CS 2770: Computer Vision
Grouping & Transformations

Prof. Adriana Kovashka
University of Pittsburgh
February 9, 2021

Plan for this lecture

* Group pixels into:
— Edges: Extract gradients and threshold

— Lines: Find which edge points are collinear or
belong to another shape

— Segments: Find which pixels form a consistent
region, e.g. via clustering

* Transform pixels:

— Find relationships between multiple views of the
same world point

— Both parts rely on finding geometric relationships
between pixels

Edge detection

* Goal: map image from 2d array of pixels to a set of curves

or line segments or contours.

e Why?
—
N
o J}h y)) -, =-- "':;
S
Pl
Figure from J. Shotton et al., PAMI 2007

Main idea: look for differences in intensity, i.e. find strong

gradients, then post-process

Adapted from K. Grauman

Designing an edge detector

e Criteria for a good edge detector

— Good categorization (edge vs not edge)

* find all real edges, ignoring noise or other artifacts
— Good localization

» detect edges as close as possible to the true edges

* return one point only for each true edge point
(true edges = the edges humans drew on an image)

* Cues of edge detection

— Bottom-up: Differences in color, intensity, or texture
across the boundary

— Top-down: Continuity and closure, high-level knowledge

Adapted from L. Fei-Fei

Examples of edge detection results

AY

(f) HED: side output 4

~ ‘/A o \
- ," X ". 2, ‘ h - / Iv\v
A N 1N | 2N I N | DS B
S Wi f’/'i;?g)))’ @S N S0 gj Cn~ 4l /,V]
%fééé@a’?‘i”{]gf(’?u o 9 —ij 2\ 7f /o Yy A A (01
RSB YS eal S5 J BV WU/ (LS y LU S
6:) %’ Q)'jSl> -3 ('-‘27"3. L2728 o‘s == Q @\}/%\‘\. 1 o= \?5 AN (N5 ~L %
< P N7 WA 1 N Wt / PPN - \J ",

(g) Canny: 0 = 2

(h) Canny: 0 = 4

(i) Canny: 0 =8

Xie and Tu, Holistically-Nested Edge Detection, ICCV 2015

http://openaccess.thecvf.com/content_iccv_2015/papers/Xie_Holistically-Nested_Edge_Detection_ICCV_2015_paper.pdf

What causes an edge?

Depth discontinuity:
Reflectance change: object boundary
appearance

information, texture

Cast shadows

Adapted from K. Grauman

Characterizing edges

e An edge is a place of rapid change in the
image intensity function

Intensity function
image (along horizontal scanline) first derivative

Vo

edges correspond to
extrema of derivative

Source: L. Lazebnik

Now with a little noise...

e Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

P

...

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

L f ()

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where Is the edge?

Source: S. Seitz

Without noise

e Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

Intensity =7 ““q‘..
f(z) K
| sa0ee .
Pixel location = 1|... 14
d f(Diff = 1 eo00000 >

= f(x) _Afl) _ flath)—fla) _ flath) - fa)
da 2 sece e X Aa (a+h) - (a) h

Pixel location = 1|... 14
Where Is the edge?

https://en.wikipedia.org/wiki/Derivative

A

Intensity =7

f(x)

Pixel location = 1|...

A

%%

With noise

e Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

d iff =
—f(xz) "7

1] ¢

Pixel location = 1]|..

Where Is the ec

14

_ Afla) fla+h)—fla) fla+h)— f(a)
 Aa (a4 h)-—(a) h

https://en.wikipedia.org/wiki/Derivative

Solution: smooth first

Sigma = 50

(@]
Kernel

[|]
600 800 1000 1200 1400 1600 1800 2000
el . . I . . ! ! ' R i
o : : : : : : :
+* = : : : : : :
L '
= : : : : : :
RL........ - : : : _
U | | | | | | | |
0 200 400 600 800 1200 1400 1600 1800 2000
c T T T T T T T T
£ : : : : : : :
d s A
(f*9) 5 ; |
dX - : . . :
ol i i I I I I - AR,]
0 200 400 600 800 1000 1200 1400 1600 1800 2000

« To find edges, look for peaks In

Source: S. Seitz

Derivative theorem of convolution

e Differentiation is convolution, and convolution is
associative: d d

—(f*0g)=f x—
OIX(0) 9

e This saves us one operation:

Sigma = 50
f E Image
? with edge
0 250 450 GEIJO EEIJO 1CIIDCI 12IUO 14IUO 18I00 18I00 2000
49 /Y | Deritive
dx < 12 A R R R R of Gaussian
0 2(I}CI 4(I}CI GEI]O 8[I]O 1GIDG 12I[]O 14I[]O 16:00 18ICIG' 2000
f % i g _‘55 Edge = max
dx ¢ of derivative
o oL I
0 200 400

Source: S. Seitz

Canny edge detector

Filter image with derivative of Gaussian
Find magnitude and orientation of gradient

Threshold: Determine which local maxima from filter
output are actually edges

Non-maximum suppression:

— Thin wide “ridges” down to single pixel width
Linking and thresholding (hysteresis):

— Define two thresholds: low and high

— Use the high threshold to start edge curves and the
low threshold to continue them

Adapted from K. Grauman, D. Lowe, L. Fei-Fei

Example

input image (“Lena”)

Derivative of Gaussian filter

s

x-direction y-direction

Source: L. Lazebnik

Compute Gradients

Y
\\ L)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: D. Hoiem

Thresholding

 Choose a threshold value t
e Set any pixels less than t to 0 (off)
e Set any pixels greater than or equal totto 1 (on)

Source: K. Grauman

The Canny edge detector

norm of the gradient (magnitude)

The Canny edge detector

thresholding

Another example: Gradient magnitudes

Thresholding gradient with a lower threshold

~ U { N N D I PP)

Thresholding gradient with a higher threshold

{ 'I'u_l Il Jll _.-" —_— - |I
d "y
’ o B . - _
r o " W 1 S : -

The Canny edge detector

How to turn
these thick
regions of the
gradient into
curves?

