

• Until convergence (e.g. all training examples’ error 

small, or error stops decreasing) repeat:

• For each (x, y’=class(x)) in training set:

– Calculate network outputs: yk

– Compute errors (gradients wrt activations) for each unit:

» δk = yk (1-yk) (yk – yk’) for output units

» δj = zj (1-zj) ∑k wkj δk for hidden units

– Update weights:

» wkj = wkj - η δk zj for output units

» wji = wji - η δj xi for hidden units

Adapted from R. Hwa, R. Mooney

Recall: wji = wji – η dE/dzj dzj/daj daj/dwji
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Over-training prevention

• Running too many epochs can result in over-fitting.

• Keep a hold-out validation set and test accuracy on it 
after every epoch. Stop training when additional 
epochs actually increase validation error.

0 # training epochs

e
rr

o
r

on training data

on test data

Adapted from Ray Mooney



Comments on training algorithm

• Not guaranteed to converge to zero training error, may 

converge to local optima or oscillate indefinitely.

• However, in practice, does converge to low error for 

many large networks on real data.

• Local minima – not a huge problem in practice for deep 

networks (but saddle points are).

• Thousands of epochs (epoch = network sees all training 

data once) may be required, hours or days to train.

• May be hard to set learning rate and to select number of 

hidden units and layers.

• When in doubt, use validation set to decide on 

design/hyperparameters.

• Neural networks had fallen out of fashion in 90s, early 

2000s; now significantly improved performance (deep 

networks trained with dropout and lots of data).

Adapted from Ray Mooney, Carlos Guestrin, Dhruv Batra 



Plan for the rest of the lecture

Neural network basics
• Definition

• Loss functions

• Optimization w/ gradient descent and backpropagation 

Convolutional neural networks (CNNs)
• Special operations 

• Common architectures

Practical matters
• Getting started: Preprocessing, initialization, optimization, 

normalization

• Improving performance: regularization, augmentation, transfer

• Hardware and software

Understanding CNNs
• Visualization 

• Breaking CNNs



Convolutional neural networks



Convolutional Neural Networks (CNN)

• Neural network with specialized 

connectivity structure

• Stack multiple stages of feature 

extractors

• Higher stages compute more global, 

more invariant, more abstract features

• Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document 

recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.
Adapted from Rob Fergus

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


• Feed-forward feature extraction: 

1. Convolve input with learned filters

2. Apply non-linearity 

3. Spatial pooling (downsample)

• Recent architectures have additional 

operations (to be discussed)

• Trained with some loss, backprop

Adapted from Lana Lazebnik

Convolutional Neural Networks (CNN)

Input Image

Convolution 

(Learned)

Non-linearity

Spatial pooling

Output (class probs)

…



1. Convolution

• Apply learned filter weights

• One feature map per filter

• Stride can be greater than 

1 (faster, less memory)

Input Feature Map

.

.

.

Adapted from Rob Fergus



2. Non-Linearity

• Per-element (independent)

• Some options:
• Tanh

• Sigmoid: 1/(1+exp(-x))

• Rectified linear unit  (ReLU)

– Avoids saturation issues

Adapted from Rob Fergus



3. Spatial Pooling

• Sum or max over non-overlapping / 
overlapping regions

Rob Fergus, figure from Andrej Karpathy



3. Spatial Pooling

• Sum or max over non-overlapping / 
overlapping regions

• Role of pooling:
• Invariance to small transformations

• Larger receptive fields (neurons see more of input)

Max

Sum

Adapted from Rob Fergus



32

3

32x32x3 image

width

height

32

depth

Convolutions: More detail

Andrej Karpathy



32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,  

computing dot products”

Convolutions: More detail

Andrej Karpathy



32

32

3

Convolution Layer

32x32x3 image  

5x5x3 filter

1 number:
the result of taking a dot product between the  

filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutions: More detail

Andrej Karpathy



32

32

3

Convolution Layer
activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all  

spatial locations

Convolutions: More detail

Andrej Karpathy



32

32

3

Convolution Layer

32x32x3 image  

5x5x3 filter

activation maps

1

28

28

convolve (slide) over all  

spatial locations

consider a second, green filter

Convolutions: More detail

Andrej Karpathy



32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Convolutions: More detail

Andrej Karpathy



Preview: ConvNet is a sequence of Convolution Layers, interspersed with  

activation functions

32

32

3

28

28

6

CONV,  

ReLU

e.g. 6

5x5x3

filters

Convolutions: More detail

Andrej Karpathy



Preview: ConvNet is a sequence of Convolutional Layers, interspersed with  

activation functions

32

32

3

CONV,  

ReLU

e.g. 6

5x5x3

filters 28

28

6

CONV,  

ReLU

e.g. 10  

5x5x6  

filters

CONV,  

ReLU

….

