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Plan for this lecture

* Feature detection / keypoint extraction
— Corner detection
— Properties
— Blob detection

* Feature description (of detected features)
* Matching features across images



An image is a set of pixels...
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Adapted from S. Narasimhan



Problems with pixel representation

* Not invariant to small changes
— Translation
— [llumination
— efc.

 Some parts of an image are more important
than others

 What do we want to represent?



Human eye movements

Yarbus eye tracking

D. Hoiem



Local features

Local means that they only cover a small part
of the image

There will be many local features detected in
an image

Later we’ll talk about how to use those to
compute a representation of the whole image

Local features usually exploit image gradients,
ignore color



Local features: desired properties

* Locality

— A feature occupies a relatively small area of the
image; robust to clutter and occlusion

Repeatability and flexibility

— Robustness to expected variations: the same
feature can be found in several images
despite geometric/photometric transformations

— Maximize correct matches

* Distinctiveness
— Each feature has a distinctive description
— Minimize wrong matches

 Compactness and efficiency
— Many fewer features than image pixels

Adapted from K. Grauman and D. Hoiem



Interest(ing) points

* Note: “interest points” = “keypoints”, also
sometimes called “features”

 Many applications

— Image search: which points would allow us to
match images between query and database?

— Recognition: which patches are likely to tell
us something about the object category?

— 3D reconstruction: how to find
correspondences across different views?

— Tracking: which points are good to track?

Adapted from D. Hoiem



D. Hoie

Interest points

e Suppose you have to
click on some point,
go away and come
back after | deform the
image, and click on the
same points again.

— Which points would
you choose?

original




D. Hoie

Choosing interest points

Where would you — Corner detection
tell your friend to
meet you?




D. Hoie

Choosing interest points

Where would you — Blob detection
tell your friend to
meet you?




Application 1: Keypoint Matching for Search

In database

1. Find a set of
distinctive key-
points

Query

2. Define a region
around each
keypoint (window)

3. Compute a local
descriptor from the
region

fa f
. [“ — m . 4. Match descriptors

d(f,, fz)<T

Adapted from K. Grauman, B. Leibe



Application 1: Keypoint Matching For Search

In database

Query

Goal:
We want to detect repeatable and distinctive points

 Repeatable: so that if images are slightly different,
we can still retrieve them

 Distinctive: so we don’t retrieve Iirrelevant content

Adapted from D. Hoiem



Application 2: Panorama stitching

We have two images — how do we combine them?

L. Lazebnik



Application 2: Panorama stitching

We have two images — how do we combine them?

Step 1: extract features
Step 2: match features

L. Lazebnik



Application 2: Panorama stitching

We have two images — how do we combine them?

Step 1: extract features
Step 2: match features
Step 3: align images

L. Lazebnik



Desired properties of local features

* We have to be able to run the detection
procedure independently per image

 We want to detect (at least some of) the
same points in both images - want
repeatability of the interest operator

Adapted from K. Grauman



Desired properties of local features

* We want to be able to reliably determine
which point goes with which - want feature
distinctiveness

* In brief, want some invariance to geometric
and photometric differences between the two
views, without finding many false matches

Adapted from K. Grauman



Corners as distinctive interest points

* We should easily recognize the keypoint by looking
through a small window

e Shifting a window in any direction should give a large
change in intensity @ Candidate keypoint

V\

'

“flat” region: “edge”: ‘corner’;
no change in no change along significant change
all directions the edge direction in all directions

Adapted from A. Efros, D. Frolova, D. Simakov
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Corners as distinctive interest points

* We should easily recognize the keypoint by looking
through a small window

e Shifting a window in any direction should give a large
change in intensity

“flat” region: “edge”: ‘corner’;
no change in no change along significant change
all directions the edge direction in all directions

Adapted from A. Efros, D. Frolova, D. Simakov



What points would you choose?
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Harris Detector: Mathematics