Source: K. Grauman

Non-maximum suppression

— Check if pixel is local maximum along gradient direction

— Compare to pixels immediately neighboring on both sides
* j.e.compareqtopandr

— Requires checking interpolated “pixels” p and r (at non-integer locations,
so no intensity information) — bilinear interpolation

Adapted from K. Grauman

Bilinear interpolation

0,0) 0,1)] 11—
foy~l-z 2 ljﬂgm ;El;ﬁ” ﬂ].

i (O, 1) (XI y2) (11 1)
Ir'i.......!.----......--.-....T.......----........‘-..-\.1
(X, y) '
}.r I
(0,00 (%) (1,0)
. TR ...,, R
2 ; -

http://en.wikipedia.org/wiki/Bilinear interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation

Related: Line detection (fitting)

« Why fit lines?
Many objects characterized by presence of straight lines

 Why aren’t we done just by running edge detection?

Kristen Grauman

* Noise in measured edge points,
orientations:

— e.g. edges not collinear where they
should be

— how to detect true underlying
parameters?

« Extra edge points (clutter):

— which points go with which line, if
any?

* Only some parts of each line
detected, and some parts are
missing:

— how to find a line that bridges
missing evidence?

Adapted from Kristen Grauman

Least squares line fitting

*Data: (Xp, Y1), ---» (%, Yn) A
Line equation: y;=mx; + b

*Find (m, b) to minimize

y=mx+Db

E = Zin:l(mxi +b - yi)2

where line you found tells where point really is
you pointis along y axis along y axis

You want to find a single line that
“explains” all of the points in your data,

but data may be noisy!

X 1

Adapted from Svetlana Lazebnik

'm

| b

}_

Y1

Yn

2

=Ap-y

Outliers affect least squares fit

i
4
2
0

Al

_4

N

-8

-10

-12k

_1.-.1. 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -3 -6 -4 -2 I 2 4 B

Outliers affect least squares fit

i
4
2
0

Al

_4

N

-8

-10

-12k

_1.-.1. 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -3 -6 -4 -2 I 2 4 B

Dealing with outliers: Voting

* Voting is a general technique where we let the features
vote for all models that are compatible with it.

— Cycle through features, cast votes for model parameters.

— Look for model parameters that receive a lot of votes.

 Noise & clutter features?

— They will cast votes too, but typically their votes should be
Inconsistent with the majority of “good” features.

« Two common techniques

— Hough transform
— RANSAC

Adapted from Kristen Grauman

Finding lines in an image: Hough space

y A b A
y = mox =+ bo
—
bo e
X M, m
Image space Hough (parameter) space

Connection between image (x,y) and Hough (m,b) spaces
y=mor+bo e Aline in the image corresponds to a point in Hough space

Steve Seitz

Finding lines in an image: Hough space

y A b A
Yo o b= —xom + Yo
—
X X m
Image space Hough (parameter) space

Connection between image (x,y) and Hough (m,b) spaces
y=moz+bo e A line in the image corresponds to a point in Hough space
« What does a point (X,, Y) in the image space map to?

— Answer: the solutions of b = -x,m + vy,
— This is a line in Hough space
— Given a pair of points (x,y), find all (m,b) suchthaty = mx + b

Adapted from Steve Seitz

Finding lines in an image: Hough space

Steve Seitz

y A b A
® (X,,
Vo . (X1, Y1) b= —zom + g
(XO’ yO) ﬁ
b=-Xxm+y,
X X m
Image space Hough (parameter) space

What are the line parameters for the line that contains both
(Xos Yo) @nd (xy, y;)7?

* Itis the intersection of the lines b = —x,m + y,and
b=-xm+y,

Finding lines in an image: Hough space

y A b A
® @
o m=175 1"
] ~.
— S
X 05101520 m
Image space Hough (parameter) space

How can we use this to find the most likely parameters (m,b)
for the most prominent line in the image space”?

« Let each edge point in image space vote for a set of
possible parameters in Hough space

« Accumulate votes in discrete set of bins; parameters with
the most votes indicate line in image space.