10

24

24

Convolutions: More detail

Andrej Karpathy



Preview
[From recent Yann  

LeCun slides]

Convolutions: More detail

Andrej Karpathy



example 5x5 filters
(32 total)

We call the layer convolutional  

because it is related to convolution  

of two signals:

Element-wise multiplication and sum 

of  a filter and the signal (image)

one filter =>

one activation map

Convolutions: More detail

Adapted from Andrej Karpathy, Kristen Grauman



A closer look at spatial dimensions:

32

32

3

activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all  

spatial locations

Convolutions: More detail

Andrej Karpathy



7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail
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7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail
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7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



=> 5x5 output

7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

=> 3x3 output!

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 3?

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!

cannot apply 3x3 filter on  

7x7 input with stride 3.

Convolutions: More detail

Andrej Karpathy



N

F

F

N

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride 1 => (7 - 3)/1 + 1 = 5

stride 2 => (7 - 3)/2 + 1 = 3

stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Convolutions: More detail

Andrej Karpathy



In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1

Convolutions: More detail

Andrej Karpathy



In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy



In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with  

stride 1, filters of size FxF, and zero-padding with  

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy

(N + 2*padding - F) / stride + 1



Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Output volume size: ?

Convolutions: More detail

Andrej Karpathy



Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Convolutions: More detail

Andrej Karpathy



Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Number of parameters in this layer?

Convolutions: More detail

Andrej Karpathy



Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?  

each filter has 5*5*3 + 1 = 76 params

=> 76*10 = 760

Convolutions: More detail

Andrej Karpathy



Putting it all together

Andrej Karpathy



Case Study: AlexNet
[Krizhevsky et al. 2012]

Architecture:

CONV1  

MAX POOL1  

NORM1  

CONV2  

MAX POOL2  

NORM2  

CONV3  

CONV4  

CONV5

Max POOL3  

FC6

FC7  

FC8

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Lecture 9 - 1
5
9

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = 35K

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images  

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2  

Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:  

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0  

[27x27x96] MAX POOL1: 3x3 filters at stride 2  

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2  

[13x13x256] MAX POOL2: 3x3 filters at stride 2  

[13x13x256] NORM2: Normalization layer  

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1  

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1  

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1  

[6x6x256] MAX POOL3: 3x3 filters at stride 2

Details/Retrospectives:

-first use of ReLU

-used Norm layers (not common anymore)

-heavy data augmentation

-dropout 0.5

-batch size 128

-SGD Momentum 0.9

-Learning rate 1e-2, reduced by 10  

manually when val accuracy plateaus

-L2 weight decay 5e-4

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Small filters, Deeper networks

8 layers (AlexNet)

-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1  

and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13  

(ZFNet)

-> 7.3% top 5 error in ILSVRC’14
AlexNet VGG16 VGG19

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Q: Why use smaller filters? (3x3 conv)

AlexNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers  

has same effective receptive field as  

one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs.  

72C2 for C channels per layer

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



INPUT: [224x224x3] memory:  224*224*3=150K params: 0

VGG16

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

CONV3-64: [224x224x64] memory:  224*224*64=3.2M params: (3*3*3)*64 = 1,728  
CONV3-64: [224x224x64] memory:  224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory:  112*112*64=800K params: 0

CONV3-128: [112x112x128] memory:  112*112*128=1.6M params: (3*3*64)*128 = 73,728  
CONV3-128: [112x112x128] memory:  112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory:  56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory:  28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory:  14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448  
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass)  

TOTAL params: 138M parameters

Case Study: VGGNet

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational  

efficiency

- 22 layers

- Efficient “Inception” module

- No FC layers

- Only 5 million parameters!

