CS 2770: Computer Vision Generative Adversarial Networks

Prof. Adriana Kovashka
University of Pittsburgh
April 14, 2020

Plan for this lecture

- Generative models: What are they?
- Technique: Generative Adversarial Networks
- Applications
- Conditional GANs
- Cycle-consistency loss
- Dealing with sparse data, progressive training

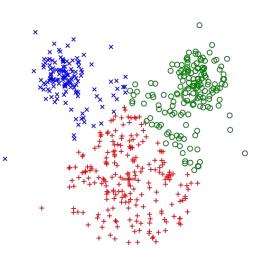
Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.



K-means clustering

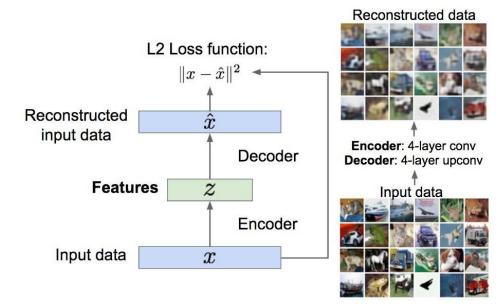
Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.



Autoencoders (Feature learning)

Generative Models

Generated samples $\sim p_{\text{model}}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Generative Models

Training data $\sim p_{data}(x)$

Generated samples $\sim p_{\text{model}}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Addresses density estimation, a core problem in unsupervised learning **Several flavors**:

- Explicit density estimation: explicitly define and solve for p_{model}(x)
- Implicit density estimation: learn model that can sample from $p_{\text{model}}(x)$ w/o explicitly defining it

Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models can be used to enhance training datasets with diverse synthetic data
- Generative models of time-series data can be used for simulation

Taxonomy of Generative Models

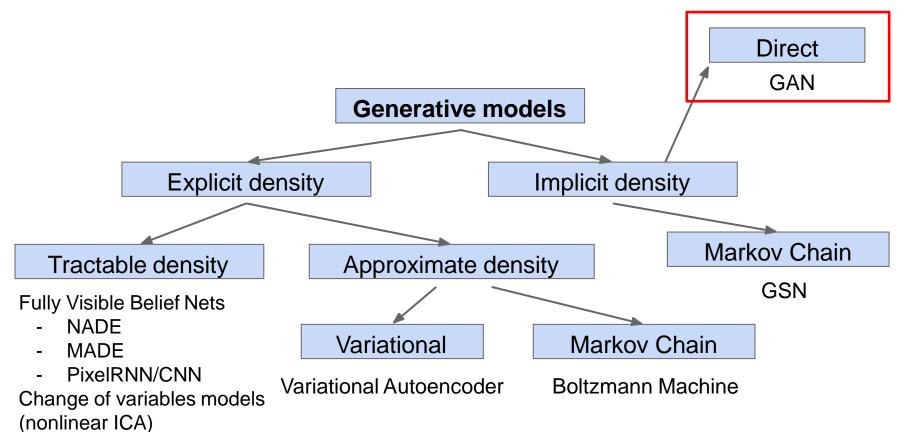


Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Generative Adversarial Networks

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?

Generative Adversarial Networks

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

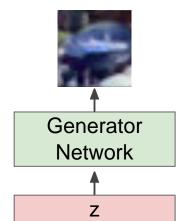
Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?

A: A neural network!