Window-averaged squared change of intensity induced by
shifting the patch for a fixed candidate keypoint by [u,V]:

E(u,v) = I(x+u,y+v)—1I1(x,y)
7

Window function . _ _ ( _ )
Qver neighbors (x, }; (ShlftEd |ntenS|ty> Intensity

@® Candidate keypoint O

Window function w(x,y) =

____________________________

1 in window, O outside Gaussian

D. Frolova, D. Simakov



Harris Detector: Mathematics

Window-averaged squared change of intensity induced by
shifting the patch for a fixed candidate keypoint by [u,V]:

E(u,v) = Ew(x y)[](x+u Y+V)-— I\(x y):lZ

W|n |
> - E J
f
SN \@ W
I W
u u

D. Frolova, D. Simakov




Harris Detector: Mathematics

For every pixel (r, c) as candidate keypoint

Initialize E = zeros(max_offset, max_offset)

For each offset (u, v)

Initialize sumto O

For each neighbor (x, y) of (r, c)

sum =sum + [I(x, y) - I(x+u, y+v)]?

E(u, v) = sum
Plot E(u, v)

Hereu=1,v=0



Harris Detector: Mathematics

We can approximate the autocorrelation surface between a patch
and itself, shifted by [u,v], as:

where M is a 2 X 2 matrix computed from image derivatives:

Adapted from D. Frolova, D. Simakov



Harris Detector: Mathematics
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Notation:

oy

Adapted from K. Grauman



Harris Detector: Mathematics

Let |, (of size width x height of the image) be
the image derivative in the horizontal direction,
|, be derivative in the vertical direction.

(Both require one correlation op to compute.)

For every pixel (r, c) as candidate keypoint

Initialize M = zeros(2, 2)

Forx=r-1:r+1

Fory=c-1:c+l
M(1, 1) = M(1, 1) + 1,(x, y)?
M(1,2)="7
M(2,1)="7

M(2,2) = ?



What does the matrix M reveal?
0"
0 4,

Since M is symmetric, we have M = X X'

Mx. = A X

The eigenvalues of M reveal the amount of intensity
change in the two principal orthogonal gradient
directions in the window.

K. Grauman



Corner response function

“‘edge™.

+—>

A >> A,
A, >> Ay

“corner’:

A, and A, are large,
}\‘1~ }\‘2

Adapted from A. Efros, D. Frolova, D. Simakov, K. Grauman

“flat” region:
A, and A, are small



Harris Detector: Mathematics

Measure of corner response:

Because M is symmetric

(k — empirical constant, £ = 0.04-0.06)

D. Frolova, D. Simakov



Harris Detector: Algorithm

 Compute image gradients /» and /, for all pixels

e For each pixel [ ]/f [h[V'

— Compute M=2 77
©Y ol "hv

V —

by looping over neighbors x, y

— compute R=detM - k(traceM)2

(k :empirical constant, k = 0.04-0.06)

* Find points with large corner response function R
(R > threshold)

D. Frolova, D. Simakov



Harris Detector: Algorithm

* Finally, perform non-max suppression: Take the points of
locally maximum R as the detected feature points (i.e.
pixels where R is bigger than for all the 4 or 8 neighbors)

15 6 2 15 6 2
8 WiE S 8 WiN S
6 5 9 6 5 9

4 neighbors 8 neighbors



Example of Harris application

e
LR

i

. Grauman




Example of Harris application

« Corner response at every pixel




More Harris responses

¢

Effect: A very precise
corner detector.

D. Hoiem



More Harris responses

D. Hoiem



Properties: Invariance vs covariance

“A function is invariant under a certain family of
transformations Iif its value does not change when a

transformation from this family is applied to its argument.

« [For example,] the area of a 2D surface is invariant under 2D rotations,
since rotating a 2D surface does not make it any smaller or bigger.

A function iIs covariant when it commutes with the
transformation, i.e., applying the transformation to the
argument of the function has the same effect as applying

the transformation to the output of the function. [...]