Steve Seitz

Finding lines in an image: Hough space

y]

Adapted from Silvio Savarese

Parameter space representation

* Problems with the (m,b) space:

* Unbounded parameter domains
« Vertical lines require infinite m

 Alternative: polar representation

y

XCcos@ +ysing =p

Each point (x,y) will add a sinusoid in the (0,p) parameter space

Svetlana Lazebnik

Parameter space representation

* Problems with the (m,b) space:

* Unbounded parameter domains
« Vertical lines require infinite m

 Alternative: polar representation

6

Hough space

Each point (x,y) will add a sinusoid in the (0,p) parameter space

Svetlana Lazebnik

Algorithm outline: Hough transform

° |n|t|al|ze accumulator H H: accumulator array (votes)
to all zeros

* For each edge point (x,y)
In the image
For©=01to 180
P=XC0SO+ysinb
H(G, p)=H(B, p) +1 6
end
end

* Find the value(s) of (6%, p*) where H(0O, p) Is
a local maximum

* The detected line in the image is given by
p* =X cos 0" +y sin 0"

Svetlana Lazebnik

Incorporating image gradients

« Recall: when we detect an
edge point, we also know its
gradient direction

 But this means that the line
IS uniguely determined!

« Modified Hough transform:

For each edge point (x,y) in the image
0 = gradient orientation at (x,y)
P=XCcosO+ysinO
H(B, p) =H(6,p) +1

end

Svetlana Lazebnik

Q
O
-
©
X
D
-
| -
O
(@
p)
-
©
| N_—
G
-
O)
.
@
1

Derek Hoiem

Impact of noise on Hough

X

Image space Votes
edge coordinates

Impact of noise on Hough

X 0

Image space Votes
edge coordinates

What difficulty does this present for an implementation?

Kristen Grauman

Voting: practical tips

* Minimize irrelevant tokens first (reduce noise)

« Choose a good grid / discretization

Too fine ? Too coarse

— Too coarse: large votes obtained when too many different lines correspond to a single bucket
— Too fine: miss lines because points that are not exactly collinear cast votes for different buckets

« Vote for neighbors (smoothing in accumulator array)
« Use direction of edge to reduce parameters by 1

« To read back which points voted for “winning” peaks,
keep tags on the votes

Kristen Grauman

Hough transform for circles

« A circle with radius r and center (a, b) can be
described as:

X =a +rcos(6)

y = b+ rsin(6))

<

HUIS 4

Hough transform for circles

« Circle: center (a, b) and radius r
(%, —a)° +(y, —b)* =r?

* For a fixed radius r, unknown gradient direction

>

Image space Hough space d

Hough transform for circles
« Circle: center (a, b) and radius r
(%, —a)° +(y, —b)* =r?

* For a fixed radius r, unknown gradient direction

: Intersection:
: most votes

: for center

: occur here.

-
&l

Image space Hough space

Kristen Grauman

Hough transform for circles

X =a+r cos(6)

For every edge pixel (x,y) : y=b+rsin(e)
For each possible radius value r:
For each possible gradient direction 6:

a=X-—rcos(6)
b=y-rsin(6)
H[a,b,r] +=1

end
end -

end

Modified from Kristen Grauman

Example: detecting circles with Hough

Original Votes: Penny

Note: a different Hough transform (with separate accumulators)
was used for each circle radius (quarters vs. penny).

Kristen Grauman, images from Vivek Kwatra

Example: detecting circles with Hough

Comb@eadin@tections Edges Votes: Quarter

Note: a different Hough transform (with separate accumulators)
was used for each circle radius (quarters vs. penny).

Kristen Grauman, images from Vivek Kwatra

Hough transform: pros and cons

Pros

 All points are processed independently, so can cope with
occlusion, gaps

« Some robustness to noise: noise points unlikely to
contribute consistently to any single bin

« Can detect multiple instances of a model in a single pass

cons

« Complexity of search time for maxima increases
exponentially with the number of model parameters
— If 3 parameters and 10 choices for each, search is O(10%)

* Quantization: can be tricky to pick a good grid size

Adapted from Kristen Grauman

Generalized Hough transform

 We want to find a template defined by its
reference point (center) and several distinct
types of landmark points in stable spatial
configuration

Triangle, circle, diamond:
some type of visual token,
e.g. feature or edge point

Template
A @ O

® -
A o A

Adapted from Svetlana Lazebnik

Generalized Hough transform

Intuition:

Displacement
vectors

Ref. point

=

Model image

¥
Novel image

0,

X
Vote space

Now suppose those colors encode gradient directions...

Adapted from Kristen Grauman

Generalized Hough transform

Define a model shape by its boundary points and a
reference point.

Offline procedure:

At each boundary point,
compute displacement
vector: r =a-—p;.

X

Model shape

7 / Store these vectors in a
0 : table indexed by

~6 '\ gradient orientation 6.

Kristen Grauman [Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

Generalized Hough transform

Detection procedure:

For each edge point:

« Use its gradient orientation 6
to iIndex Into stored table

e Use retrieved r vectors to
vote for reference point 0

A/
Assuming translation is the only transformation
N0 \ here, i.e., orientation and scale are fixed.

. X
Novel image

Kristen Grauman

Generalized Hough transform

 Template representation
« For each type of landmark Model

point, store all possible
displacement vectors towards
the center

N2
rFEN" »

Svetlana Lazebnik

Generalized Hough transform

« Detecting the template
» For each feature in a new image,

Model

look up that feature type in the
model and vote for the possible
center locations associated with
that type in the model

Test Image

Svetlana Lazebnik

Application: Hough for object detection

* Index displacements by “visual codeword”

“visual codeword” with
displacement vectors

training image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and
Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical
Learning in Computer Vision 2004

Svetlana Lazebnik

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

RANSAC

« RANdom Sample Consensus

* Approach: we want to avoid the impact of outliers,
so let’s look for “inliers”, and use those only.