Output: Sample from training distribution



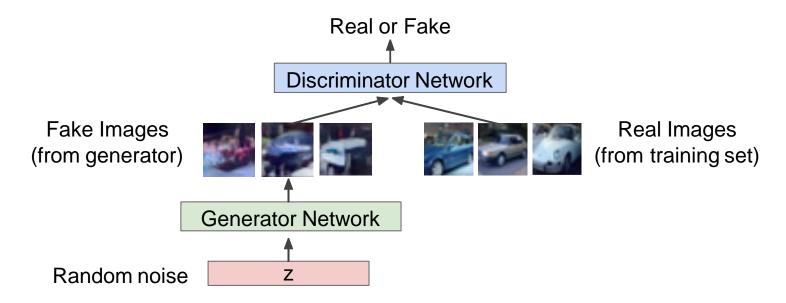
Input: Random noise

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

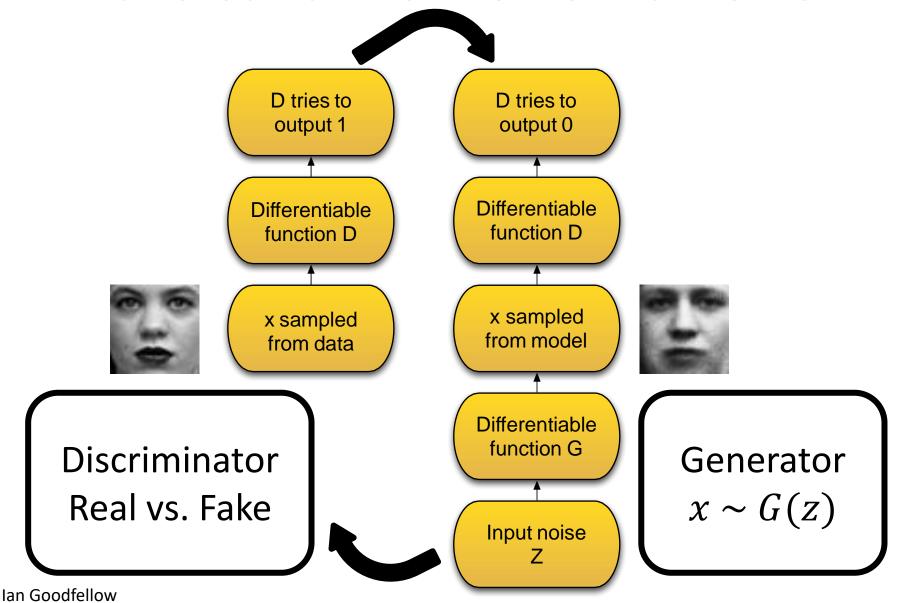
Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images



Adversarial Networks Framework



lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
 Discriminator output for for real data x generated fake data G(z)

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
 Discriminator output for for real data x generated fake data G(z)

- Discriminator (θ_d) wants to **maximize objective** such that D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)
- Generator (θ_g) wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled into thinking generated G(z) is real)

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

Gradient ascent on discriminator

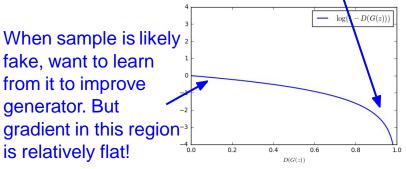
$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

In practice, optimizing this generator objective does not work well!

Gradient signal dominated by region where sample is already good



lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

Gradient ascent on discriminator

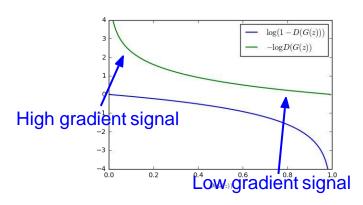
$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Instead: Gradient ascent on generator, different objective

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.



Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Putting it together: GAN training algorithm

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]$$

end for

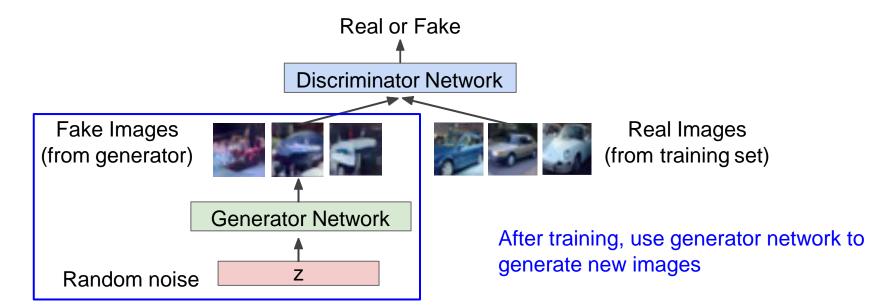
- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by ascending its stochastic gradient (improved objective):

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))$$

end for

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images



GAN training is challenging

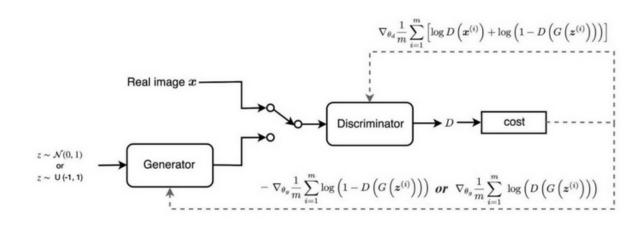
- Vanishing gradient when discriminator is very good
- Mode collapse too little diversity in the samples generated
- Lack of convergence because hard to reach Nash equilibrium
- Loss metric doesn't always correspond to image quality; Frechet Inception Distance (FID) is a decent choice