« But the orientation of the major axis of inertia of the surface is covariant
under the same family of transformations, since rotating a 2D surface will
affect the orientation of its major axis in exactly the same way.”

* Another example: If f is invariant under linear transformations, then

f(ax+b) = f(x), and if it is covariant with respect to these transformations,
then f(ax+b) =af(x) + b

“Local Invariant Feature Detectors: A Survey” by Tinne Tuytelaars and Krystian Mikolajczyk,
in Foundations and Trends in Computer Graphics and Vision Vol. 3, No. 3 (2007) 177-280
Chapter 1, 3.2, 7 http://homes.esat.kuleuven.be/%7Etuytelaa/FT_survey interestpoints08.pdf



http://homes.esat.kuleuven.be/~tuytelaa/FT_survey_interestpoints08.pdf

What happens if: Affine intensity change

=8 l>al+b

« Only derivatives are used =>
Invariance to intensity shiftl > 1+Db

* Intensity scaling: I > al
AN

threshold / J w \ \/\/ \

X (image coordinate) X (image coordinate)

Partially invariant to affine intensity change

L. Lazebnik



What happens if: Image translation

™

™

* Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation (on image level),
corner response is invariant (on patch level)

Adapted from L. Lazebnik



What happens if: Image rotation

N [/
7 SN

Second moment ellipse rotates but its shape
(i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation (on image level),
corner response is invariant (on patch level)

Adapted from L. Lazebnik



What happens if: Scaling

Invariant to image scale?

image zoomed image

A. Torralba



What happens if: Scaling

— T ——_
A Iy
Corner
All points will
be classified
as edges

Corner location is not covariant to scaling!

L. Lazebnik



Scale invariant detection

* Problem:

— How do we choose corresponding windows independently in
each image?

— Do objects have a characteristic scale that we can identify?

Adapted from D. Frolova, D. Simako



Scale invariant detection

e Solution:

— Design a function on the region which has the same shape
even if the image is resized

— Take a local maximum of this function

foa Image 1 fs Image 2
| scale = 1/2 |
: i) :
S region size >2 region size

Adapted from A. Torralba



Scale invariant detection

* A “good” function for scale detection:

has one stable s

1

region size

Adapted from A. Torralba

fﬂ

narp peak

N

a

region size

region size




Automatic scale selection

B, (o) = 1 (X,09)

How to find corresponding patch sizes?

K. Grauman, B. Leibe



Automatic scale selection

Function responses for increasing scale (scale signature)

5 3 LI
203489 10 o 10 14
E scale d¢l

f(l, i, (x0)) f (Iil...;m (Xl, 0))

K. Grauman, B. Leibe



Automatic scale selection

Function responses for increasing scale (scale signature)

T T T
20 10 Q
2 'EF.]F' 1

f(l,., (x,0)

K. Grauman, B. Leibe



Automatic scale selection

Function responses for increasing scale (scale signature)

arale

f(l,., (x,0)

K. Grauman, B. Leibe



Automatic scale selection

Function responses for increasing scale (scale signature)
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f(l,., (x,0)

K. Grauman, B. Leibe



Automatic scale selection

Function responses for increasing scale (scale signature)

T
f(l . (X,0))

K. Grauman, B. Leibe



Automatic scale selection

Function responses for increasing scale (scale signature)

K. Grauman, B. Leibe
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14



What is a useful signature function?

* Laplacian of Gaussian = “blob” detector




Blob detection in 2D

e Laplacian of Gaussian: Circularly symmetric operator
for blob detection in 2D, second derivative of Gaussian

Edge response

0 ‘| 20 [\ [ 20 ’\\ 20
| | . | \
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| \ | \ [
20 l " \ ’ 20 \ [ 20 \‘ / -20
V | =4 v v =2 \ /S =2 \ / 20
\
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00 0=200 6=4.00 o=16.00
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1

ol

x2 + y2
202

1 —

Adapted from K. Grauman, L. Lazebnik  Ref: https://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm vs http://campar.in.tum.de/Chair/HaukeHeibelGaussianDerivatives



https://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm
http://campar.in.tum.de/Chair/HaukeHeibelGaussianDerivatives

Difference of Gaussian = Laplacian

* We can approximate the Laplacian with a
difference of Gaussians; more efficient to
implement.