12x less than AlexNet
- ILSVRC’14 classification winner  

(6.7% top 5 error)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: GoogLeNet
[Szegedy et al., 2014]

“Inception module”: design a  

good local network topology  

(network within a network) and  

then stack these modules on  

top of each other

Inception module

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on  

the input from previous layer:

- Multiple receptive field sizes  

for convolution (1x1, 3x3,  

5x5)

- Pooling operation (3x3)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Concatenate all filter outputs  

together depth-wise

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?  

[Hint: Computational complexity]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Example:

Module input:  

28x28x256

Q3:What is output size after  

filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 529k

Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256  

[3x3 conv, 192] 28x28x192x3x3x256  

[5x5 conv, 96] 28x28x96x5x5x256  

Total: 854M ops

Very expensive compute

Pooling layer also preserves feature  

depth, which means total depth after  

concatenation can only grow at every  

layer!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: GoogLeNet
[Szegedy et al., 2014]

Q: What is the problem with this?  

[Hint: Computational complexity]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Example:

Module input:  

28x28x256

Naive Inception module

Q3:What is output size after  

filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 529k Solution: “bottleneck” layers that  

use 1x1 convolutions to reduce  

feature depth

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



1x1 convolutions

64

56

56
1x1 CONV

with 32 filters

32

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

56

56

(each filter has size  

1x1x64, and performs a  

64-dimensional dot  

product)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



1x1 convolutions

64

56

56
1x1 CONV

with 32 filters

32

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

56

56

preserves spatial  

dimensions, reduces depth!

Projects depth to lower  

dimension (combination of  

feature maps)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Inception module with dimension reduction

Case Study: GoogLeNet

[Szegedy et al.,

2014]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Naive Inception module

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Inception module with dimension reduction

Case Study: GoogLeNet
[Szegedy et al., 2014]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Naive Inception module

1x1 conv “bottleneck”  

layers

Total: 358M opsTotal: 854M ops

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet  

architecture

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“Revolution of Depth”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: ResNet
[He et al., 2016]

Very deep networks using residual  

connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner  

(3.57% top 5 error)

- Swept all classification and  

detection competitions in  

ILSVRC’15 and COCO’15!

..

.

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018
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Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

What happens when we continue stacking deeper layers on a “plain” convolutional  

neural network?

Q: What’s strange about these training and test curves?  

[Hint: look at the order of the curves]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: ResNet
[He et al., 2016]

What happens when we continue stacking deeper layers on a “plain” convolutional  

neural network?

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it’s not caused by overfitting!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Hypothesis: the problem is an optimization problem, deeper models are harder to  

optimize

The deeper model should be able to perform at  

least as well as the shallower model.

A solution by construction is copying the learned  

layers from the shallower model and setting  

additional layers to identity mapping.

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



relu

Case Study: ResNet
[He et al., 2016]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a  

desired underlying mapping

X

identity

F(x) + x

F(x)

relu

relu

X
Residual block

X
“Plain” layers

H(x)

Use layers to  

fit residual  

F(x) = H(x) - x

instead of  

H(x) directly

H(x) = F(x) + x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



..

.

Case Study: ResNet
[He et al., 2016]

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:

- Stack residual blocks
- Every residual block has  

two 3x3 conv layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017..

Comparing complexity...

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Improving ResNets...

- Argues that residuals are the  

important factor, not depth

- User wider residual blocks (F x k  

filters instead of F filters in each layer)

- 50-layer wide ResNet outperforms  

152-layer original ResNet

- Increasing width instead of depth  

more computationally efficient  

(parallelizable)

Wide Residual Networks
[Zagoruyko et al. 2016]

Basic residual block Wide residual block

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Improving ResNets...

Aggregated Residual Transformations for Deep

Neural Networks (ResNeXt)
[Xie et al. 2016]

- Also from creators of  

ResNet

- Increases width of  

residual block through  

multiple parallel  

pathways  

(“cardinality”)

- Parallel pathways  

similar in spirit to  

Inception module

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Huang et al. 2016]

- Motivation: reduce vanishing gradients and

training time through short networks during

training

- Randomly drop a subset of layers during each  

training pass

- Bypass with identity function

- Use full deep network at test time

Improving ResNets...