Alternative loss functions

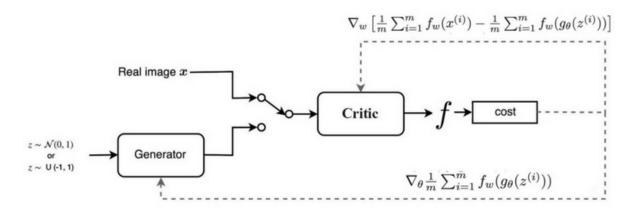
Name	Paper Link	Value Function
GAN	Arxiv	$\begin{split} L_D^{GAN} &= E \big[\log \big(D(x) \big) \big] + E \big[\log \big(1 - D(G(z)) \big) \big] \\ L_G^{GAN} &= E \big[\log \big(D(G(z)) \big) \big] \end{split}$
LSGAN	Arxiv	$L_D^{LSGAN} = E[(D(x) - 1)^2] + E[D(G(z))^2]$ $L_G^{LSGAN} = E[(D(G(z)) - 1)^2]$
WGAN	Arxiv	$\begin{split} L_D^{WGAN} &= E[D(x)] - E[D(G(z))] \\ L_G^{WGAN} &= E[D(G(z))] \\ W_D &\leftarrow clip_by_value(W_D, -0.01, 0.01) \end{split}$
WGAN_GP	Arxiv	$\begin{split} L_D^{WGAN_GP} &= L_D^{WGAN} + \lambda E[(\nabla D(\alpha x - (1 - \alpha G(z))) - 1)^2] \\ L_G^{WGAN_GP} &= L_G^{WGAN} \end{split}$
DRAGAN	Arxiv	$\begin{split} L_D^{DRAGAN} &= L_D^{GAN} + \lambda E [\left(\nabla D(\alpha x - (1 - \alpha x_p)) - 1\right)^2] \\ L_G^{DRAGAN} &= L_G^{GAN} \end{split}$
CGAN	Arxiv	$\begin{split} L_D^{CGAN} &= E\big[\log\big(D(x,c)\big)\big] + E\big[\log\big(1 - D(G(z),c)\big)\big] \\ L_G^{CGAN} &= E\big[\log\big(D(G(z),c)\big)\big] \end{split}$
infoGAN	Arxiv	$\begin{split} L_{D,Q}^{infoGAN} &= L_D^{GAN} - \lambda L_I(c,c') \\ L_G^{infoGAN} &= L_G^{GAN} - \lambda L_I(c,c') \end{split}$
ACGAN	Arxiv	$\begin{split} L_{D,Q}^{ACGAN} &= L_D^{GAN} + E[P(class = c x)] + E[P(class = c G(z))] \\ L_G^{ACGAN} &= L_G^{GAN} + E[P(class = c G(z))] \end{split}$
EBGAN	Arxiv	$\begin{split} L_D^{EBGAN} &= D_{AE}(x) + \max(0, m - D_{AE}(G(z))) \\ L_G^{EBGAN} &= D_{AE}(G(z)) + \lambda \cdot PT \end{split}$
BEGAN	Arxiv	$\begin{split} L_D^{BEGAN} &= D_{AE}(x) - k_t D_{AE}(G(z)) \\ L_G^{BEGAN} &= D_{AE}(G(z)) \\ k_{t+1} &= k_t + \lambda (\gamma D_{AE}(x) - D_{AE}(G(z))) \end{split}$

WGAN vs GAN

GAN:



WGAN



Tips and tricks

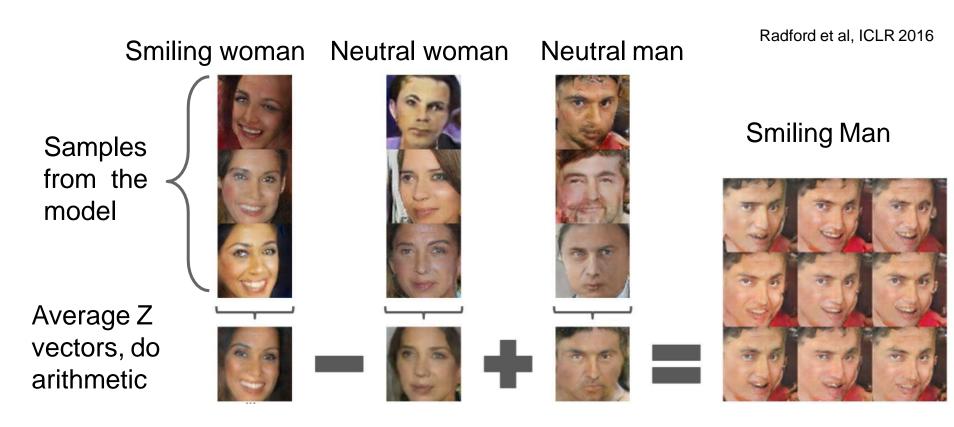
- Use batchnorm, ReLU
- Regularize norm of gradients
- Use one of the new loss functions
- Add noise to inputs or labels
- Append image similarity to avoid mode collapse
- Use labels when available (CGAN)