* Intuition: if an outlier is chosen to compute the
current fit, then the resulting line won’t have much
support from rest of the points.

Kristen Grauman

RANSAC: General form

« RANSAC loop:

1. Randomly select a seed group of s points on which to
base model estimate (e.g. s=2 for a line)

2. Fit model to these s points

3. Find inliers to this model (i.e., points whose distance
from the line is less than t)
4. Repeat N times

« Keep the model with the largest number of inliers

Adapted from Kristen Grauman and Svetlana Lazebnik

RANSAC ° ®
(RANdom SAmple Consensus) : ‘ ‘ ‘

Fischler & Bolles in ‘81. “ ‘
Line fitting example O

®

o ©
@ ® o
O O

O

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Silvio Savarese

RANSAC ° ®
(RANdom SAmple Consensus) : ‘ ‘ ‘

Fischler & Bolles in ‘81. “ ‘
Line fitting example O

@)

o ©
@ ® o
O O

O

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Silvio Savarese

RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

Line fitting example

Algorithm:

1. mple (randomly) the number of points requir fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Silvio Savarese

RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

Line fitting example

N, =6

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Silvio Savarese

RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Silvio Savarese

How to choose parameters?

 Number of samples N

— Choose N so that, with probability p, at least one random sample is free
from outliers (e.g. p=0.99) (outlier ratio: e)

* Number of sampled points s
— Minimum number needed to fit the model

e Distance threshold 6

— Choose 0 so that a good point with noise is likely (e.g., prob=0.95)

within threshold

— E.g. for zero-mean Gaussian noise with std. dev. o: 62 = 3.840?2

N = log(1- p)/|09(1—(1—e)s)

proportion of outliers e

Explanation in Szeliski 6.1.4

Marc Pollefeys and Derek Hoiem

S 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 / 11 17
3 3 4 / 9 11 19 35
4 3 S) 9 13 17 34 72
S 4 6 12 17 26 57 146
6 4 / 16 24 37 97 293
/ 4 8 20 33 54 163 588
8 S 9 26 44 78 272 1177

RANSAC pros and cons

e Pros

* Applicable to many different problems, e.g. image
stitching, relating two views

e Often works well in practice

e Cons
* Lots of parameters to tune (see previous slide)

* Doesn’t work well for low inlier ratios (too many
iterations, or can fail completely)

Adapted from Svetlana Lazebnik

Plan for this lecture

* Group pixels into:
— Edges: Extract gradients and threshold

— Lines: Find which edge points are collinear or
belong to another shape

— Segments: Find which pixels form a consistent
region, e.g. via clustering

* Transform pixels:

— Find relationships between multiple views of the
same world point

— Both parts rely on finding geometric relationships
between pixels

Edges vs Segments

* Edges: More low-level; don’t need to be closed

* Segments: Ideally one segment for each semantic
group/object; should include closed contours

Figure adapted from J. Hays

white
pixels

Image segmentation: toy example
black pixels |~

3 gray e
2 ot / pii<els]

input image L S J

Intensity

pixel count

* These intensities define the three groups.

« We could label every pixel in the image according to
which of these primary intensities it is.

* I.e., segment the image based on the intensity feature.
« What if the image isn’t quite so simple?

Source: K. Grauman

G000

5000 -

4000

3000 -

c0oa

pixel count

1000 ¢

inputimage -i00 -50 0 50 100 150 200 250 300
Intensity

« Now how to determine the three main intensities that
define our groups?

 We need to cluster.

Source: K. Grauman

——eot(@o €EE(E(€0-0—E(E(COIe®
0 190 255

Intensity
3
—_— 2

« (Goal: choose three “centers” as the representative
Intensities, and label every pixel according to which of
these centers it is nearest to.

« Best cluster centers are those that minimize sum of
squared differences (SSD) between all points and their
nearest cluster center ci:

> > 1p — ¢l|?

clusters 1 points p in cluster 2

v

Source: K. Grauman

Clustering

« With this objective, it is a “chicken and egg” problem:

— If we knew the cluster centers, we could allocate
points to groups by assigning each to its closest center.

———————————————
~~~~~~~~~~

¢¢¢¢¢
--------------------

— If we knew the group memberships, we could get the
centers by computing the mean per group.

————————————————
————————

4 /
——oPse—: —@ee @ 1(eO- o;-<¢(<««  ((( >

~~~~~

Source: K. Grauman

K-means clustering

« Basic idea: randomly initialize the k cluster centers, and
iterate between the two steps we just saw.

1. Randomly initialize the cluster centers, c,, ..., C«
2. Given cluster centers, determine points in each cluster
« For each point p, find the closest c,. Put p into cluster |
3. Given points in each cluster, solve for c,
« Set ¢, to be the mean of points in cluster |
4. If ¢, have changed, repeat Step 2

Properties °r i

global maximum

« Wil always converge to some solution - Vlocal maximum
« Can be a “local minimum” of objective:

0 N
> S lp—al? \Z S

X . - . local minimum
clusters 1 points p in cluster 2

global minimum

-6 \ \ l l \ N

Slide: Steve Seitz, image: Wikipedia ° 0z 04 06 08 ! 12

1.