(Laplacian)

(Difference of Gaussians)

1 (ko) v (@)

K. Grauman



Laplacian pyramid example

* Allows detection of increasingly coarse detail




Difference of Gaussian: Efficient computation

 Computation in Gaussian scale pyramid

step o4=2

Original image

S —
e |

octave) //;t"—)
g

O - .

Gaussian

K. Grauman, B. Leibe
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Find local maxima in position-scale space
of Difference-of-Gaussian

\ Position-scale space:

A A
L A S
S L AT

B | S AT
Saale A AAEAA
TR
ST AT

VA AL A A

VAR . Y7 A

[/

Find places where X
greater than all of its
neighbors (in green)

—> List of

Adapted from K. Grauman, B. Leibe (XI y’ S)



Results: Difference-of-Gaussian

K. Grauman, B. Leibe



Plan for this lecture

* Feature detection / keypoint extraction
— Corner detection
— Properties
— Blob detection

* Feature description (of detected features)
* Matching features across images



Geometric transformations

Multiple View
Geometry

0 comnuler vison

IETeand 1 Tey o) A o Tunon

translation,
rotation

K. Grauman



Photometric transformations

T. Tuytelaars



Scale-Invariant Feature Transform (SIFT) descriptor

Journal + conference versions: 66,498 citations
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Image gradients Keypoint descriptor
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Histogram of oriented
gradients

« Captures important texture
iInformation

 Robust to small translations /
[Lowe, ICCV 1999] affine deformations



Computing gradients

L = the image intensity

m(x,y) = 1,L,.-“I[L::3' +1y)—Lizx—1,1)2% + (L{z,y +1) — L(z,y — 1))2
\ Y J \ Y J
gradient in x direction gradient in y direction
8z, y) =tan ((L(z,y + 1) — L{z,y — 1))/(L{z + 1,y) — L{z — 1,))) o®
\ )\ J
| |
gradient in y direction gradient in x direction
opposite side h a
i tan(O()= - - (hypotenuse) (opposite)
adjacent side
“\‘\ a (oo
A° %

b

(adjacent)



miz,y) = ".-":I[ Lir+1.9)—Liz—-1, 92+ (L(x,y+1) — L{z,y—1))2

Gradients

B{z,y) = tan ' ((L(z,y + 1) — L{z,y — 1))/(L{z + 1,y) — L(z — 1,3)))

m(x,y) =sqrt(1+0)=1
O(x, y) = atan(0/-1) =0




miz, y) = 1.r.-"l[ Lir+1.9)—Liz—-1, 92+ (L(x,y+1) — L{z,y—1))2

Gradients

B{z,y) = tan ' ((L(z,y + 1) — L{z,y — 1))/(L{z + 1,y) — L(z — 1,3)))

[ m(x,y)=sqrt(0+1)=1 7
- O(x, y) = atan(1/0) = 90




miz,y) = ".-":I[ Lir+1.9)—Liz—-1, 92+ (L(x,y+1) — L{z,y—1))2

Gradients

B{z,y) = tan ' ((L(z,y + 1) — L{z,y — 1))/(L{z + 1,y) — L(z — 1,3)))

(note length / magnitude)

m(x, y) = sqrt(1 + 1) =I1.41
O(x, y) = atan(1/1) =45




Scale Invariant Feature Transform

Basic idea:

« Take 16x16 square window around detected feature

« Compute gradient orientation for each pixel

» Create histogram over edge orientations weighted by magnitude
« That’s your feature descriptor!