Deep Networks with Stochastic Depth

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
Adaptive feature map reweighting

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Lecture 9 - 98

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Improving ResNets...

Squeeze-and-Excitation Networks (SENet)
[Hu et al. 2017]

- Add a “feature recalibration” module that  

learns to adaptively reweight feature maps

- Global information (global avg. pooling

layer) + 2 FC layers used to determine

feature map weights

- ILSVRC’17 classification winner (using  

ResNeXt-152 as a base architecture)

Lecture 9 - 99

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Beyond ResNets...

Densely Connected Convolutional Networks
[Huang et al. 2017]

- Dense blocks where each layer is  

connected to every other layer in  

feedforward fashion

- Alleviates vanishing gradient,  

strengthens feature propagation,  

encourages feature reuse

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Lecture 9 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Efficient networks...

SqueezeNet: AlexNet-level Accuracy With 50x Fewer  

Parameters and <0.5Mb Model Size
[Iandola et al. 2017]

- Fire modules consisting of a  

‘squeeze’ layer with 1x1 filters  

feeding an ‘expand’ layer with 1x1  

and 3x3 filters

- AlexNet level accuracy on  

ImageNet with 50x fewer  

parameters

- Can compress to 510x smaller  

than AlexNet (0.5Mb)
Figure copyright Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer, 2017. 

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Lecture 9 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Meta-learning: Learning to learn network architectures...

Neural Architecture Search with Reinforcement Learning (NAS)
[Zoph et al. 2016]

- “Controller” network that learns to design a good  

network architecture (output a string  

corresponding to network design)

- Iterate:

1) Sample an architecture from search space
2) Train the architecture to get a “reward” R  

corresponding to accuracy

3) Compute gradient of sample probability, and  

scale by R to perform controller parameter  

update (i.e. increase likelihood of good  

architecture being sampled, decrease  

likelihood of bad architecture)

Lecture 9 -
10

3

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Summary: CNN Architectures

Lecture 9 -
10

5

Case Studies
- AlexNet

- VGG

- GoogLeNet

- ResNet

Also....
- Wide ResNet

- ResNeXT

- DenseNet

- Squeeze-and-Excitation Network

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Summary: CNN Architectures

Lecture 9 - 106

- VGG, GoogLeNet, ResNet all in wide use, available in model zoos

- ResNet current best default, also consider SENet when available

- Trend towards extremely deep networks

- Significant research centers around design of layer / skip  

connections and improving gradient flow

- Efforts to investigate necessity of depth vs. width and residual  

connections

- Even more recent trend towards meta-learning

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Practical matters



Plan for the rest of the lecture

Neural network basics
• Definition

• Loss functions

• Optimization w/ gradient descent and backpropagation 

Convolutional neural networks (CNNs)
• Special operations 

• Common architectures

Practical matters
• Getting started: Preprocessing, initialization, optimization, 

normalization

• Improving performance: regularization, augmentation, transfer

• Hardware and software

Understanding CNNs
• Visualization 

• Breaking CNNs



(Assume X [NxD] is data matrix,  

each example in a row)
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 -

198

April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Preprocessing the Data



In practice, you may also see PCA and Whitening of the data

(data has diagonal  

covariance matrix)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018Lecture 6 - 39

April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung
(covariance matrix is the  

identity matrix)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Preprocessing the Data



Weight Initialization

• Q: what happens when W=constant init is used?

April 19, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



- Another idea: Small random numbers

(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with  

deeper networks.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 -

201

April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Weight Initialization



“Xavier initialization”  

[Glorot et al., 2010]

Reasonable initialization.  

(Mathematical derivation  

assumes linear activations)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

April 19, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Ioffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make  

each dimension zero-mean unit-variance, apply:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Batch Normalization

Lecture 6 -

203

April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



N

D

1. compute the empirical mean and  

variance independently for each  

dimension.

2. Normalize

“you want zero-mean unit-variance activations? just make them so.”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]



And then allow the network to squash  

the range if it wants to:

Note, the network can learn:

to recover the identity  

mapping.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Normalize:

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]



- Improves gradient flow through  

the network

- Allows higher learning rates
- Reduces the strong dependence  

on initialization

- Acts as a form of regularization

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 -

206

April 19, 2018

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]



[Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer  

functions differently:

The mean/std are not computed  

based on the batch. Instead, a single  

fixed empirical mean of activations  

during training is used.