K-means

Ask user how many
clusters they'd like.

(e.g. k=5)

Source: A. Moore

0|

vl

.4

Q

e 1.

B

vl

-+

0.6

o.p

K-means

1. Ask user how many
clusters they'd like.

(e.g. k=5)

2. Randomly guess k
cluster Center
locations

Source: A. Moore

wl

2.0

2.6

0.4

2.2

4

=

K-means f

1. Ask user how many
clusters they'd like.

(e.g. k=5) 0.0

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to. (Thus
each Center “owns”
a set of datapoints)

0.6

=
[]
=

- % | | .
il

Source: A. Moore

= uton’s Graphics OF|

K-means |-

1. Ask user how many
clusters they'd like.

(e.g. k=5) 5.0

2. Randomly guess k
cluster Center
locations

3. [Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns

Source: A. Moore

K-means

Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points It owns...

...and jumps there

...Repeat until
terminated!

Source: A. Moore

xl

o, il

0,6

o

-

0.z n.d 0.5

o.n

el |

K-means converges to a local minimum

s L] ba
on+ ® % e o O+ wte
&
o o0 o+ <+
o
+
& L]
#5 3 P, + 4P
2 e 8 &
¥ o® ¢
L] L
@
%
o Sg o
e ® e
° 3 oF 4 ¢ o +
@ g Q,O @ o o
@ a0e
4
<+
@
& #3 5, &
! 8
* . it o? ° 4 s
e e °r, F]
os % OCDO o0 e

How can | try to fix this problem?

Adapted from James Hays

K-means: pros and cons

Pros

« Simple, fast to compute

 Converges to local minimum of
within-cluster squared error

Ccons/issues

« Setting k?

— One way: silhouette coefficient
 Sensitive to Initial centers

— Use heuristics or output of another method

— Try different initializations
« Sensitive to outliers

* Detects spherical clusters

Adapted from K. Grauman

ALTERNATIVES?

(A): Undesirable clusters

o g e outher
°g° R o/
o a L] [+]
L a
(B): Id

3 deal clusters

(A): Two natural clusters (B): &-means clusters

Mean shift algorithm

 The mean shift algorithm seeks modes or local
maxima of density in the feature space

Feature space
(L*u*v* color values)

50

100

Source: K. Grauman

Kernel density estimation

Kernel

} n'h. 1 i —
Figure 2 :
— — JFEVIhTiDeWIH ~

File Edit‘l.f_'rp NS |l ‘
D& dfi;

Window Help L]

J’f' @J DE m O

0.35

0.3

Estimated
density

0.25

0.2

0.15

0.1

0.05

Data (1-D)

Source: D. Hoiem

Mean shift

® Search
® o window
Center of
o mass
o
PY o
o
o
o
o
» o o - -
® ® [Mean Shift]
[vector

Slide by Y. Ukrainitz & B. Sarel

Mean shift

Search
o

window

Center of
mass

® [® Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel

Mean shift

Search
o

window

Center of
mass

vector

Mean Shift]

Slide by Y. Ukrainitz & B. Sarel

Mean shift

Search
o

window

Center of
mass

vector

Mean Shift]

Slide by Y. Ukrainitz & B. Sarel

Mean shift

® Search
> ® ° ® window
¢ ® ¢ ¢ ® Center of
®
mass
®
PY ®
®
®
®
®
° ® ® ® ® Mean Shift
® vector

Slide by Y. Ukrainitz & B. Sarel

Mean shift

® Search
> ® ° ® window
¢ ® ¢ ¢ ® Center of
®
mass
®
PY ®
®
®
®
®
° ® ® ® ® Mean Shift
® vector

Slide by Y. Ukrainitz & B. Sarel

Mean shift

|

® Search
> ® ° ® window
¢ ® ¢ ¢ ® Center of
® ® ° mass
®
® »
o
PY ®
° ’ ® o
F ° F ¢
® ®
o ° ®
® ®
®
o ® o o
®
® ® ®
® ®

Slide by Y. Ukrainitz & B. Sarel

Computing the mean shift

Simple Mean Shift procedure:
« Compute mean shift vector

*Translate the Kernel window by m(x)

m(z) = > i1 K (z; —) _EII o ° &

2?:1 K(z; —)

Adapted from Y. Ukrainitz & B. Sarel

& ®
®
®
—
? o ¢
®

Points in same cluster converge

Source: D. Hoiem

Mean shift clustering

« Cluster: all data points in the attraction basin
of a mode

 Attraction basin: the region for which all
trajectories lead to the same mode

Slide by Y. Ukrainitz & B. Sarel

Mean shift clustering/segmentation

« Compute features for each point (color, texture, etc)

« Initialize windows at individual feature points

« Perform mean shift for each window until convergence
 Merge windows that end up near the same “peak” or mode

o o o
o N S o
] N

NORMALIZED DENSITY
«©
S

Source: D. Hoiem e

Mean shift segmentation results

A =

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Segmentation as clustering

Depending on what we choose as the feature space, we
can group pixels in different ways.

Grouping pixels based
on intensity similarity

Feature space: intensity value (1-d)

Source: K. Grauman

Adapted from K. Grauman

Segmentation as clustering

Depending on what we choose as the feature space, we
can group pixels in different ways.