0 27

angle histogram

Image gradients

Adapted from L. Zitnick, D. Lowe



Scale Invariant Feature Transform

Full version

Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
Quantize the gradient orientations i.e. snap each gradient to one of 8 angles

Each gradient contributes not just 1, but magnitude(gradient) to the histogram,
l.e. stronger gradients contribute more

16 cells * 8 orientations = 128 dimensional descriptor for each detected feature

X

Image gradients Keypoint descriptor

Adapted from L. Zitnick, D. Lowe



Scale Invariant Feature Transform

/ 1 3 I 1
2 3 2
\l— |
l 2
Gradients

Uniform weight (ignore magnitude)

Count
N
w
N
N

Histogram of gradients



Scale Invariant Feature Transform

1 3 1 Weight contribution by magnitude
/ I (e.g.long =1, short = 0.5)

-—
N
f
Count
N
N
ol
|_\
o1l
=

Type= 1 2 3

Gradients Histogram of gradients



Scale Invariant Feature Transform

Full version

0.2

Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
Quantize the gradient orientations i.e. snap each gradient to one of 8 angles

Each gradient contributes not just 1, but magnitude(gradient) to the histogram, i.e.
stronger gradients contribute more

16 cells * 8 orientations = 128 dimensional descriptor for each detected feature
Normalize + clip (threshold normalize to 0.2) + normalize the descriptor
After normalizing, we want:

Zd’i — 1 suchthat d; < 0.2

Adapted from L. Zitnick, D. Lowe



Making descriptor rotation invariant

e il andinalh Lol o B ol

! - o !

e Rotate patch according to its dominant gradient orientation
e This puts the patches into a canonical orientation

Adapted from K. Grauman, image from Matthew Brown



SIFT is robust

* Can handle changes in viewpoint
* Up to about 60 degree out of plane rotation

e Can handle significant changes in illumination

 Sometimes even day vs. night (below)

 Fast and efficient—can run in real time

* (Can be made to work without feature detection, resulting in
“dense SIFT” (more points means robustness to occlusion)

* One commonly used implementation

* http://www.vifeat.org/overview/sift.html

Adapted from S. Seitz


http://www.vlfeat.org/overview/sift.html

SIFT

ing

Examples of us




Examples of using SIFT




Examples of using SIFT

Images from S. Seitz



Applications of local invariant features

* Object recognition

* |Indexing and retrieval

* Robot navigation

* 3D reconstruction
 Motion tracking

* Image alighnment

* Panoramas and mosaics

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Adapted from K. Grauman and L. Lazebnik


http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Plan for this lecture

* Feature detection / keypoint extraction
— Corner detection
— Properties
— Blob detection

* Feature description (of detected features)
* Matching features across images



Matching local features

« To generate candidate matches, find patches that have the
most similar appearance (e.g., lowest feature Euclidean distance)

« Simplest approach: take the closest (or closest k, or within a
thresholded distance) as matches to query

K. Grauman



Robust matching

Image 1

« At what Euclidean distance value do we have a good match?

« To add robustness to matching, can consider ratio: distance
of query to best match / distance to second best match

 If low, first match looks good d(q, f1) / d(q, f2)
 If high, could be ambiguous match

K. Grauman



Matching SIFT descriptors

* Nearest neighbor (Euclidean distance)
« Threshold ratio of 15t nearest to 2" nearest descriptor

0.8

0.7

0.6 PDF for correct matches +

PDF for incorrect matches
0.5

PDF

0.4

0.3 o
7 \
0.2 / - :
/ b
_ N .
0.1 A >, i+
S T~

SR S e

—t

0 " — B i —
0O 01 02 03 04 05 06 07 08 09 1

Ratio of distances (closest/next closest)

Lowe IJCV 2004



Efficient matching

« So far we discussed matching features across
just two images

« What if you wanted to match a query feature from
one image, to features from all frames in a video?

* Or an image to other images in a giant database?

« With potentially thousands of features per image,
and hundreds to millions of images to search,
how to efficiently find those that are relevant to a
new image?