(e.g. can be estimated during training  

with running averages)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 -

207

April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Babysitting the Learning Process

• Preprocess data

• Choose architecture

• Initialize and check initial loss with no regularization

• Increase regularization, loss should increase

• Then train – try small portion of data, check you can 

overfit 

• Add regularization, and find learning rate that can make 

the loss go down

• Check learning rates in range [1e-3 … 1e-5]

• Coarse-to-fine search for hyperparameters (e.g. learning 

rate, regularization)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



big gap = overfitting

=> increase regularization strength?

no gap
=> increase model capacity?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

April 19, 2018

Monitor and visualize accuracy

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



W_1

W_2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Lecture 7 -

210

April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



What if loss changes quickly in one direction and slowly in another?  

What does gradient descent do?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Loss function has high condition number: ratio of largest to smallest

singular value of the Hessian matrix is large

Optimization: 

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



What if loss changes quickly in one direction and slowly in another?  

What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Loss function has high condition number: ratio of largest to smallest

singular value of the Hessian matrix is large

Optimization: 

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



What if the loss  

function has a  

local minima or  

saddle point?

Zero gradient,  

gradient descent  

gets stuck

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Lecture 7 -

213

Optimization: 

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Our gradients come from  

minibatches so they can be noisy!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Optimization: 

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



SGD

- Build up “velocity” as a running mean of gradients

- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

SGD + Momentum

Lecture 7 -

215

April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Added element-wise scaling of the gradient based  

on the historical sum of squares in each dimension

“Per-parameter learning rates”  

or “adaptive learning rates”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

AdaGrad

Lecture 7 -

216

April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Q: What happens with AdaGrad? Progress along “steep” directions is damped;  

progress along “flat” directions is accelerated

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

April 24, 2018

AdaGrad

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Q2: What happens to the step size over long time?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

April 24, 2018

AdaGrad

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



AdaGrad

RMSProp

Tieleman and Hinton, 2012

RMSProp

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Lecture 7 -

220

April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR2015

Momentum

Bias correction

AdaGrad / RMSProp

Bias correction for the fact that  

first and second moment  

estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4  

is a great starting point for many models!

Adam

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have

learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay:

e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have

learning rate as a hyperparameter.

Loss
Learning rate decay!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Epoch

Lecture 7 -

222

April 24, 2018
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Load image  

and label

“cat”

Compute  

loss

CNN

Data Augmentation

April 24, 2018 Lecture 7 - 224

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Data Augmentation

April 24, 2018 Lecture 7 - 225

Load image  

and label

“cat”

Compute  

loss

CNN

Transform image

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Data Augmentation

Horizontal Flips

Fei-Fei Li & Justin 
Johnson & Serena
Yeung

April 24, 2018 Lecture 7 - 226

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Data Augmentation

Fei-Fei Li & Justin 
Johnson & Serena
Yeung

April 24, 2018 Lecture 7 - 227

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Data Augmentation

Fei-Fei Li & Justin 
Johnson & Serena
Yeung

April 24, 2018 Lecture 7 - 228

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Data Augmentation

Get creative for your problem!

Random mix/combinations of :

- translation

- rotation

- stretching

- shearing,

- lens distortions

- …

April 24, 2018 Lecture 7 - 229

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung; Image: https://github.com/aleju/imgaug

https://github.com/aleju/imgaug


Regularization: Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

• Randomly turn off some neurons

• Allows individual neurons to independently be 

responsible for performance

Adapted from Jia-bin Huang

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


Transfer Learning

“You need a lot of a data if you want to  

train/use CNNs”

Andrej Karpathy



Transfer Learning with CNNs

• The more weights you need to learn, the 

more data you need

• That’s why with a deeper network, you need 

more data for training than for a shallower 

network

• One possible solution: 

Set these to the already learned 

weights from another network

Learn these on your own task



1. Train on  

ImageNet
2. Small dataset:

Freeze these

Train this

3. Medium dataset:

finetuning

more data = retrain more of  

the network (or all of it)