Grouping pixels based
on intensity similarity

Clusters based on intensity
similarity don’t have to be spatially 2%
coherent.

Source: K. Grauman

Segmentation as clustering

Depending on what we choose as the feature space, we
can group pixels in different ways.

Grouping pixels based

on intensity+position similarity

4 Intensity

&

X Both regions are black, but if we
also include position (X,y), then
we could group the two into
distinct segments; way to encode
both similarity & proximity.

Source: K. Grauman

Segmentation as clustering

Depending on what we choose as the feature space, we
can group pixels in different ways.

Grouping pixels based |
on texture similarity

SN0
ENNEe
NN T2

Filter bank
of 24 filters

Feature space: filter bank responses (e.g., 24-d)

Source: K. Grauman

Summary

* Edges: threshold gradient magnitude

* Lines: edge points vote for parameters of
line, circle, etc. (works for general objects)

« Segments: use clustering (e.g. K-means)
to group pixels by intensity, texture, etc.

Plan for this lecture

* Group pixels into:
— Edges: Extract gradients and threshold

— Lines: Find which edge points are collinear or
belong to another shape

— Segments: Find which pixels form a consistent
region, e.g. via clustering

* Transform pixels:

— Find relationships between multiple views of the
same world point

— Both parts rely on finding geometric relationships
between pixels

Why multiple views?

« Structure and depth are inherently ambiguous from
single views.

« Multiple views help us perceive 3d shape and depth.

Kristen Grauman, images from Svetlana Lazebnik

Alignment problem

« We previously discussed how to match features
across images, of the same or different objects

* Now let’'s focus on the case of “two images of the
same object’(e.g. x; and x;')

« What transformation relates x. and x.'?

 In alignment, we will fit the parameters of some

transformation according to a set of matching
feature pairs (“correspondences”).

X
0 Xj
O)
T
o —_— © .
@) @)

Adapted from Kristen Grauman and Derek Hoiem

Motivation: Image mosaics

Kristen Grauman Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fall/

First, what are the correspondences?

Min dist = match D
O i
1 » L

« Compare content in local patches, find best matches.

« Scan x; with template formed from a point in x;, and compute
e.g. Euclidean distance between SIFT features of the patches

Adapted from Kristen Grauman

Second, what are the transformations?

Examples of transformations:

squish/shear change perspective

Adapted from Alyosha Efros

Parametric (global) warping

p’=(x.y)

Transformation T is a coordinate-changing machine:
p = T(p)

What does it mean that T is global?

 Itis the same for any point p
It can be described by just a few numbers (parameters)

Let's represent T as a matrix:
p'=Mp

=M

Alyosha Efros

Scaling

Scaling a coordinate means multiplying each of its components by

a scalar

Uniform scaling means this scalar is the same for all components:

X 2
2, 1)

Adapted from Alyosha Efros

N

(4, 2)

Scaling

Non-uniform scaling: different scalars per component

2. 1) X x 2’ r@__ﬁ
Y x 0.5 (4, 0.5)

Adapted from Alyosha Efros

Scaling

Scaling operation: X'= ax
y'= by
Or, In matrix form:
x'| [a O] x
y'| |0 by
H_J

scaling matrix S

Adapted from Alyosha Efros

2D Linear transformations

X a b x
y'| [c d]JYy

Only linear 2D transformations can be represented with
a 2Xx2 matrix.

Linear transformations are combinations of ...
e Scale,
« Rotation,
e Shear, and
e Mirror

Alyosha Efros

What transforms can we write w/ 2x2 matrix?

2D Scaling? o o
X'=§, *X X'\ _|S¢ Ofx
y':sy*y A _O Sy LY

2D Rotate around (0,0)? (see next slide)
x':cps@*x_sin O*y {X}_{COS@ —SIn @}{X}
y'=SINO®*X+CcosO*y v'| |sin® cos® |y
2D Shear? |- =]
X'=X+sh, *y X' 1 sh, | x
y'=sh,*x+y y'| |sh, 1 |y

|/ y |/

Modified from Alyosha Efros Fig. from https://www.siggraph.org/education/materials/HyperGraph/modeling/mod_tran/2dshear.htm

2D Rotation: Example

©=90->M=[0-1;10],i.e. X' =-y,y' =X

x| (cos® —sin® | x
y'| |sin® cos® |y
(2, 5)

Q (4, 2)
/’v e

2D Rotation: How to write

X' cosS® —sin® | x Polar coordinates...
= X =1 CO0S ()

y' SIN® Ccos® ||y y =rsin (¢)

X =rcos (¢ +0)

y' =rsin (¢ + 0)
A
g Trig ldentity...
(X’, y’) X' = r cos(¢) cos(B) — r sin(¢) sin(0)

y’ = r sin(¢) cos(0) + r cos(¢d) sin(0)

B) = sina cos 3 + cos a sin 3
B) = cosa cos B — sin « sin 3
B)

) =

(X, y)

= sina cos f — cosa sin 3
cos « cos 3 + sin« sin 3

(I) Substitute...
> X =xcos(0) - y sin(0)
y'=xsin(0) +y cos(0)

Adapted from Derek Hoiem, reference: https://www?2.clarku.edu/faculty/djoyce/trig/identities.html

https://www2.clarku.edu/faculty/djoyce/trig/identities.html

What transforms can we write w/ 2x2 matrix?