Adapted from K. Grauman



K. Grau

Indexing local features: Setup

« Each patch / region has a descriptor, which is a
point in some high-dimensional feature space
(e.g., SIFT)

S,

Descriptor’s
feature space

Database
o Images



Indexing local features: Setup

 When we see close points in feature space, we
have similar descriptors, which indicates similar
local content

®
§\ ® : .
‘ ®
G+ L
Descriptor’s Query
feature space image

Database
K. Grauman Images



Indexing local features:
nverted file index

| Index

“Along I-75," From Dabroi ko
Flesida; inside back cover
"Dirive 1H95," Fram Boalan o
Flomida; iraide Dok cover
1itE Spanish Tral Rpadasy;
101 =102, 104
511 Trallic Informstion; 83
A1A (Barmier isf) - |-55 Access; 8BS
AAA (and CAAY, B3
Alh Meaticnad Offics; 82
Abbeeviations,
GCodored 25 mile Maps; covar
Exit Sarvices; 196
Travebogue: 85
Alica; 177
Agricutarsl Inspaction Sirs; 126
Ah-Tah:Thi-Ki FResaurn; 180
Air Conditiordng, First; 112
Alabama; 124
Alachua; 132
Conindy; 131
Alatia Fioar, 143
Alapaha, Name; 135
Alfred B Maclay Gardans; 106
Alligates Al 154158
Alligatar Fanm, 54 Augusting; 160
Alligater Hole (dediniticn); 157
Alligator, Bddy; 155
Adligatons; 100, 135,138,147, 156
Anasiasia laland; 170
Anhaica; 108-108, 146
Apalachicola River; 112
Appleton Mus of Arl: 135
Anquilar; 102
Aralsian Mights; 94
At Musoum, Ringing; 147
Aruba Beach Cale; 183
Aucilla River Project; 106
Babcock-Web WHA; 151
Bahia Mar Marina; 184
Bakar County; 98
Barafoot hallman; 182
Barge Canal; 137
Ban Lirsy Expy: 80
Balz Culied Mali: 82
Bernard Casire: 136
Big °I°; 165
Big Cypasss; 165,158
Big Fool Monster; 105
Billig Swamp Saferl; 160
Blackwaier Rioer SP; 117
Blu Arnels

Butberily Center, MoGiEr; 134
G (5ea ARA)
COC, Thi: 111,113,115,135,142
Ca d'Zan; 147
Calopsahaiches Rivar; 152
Fiama; 150
Canaveral Mabnl Seashane: 173
Cannon Creek Airpark; 130
Canopy Road; 106,160
Cope Conaverad 174
Casfdlo San Marcod; 165
Cave Diving: 131
Cyn Costa, Nama; 150
Clebraton; 3
Charkatte County;, 148
Charkoths Haror 150
Chautauqua; 118
Chiplay; 114
Mame, 115
Chactewsiches, Naema; 115
Circus Musaurm, Ringling; 147
Citrus; 88,87 130,136, 140,180
CityFlace, YW Palm Beach: 180
City Maps,
Fi Lansdnrdale Expavygs; 194,106
Jackaarwille; 163
Kissimmes Expwys; 152-153
Mlamil Expressways; 194-195
Ovlandd Exprassways; 152183
Panaasola; 28
Talzhassas; 191
Tampi- 51, Petersburg; 63
S0, hugsuting; 191
Civil War: 100,108,127, 138, 141
Claarwaler Marine Agquarum; 137
CoHlier County; 154
Collier, Barron; 152
Cotonial Spanian Cuarlers; 168
Cohumbin County; 101,128
Coquina Building Material; 165
Corkacrew Swarnp, Marne; 154
Ciowiazrys; 85
Crab Trag 1I; 144
Crackar, Flowida; 88 85 132
Crosstown Expy: 11,55,88.143
Cuban Bread; 184
Dade Batilafiahd; 140
Diachy, Maj. France:; 130-140,161
Dania Beach Husricanse: 184
Dantel Boone, Frorkda Walkz 117
Diaybona Baach; 172173
Dy Land: 87