Freeze these

Lecture 11 - 29

Train this

Transfer Learning with CNNs

Adapted from Andrej Karpathy

Another option: use network as feature extractor, 

train SVM on extracted features for target task

Source: classification on ImageNet Target: classification on Places



Training: Best practices

• Center (subtract mean from) your data

• To initialize weights, use “Xavier 

initialization” 

• Use RELU or leaky RELU or ELU, don’t use 

sigmoid

• Use mini-batch 

• Use data augmentation 

• Use regularization

• Use batch normalization

• Use cross-validation for your parameters

• Learning rate: too high? Too low? 
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Hardware and software



Spot the CPU! (central processing unit)

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Spot the GPUs! (graphics processing unit)

Lecture 8 - April 26, 2018

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



CPU vs GPU

Lecture 8 -April 26, 2018

Fei-Fei Li & Justin Johnson & Serena Yeung

Cores Clock  

Speed

Memory Price Speed

CPU

(Intel Core  

i7-7700k)

4
(8 threads with  

hyperthreading)

4.2 GHz System  

RAM

$339 ~540 GFLOPs FP32

GPU  

(NVIDIA  

GTX 1080 Ti)

3584 1.6 GHz 11 GB  

GDDR5  

X

$699 ~11.4 TFLOPs FP32

CPU: Fewer cores,  

but each core is  

much faster and  

much more  

capable; great at  

sequential tasks

GPU: More cores,  

but each core is  

much slower and  

“dumber”; great for  

parallel tasks

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



CPU vs GPU in practice

(CPU performance not

well-optimized, a little unfair)

66x 67x 71x 64x 76x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018

Data from https://github.com/jcjohnson/cnn-benchmarks

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



CPU / GPU Communication

Lecture 8 -April 26, 2018

Model  

is here
Data is here

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

If you aren’t careful, training can  

bottleneck on reading data and  

transferring to GPU!

Solutions:

- Read all data into RAM

- Use SSD instead of HDD

- Use multiple CPU threads  

to prefetch data

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Software: A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

PaddlePaddle
(Baidu)

MXNet
(Amazon)

And others...

Chainer

Deeplearning4j

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Plan for the rest of the lecture

Neural network basics
• Definition

• Loss functions

• Optimization w/ gradient descent and backpropagation 

Convolutional neural networks (CNNs)
• Special operations 

• Common architectures

Practical matters
• Getting started: Preprocessing, initialization, optimization, 

normalization

• Improving performance: regularization, augmentation, transfer

• Hardware and software

Understanding CNNs
• Visualization 

• Breaking CNNs



Understanding CNNs



Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

• Patches from validation images that give 

maximal activation of a given feature map 

• Activations projected 

down to pixel level 

via decovolution

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Occlusion experiments

(as a function of the  

position of the  

square of zeros in  

the original image)

Andrej Karpathy

[Zeiler & Fergus 2014]



Occlusion experiments

(as a function of the  

position of the  

square of zeros in  

the original image)

[Zeiler & Fergus 2014]

Andrej Karpathy



What image maximizes a class score?

Repeat:

1. Forward an image

2. Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest

3. Backprop to image

4. Do an “image update”

Andrej Karpathy



What image maximizes a class score?

[Understanding Neural Networks Through Deep Visualization, Yosinski et al. , 2015]

http://yosinski.com/deepvis

Andrej Karpathy

http://yosinski.com/deepvis


What image maximizes a class score?

Andrej Karpathy



Breaking CNNs

Intriguing properties of neural networks [Szegedy ICLR 2014]
Andrej Karpathy

http://arxiv.org/pdf/1312.6199v4.pdf


Breaking CNNs

Deep Neural Networks are Easily Fooled: High Confidence Predictions for 

Unrecognizable Images [Nguyen et al. CVPR 2015]Jia-bin Huang

http://arxiv.org/pdf/1412.1897.pdf


Summary of CNNs

• We use DNNs/CNNs due to performance 

• Convolutional neural network (CNN)
• Convolution, nonlinearity, max pooling

• AlexNet,VGG, GoogleNet, ResNet, … 

• Training deep neural nets
• We need an objective function that measures and guides us 

towards good performance

• Backpropagate error towards all layers and change weights

• Take steps to minimize the loss function: SGD, AdaGrad, 

RMSProp, Adam

• Practices for preventing overfitting
• Dropout; data augmentation; transfer learning