2D Mirror about Y axis?
Lo 4
y'=y y' 0 1]y
2D Mirror over (0,0)?

X'=—X X[|-1 0 | X
y'=-y vl 0 =1|vy
2D Translation?

X'=X+t,
y'=y+t,

CAN’T DO!

Alyosha Efros

Homogeneous coordinates

To convert to homogeneous coordinates:

(z,y) = | v
1

£

homogeneous image

coordinates

Converting from homogeneous coordinates

Kristen Grauman

x
Y

w

= (z/w,y/w)

Translation

Homogeneous Coordinates

v v 3

T 1 0 t['x] [x+t]

Yyi=I0 1 t|y|=|y+Ht,

1| __O 0 1_ 1) | 1 |
t, =1

Adapted from Alyosha Efros

2D affine transformations

Affine transformations are combinations of ...
e Linear transformations, and
 Translations

Maps lines to lines, parallel lines remain parallel

.-

Adapted from Alyosha Efros

Detour: Keypoint matching for search

In database

1. Find a set of
distinctive key-
points

Query

2. Define a region
around each
keypoint (window)

3. Compute a local
descriptor from the
region

fA fB
. h]]ﬂmm]]‘ > [ﬂﬂ]m]]ﬂ]_ . 4. Match descriptors

d(f,, fz)<T

Adapted from K. Grauman, B. Leibe

Detour: solving for translation with outliers

Given matched points in {A} and {B}, estimate the translation of the object

MEMEN

Derek Hoiem

Detour: solving for translation with outliers

Problem: outliers, multiple objects

Hough transform solution

1. Initialize a grid of parameter values
2. Each matched pair casts a vote for consistent values
3. Find the parameters with the most votes

Adapted from Derek Hoiem

Projective transformations

x| [a b c| x|
yvii=ld e f|vy
‘W) |g h 1]w

Projective transformations:
 Affine transformations, and
* Projective warps

Parallel lines do not necessarily remain parallel
m- A

Kristen Grauman

Image mosaics: Goals

Obtain a wider angle view by combining multiple images.

Kristen Grauman

Z118S 'S woJj abew

Image mosaics: Camera setup

Two images with camera rotation but no translation

|

(0, 0) gt 0. 0)

Camera Center

Adapted from Derek Hoiem

Image mosaics: Many 2D views, one 3D object

NN mosaic plane

The mosaic has a natural interpretation in 3D
« The images are reprojected onto a common plane
« The mosaic is formed on this plane
« Mosaic is a synthetic wide-angle camera

Steve Seitz

How to stitch together panorama (mosaic)?

Basic Procedure

Take a sequence of images from the same position
— Rotate the camera about its optical center

Compute the homography (transformation)
between first and second image

Combine images (draw first image onto
second’s canvas)

Blend the two together to create a mosaic (post-
process)

(If there are more images, repeat)

Adapted from Steve Seitz

Computing the homography

To compute the homography given pairs of corresponding
points in the images, we need to set up an equation where
the parameters of H are the unknowns...

Kristen Grauman

Computing the homography

« Assume we have four matched points: h,
How do we compute homography H? Ez
_ 3
WX h, h, h X h,
p’=Hp p'=|wy'| H=h h h| p=|Yy h=\h,
| W _h7 h8 h9_ _1_ h
wx' | [h, h, h][x] h,
: h
Wy | = h4 hs he y h8
W _h7 h8 h9_ _1_ - -
Can set scale factor hg = 1.
So, there are 8 unknowns.
A Need at least 8 eqgs, but the more the better...
T~

-x -y -1 0 0 0 xx* yx X'h—O
0 0 0 —-x -y -1 xy' w Vy|

Adapted from Derek Hoiem, Kristen Grauman Derivation: http://www.cse.psu.edu/~rtc12/CSE486/lecturel6.pdf (pp. 25-36)

http://www.cse.psu.edu/~rtc12/CSE486/lecture16.pdf

How to stitch together panorama (mosaic)?

Basic Procedure

« Take a sequence of images from the same position
— Rotate the camera about its optical center

« Compute the homography (transformation)
between first and second image

« Combine images (draw first image onto
second’s canvas)

« Blend the two together to create a mosaic (post-
process)

(If there are more images, repeat)

Adapted from Steve Seitz

Combining images

To apply a given homography H
« Compute p’ = Hp (regular matrix multiply)

« Convert p’ from homogeneous to image
coordinates

5 =35
[
:
*
*
T)<< X

Modified from Kristen Grauman

Combining images

Image 1 Image 2 canvas

S ('8Y) gty

Forward warping:
Send each pixel f(x,y) to its corresponding location
(x’,y’) = H(X,y) In the right image

Modified from Alyosha Efros

Combining images

m
yt+ o v

> >
X X

f(xy) g(x’y)

Forward warping:
Send each pixel f(x,y) to its corresponding location
(x’,y’) = H(X,y) In the right image
Q: what if pixel lands “between” two pixels?
A: round values of (x’,y’) or distribute color among neighbors

Adapted from Alyosha Efros

Combining images

Image 1 Image 2 canvas

X Hxy) gty

Inverse warping:
Get each pixel g(x’,y’) from its corresponding location
(x,y) = H1(X,y) in the left image

Modified from Alyosha Efros

Combining images

y4 v

>)
X

X f(xy) g(x’y’)

Inverse warping:
Get each pixel g(x’,y’) from its corresponding location

(x,y) = H1(X,y) in the left image
Q: what if pixel comes from “between” two pixels?
A. interpolate color value from neighbors

Alyosha Efros

Next: Stereo vision

* Homography: Same camera center, but camera
rotates

e Stereo vision: Camera center is not the same (we
have multiple cameras)

* Epipolar geometry
— Relates cameras from two positions/cameras

e Stereo depth estimation
— Recover depth from disparities between two images

Adapted from Derek Hoiem

Stereo photography and stereo viewers

Take two pictures of the same subject from two slightly different
viewpoints and display so that each eye sees only one of the images.