Diriving Lanses; 85
Durval Coundy; 163
Eaui Galis: 175
Edison, Thomas:; 152
Eglin AFE; 116-115
Eight Reale; 176
Ellsnban; 144-145
Emantel Foint Wreck: 120
Emargency Calibooes; 53
Epiphytes; 142,148,157 155
Escambia Bay; 119
Baredge (1-10); 118
County; 120
E=fore; 153
Evanglads 30,85, 138-140, 154~ 160
Draining of; 156,181
Wildlifa WAA; 180
‘Waondar Gardens; 154
Falling Waters 5F. 115
Fantasy of Flight; 95
Fayar Dekoas SP; 111
Fires, Forest: 166
Fireg, Prascribed |, 148
Flsherman's VeElags; 151
Flaghsr Courty; 171
Flagher, Henry: 97185, 167,171
Flarida Aguarhem: 166
Flatida,
12,000 yaas ago; 187
Cavan SP; 114
Mag of all Exprossways: 2-3
Mus of Matwal History; 134
Mationnl Cematery © 141
arl of Alvica; 177
Fiathonm; 187
Sherifs Boys Camp; 126
Sports Hall of Fame; 130
Sun 'n Fun Mueseum: 97
Suprams Couwr; 107
Florida’s Turnpike (FTR), 178,189
25 mils Stip Maps: 66
Administragion; 188
Comn System; 150
Bl Services; 185
HEFT: 76,161,180
History; 189
Mamas; 189
Service Plakas; 100
Spur SRS TE
Ticket System; 150
ToE Plazas; 150
Fard, Henmg: 152

For text
documents, an
efficient way to find
all pages on which
a word occurs Is to
use an index...

We want to find all
Images in which a
feature occurs.

To use this idea,
we’ll need to map
our features to
“visual words”.

K. Grauman



Visual words: Main idea

* Extract some local features from a number of images ...

— =
Do

S

e.g., SIFT descriptor space: each
point is 128-dimensional

D. Nister, CVPR 2006



Visual words: Main idea
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Visual words: Main idea
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Visual words: Main idea
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D. Nister, CVPR 2006



Each point is a local
descriptor, e.g. SIFT
feature vector.

D. Nister, CVPR 2006
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“Quantize” the space by grouping

* o (clustering) the features.

Note: For now, we’ll treat clustering
as a black box.

D. Nister, CVPR 2006



Visual words

* Patchesontheright | B gl digdidh Jh dhdbdhdbd

* Each group of

compute SIFT

= regions used to Enuuuuuﬂﬁﬁ
AA/AAA N

F

alelenlnsnlns
s alamine min!
D Eo W[
o/ Te®wls
B F‘ \m-lﬂ (* %]

Figure from Sivic & Zisserman, ICCV 2003

patches belongs to LF

the same “visual
word”

L

o

Adapted from K. Grauman




Visual words for indexing

« Map high-dimensional descriptors to tokens/words
by quantizing the feature space

Adapted from K. Grauman

Descriptor’s
feature space

Each cluster has center

To determine which word
to assign to new image
region (e.q. query), find
closest cluster center

To compare features:
Only compare query
feature to others in same
cluster (speed up)

To compare images:
Find which words images
share



Inverted file Index

‘ T
y Image #1

Image #2

Database images

10

Image #3
91

* |Index database images: map each word to image IDs that contain it

K. Grauman



Inverted file Index

When will this indexing process —
give us a gain in efficiency? w-
1 3

New query image

« For a new query image, find which database images share a word with it,
and retrieve those images as matches (or inspect only those further)

Adapted from K. Grauman



How to describe documents with words?