•

Smiling woman Neutral woman Neutral man

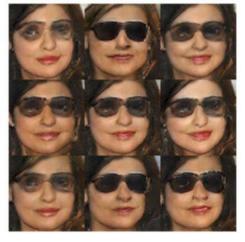
Samples from the model

Radford et al, ICLR 2016 Smiling woman Neutral woman Neutral man Samples from the model Average Z vectors, do arithmetic



Glasses man No glasses man No glasses woman Radford et al, **ICLR 2016**

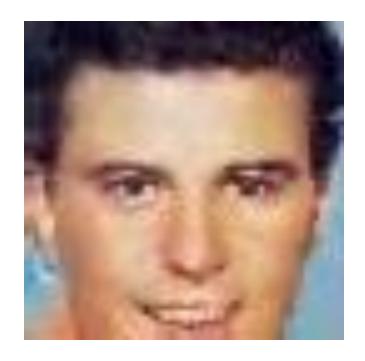
Glasses man No glasses woman



What is in this image?

(Yeh et al., 2016)

Generative modeling reveals a face

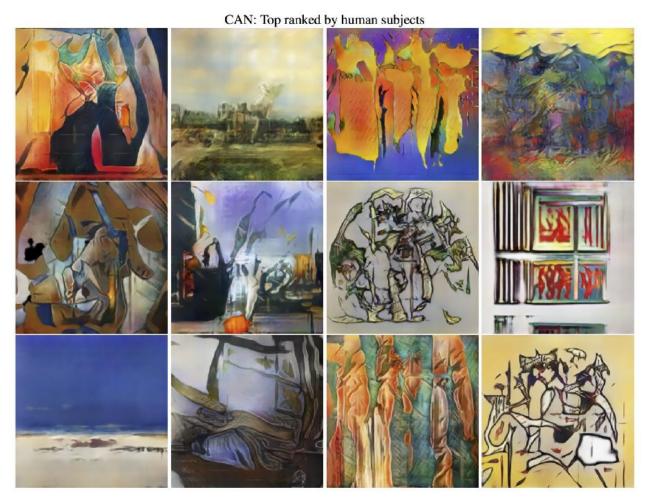


(Yeh et al., 2016)

Artificial Fashion: vue.ai

Celebrities Who Never Existed

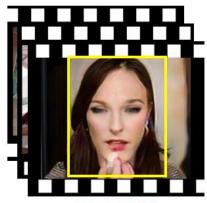
Creative Adversarial Networks



(Elgammal et al., 2017)

GANs for Privacy (Action Detection)

Identity: Jessica Action: Applying Make-up on Lips

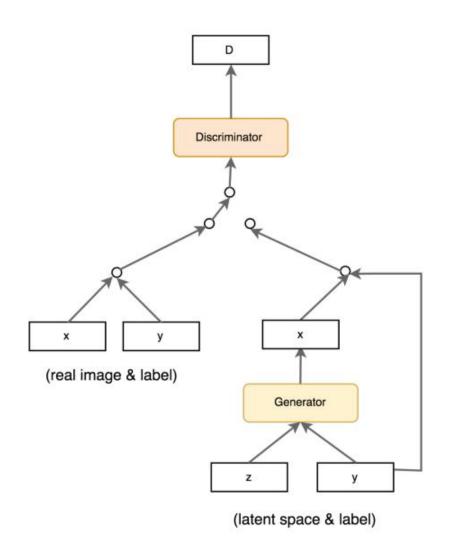


Identity: ???
Action: Applying Make-up on Lips

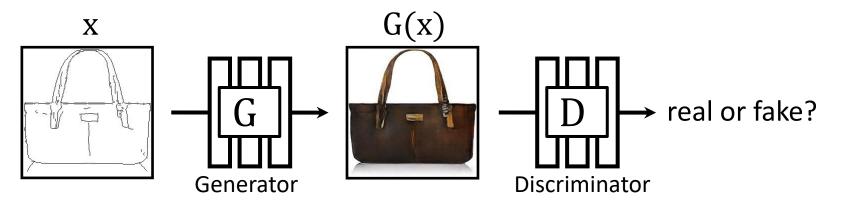
Plan for this lecture

- Generative models: What are they?
- Technique: Generative Adversarial Networks
- Applications
- Conditional GANs
- Cycle-consistency loss
- Dealing with sparse data, progressive training