. B f-'«;‘;-" B s 2
Invented by Sir Charles Wheatstone, 1838 Image from fisher-price.com

© Copyright 2001 Johnson-Shaw Stereoscopic Museum
Kristen Grauman

Depth from stereo for computers

Two cameras, simultaneous Single moving camera and
VIEWS static scene

Kristen Grauman

Depth from stereo

« Goal: recover depth by finding image coordinate x’
that corresponds to X, then measuring discrepancy
between x and x’

C Baseline C’
B

Derek Hoiem

Geometry for a simple stereo system

« Assume parallel optical axes, known camera parameters
(.e., calibrated cameras). What is expression for Z?

Similar triangles (p,, P, p,) and
(O, P, O)):

T+x-%X T
/ — f /

Depth is inversely proportional to disparity. disparity

Adapted from Kristen Grauman

Depth from disparity

« We have two images from different cameras.
* First, find corresponding points in two images
« How to do this efficiently?
« Second, estimate relative depth from correspondences

image I(x,y) Disparity map D(x,y) image I'(x",y’)

Kristen Grauman

Stereo correspondence constraints

d.

« Given p in left image, where can corresponding
point p’ be?

Kristen Grauman

Epipolar constraint

P world point

Geometry of two views constrains where the corresponding pixel for
some image point in the first view must occur in the second view.

« It must be on the line where (1) the plane connecting the world
point and optical centers, and (2) the image plane, intersect.

« Potential matches for p have to lie on the corresponding line /’.
« Potential matches for p’ have to lie on the corresponding line I.

Adapted from Kristen Grauman, Derek Hoiem

Epipolar geometry: notation

P

4

n e e@

O

» Baseline — line connecting the two camera centers
* Epipoles

= intersections of baseline with image planes

= projections of the other camera center

* Epipolar Plane — plane containing baseline

» Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)

Adapted from Derek Hoiem

Epipolar constraint

The epipolar constraint is useful because
It reduces the correspondence problem
to a 1D search along an epipolar line.

See hidden slides for detalls.

Kristen Grauman, image from Andrew Zisserman

Rigs related by:

Rotation: 3x3 matrix R ESSe nt|a| matrlx

Translation: 3x1 vector T.

X world point

N
.

X'-(TxRX)=0|
X'-([T,JRX)=0

R

~

Let E=[T«]R L - |
X" EX=X"EX=0 R

E is called the essential matrix, and it relates corresponding image
points between both cameras, given the rotation and translation.

Before we said: If we observe a point in one image, its position in other
Image is constrained to lie on line defined by above. It turns out that:

« ETx is the epipolar line I' through x’ in the second image, corresponding to x.
« EXis the epipolar line | through x in the first image, corresponding to x'.

Adapted from Kristen Grauman, Derek Hoiem

Basic stereo matching algorithm

F=S" HON. ABRAIIAM LINCOLN, President of United States. bl ¥

: (-
.. .

v

e For each pixel in the first image

— Find corresponding epipolar scanline in the right image

— Search along epipolar line and pick the best match x’ (e.g. smallest
Euclidean distance between SIFT in patch)

— Compute disparity x-x" and set depth(x) = f*T/(x-x’)

Adapted from Derek Hoiem

Results with window search

Data

Left image Right image

T
-

Derek Hoiem

Projective structure from motion

e Given: mimages of n fixed 3D points
le:PIXJ’ i:l,...,m,]:l, ...,n

e Problem: estimate m projection matrices P;and n 3D points
X; from the mn corresponding 2D points x;

Svetlana Lazebnik

Photo tourism

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring
photo collections in 3D," SIGGRAPH 2006

Photo Tourism Microsoft

Exploring photo collections in 3D

http://phototour.cs.washington.edu/

http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://phototour.cs.washington.edu/

3D from multiple images

Sameer Agarwala, Noah Snavely, lan Simon, Steven M. Seitz, Richard
Szeliski, "Building Rome in a Day," ICCV 2009

http://www.iansimon.org/papers/rome_paper.pdf

Summary of multiple views

* Write 2d transformations as matrix-vector multiplication

* Fitting transformations: Solve for unknown parameters given
corresponding points from two views — linear, affine,
projective (homography)

* Mosaics: Uses homography and image warping to merge
views taken from same center of projection

* Stereo depth estimation: Find corresponding points along
epipolar scanline, then measure disparity (as inverse to depth)

* Epipolar geometry: Matching point in second image is on a
line passing through its epipole; makes search for
correspondences quicker

Adapted from Kristen Grauman and Derek Hoiem