Of all the sensory impressions proceeding to
the brain, the visual experiences are the
dominant ones. Our perception of the world
around us is based essentially on the
messages that rz o OUr eyes.

eye, cell, optical
nerve, image
. Hubel, Wiesel ,

following th 2 _
to the various

demonstrate that the message abo?@
image falling on the retina undergoes
wise analysis in a system of nerve cel
stored in columns. In this system each C
has its specific function and is responsibl
a specific detail in the pattern of the retinal
image.

China is forecasting a trade surplus of $90bn
(E51bn) to $100bn this year, a threefold
increase on 2004's $32bn. The Commerce
Ministry said the surplus would be created by
a predicted 300/ :

China's .
deliberff{€xports, Imports, US,
agreesfl/uan, bank, domestic,

b, foreign, increase,
w, trade, value

freely. However, Beijing has made it ci
it will take its time and tread carefully b
allowing the yuan to rise further in value.

ICCV 2005 short course, L. Fei-Fei




Describing images w/ visual words

Cluster 1

« Summarize entire image
based on its distribution
(histogram) of word
occurrences Cluster 2

« Analogous to bag of words
representation commonly
used for documents

Feature patches:

Vg e g@® pir LT do
NN

od

Cluster 4

Adapted from K. Grauman



Describing images w/ visual words

>

« Summarize entire image
based on its distribution
(histogram) of word
occurrences

times appearing

« Analogous to bag of words
representation commonly
used for documents

times appearing

Feature patches:

iim B @ lew / A_:T *
&Eum -t“f] ™N A

K. Grauman

times appearing

Visual words



Comparing bags of words

 Rank images by normalized scalar product between their
occurrence counts---nearest neighbor search for similar

Images.

18 1 4]

K. Grauman

51 1 0]

(dj,q)
d;,
sim{d.4) =77 Mial
Yi—1d;(@) *q(i)

) \/Z‘Ll d;(0)* * \/Z{/:l q(i)?

for vocabulary of V words



Bags of words: pros and cons

+ flexible to geometry / deformations / viewpoint
+ compact summary of image content
+ good results in practice

- basic model ignores geometry — must verify
afterwards, or encode via features

- background and foreground mixed when bag
covers whole image

- optimal vocabulary formation remains unclear

Adapted from K. Grauman



Summary: Inverted file index and
bags of words similarity

Offline:

« EXxtract features in database images, cluster
them to find words = cluster centers, make index

Online (during search):

1. Extract words in query (extract features and
map each to closest cluster center)

2. Use inverted file index to find database images
relevant to query

3. Rank database images by comparing word
counts of query and database image

Adapted from K. Grauman



Additional references

e Survey paper on local features

— “Local Invariant Feature Detectors: A Survey” by Tinne Tuytelaars and
Krystian Mikolajczyk, in Foundations and Trends in Computer Graphics
and Vision Vol. 3, No. 3 (2007) 177-280 (mostly Chapters 1, 3.2, 7)
http://homes.esat.kuleuven.be/%7Etuytelaa/FT survey interestpoints

08.pdf

e Making Harris detection scale-invariant

— “Indexing based on scale invariant interest points” by Krystian
Mikolajczyk and Cordelia Schmid, in ICCV 2001 https://hal.archives-
ouvertes.fr/file/index/docid/548276/filename/mikolajcICCV2001.pdf

 SIFT paper by David Lowe

— “Distinctive Image Features from Scale-Invariant Keypoints” by David
G. Lowe, in lJCV 2004 http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf



http://homes.esat.kuleuven.be/~tuytelaa/FT_survey_interestpoints08.pdf
https://hal.archives-ouvertes.fr/file/index/docid/548276/filename/mikolajcICCV2001.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Summary

* Keypoint detection: repeatable
and distinctive

— Corners, blobs, stable regions

— Laplacian of Gaussian, automatic
scale selection

* Descriptors: robust and selective

— Histograms for robustness to small
shifts and translations (SIFT

descriptor) EREECIIEY
* Matching: cluster and index NEER ST
— Compare images through their

feature distribution

Adapted from D. Hoiem, K. Grauman