Conditional GANs



GANs

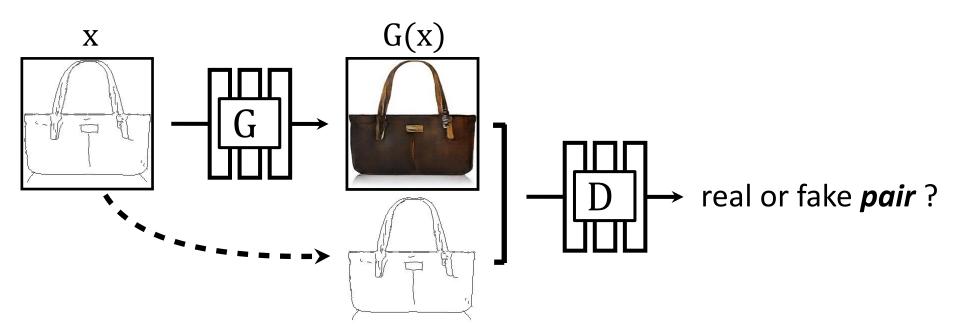


G: generate fake samples that can fool D

D: classify fake samples vs. real images

[Goodfellow et al. 2014]

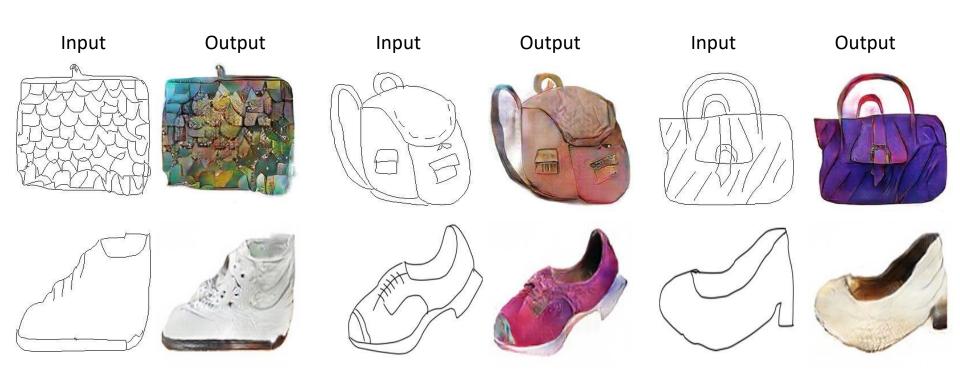
Conditional GANs



Edges → Images

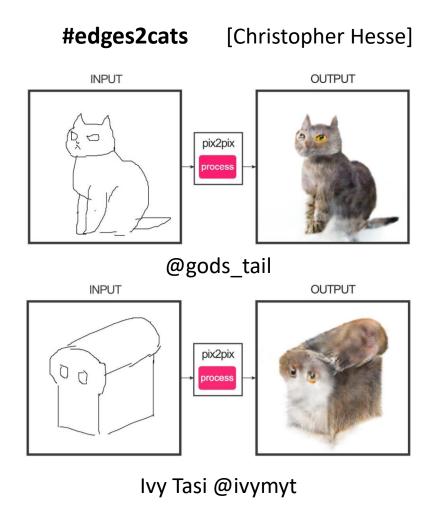
Edges from [Xie & Tu, 2015]

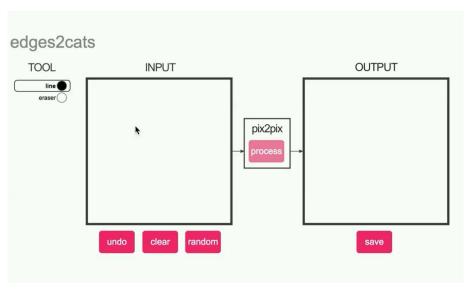
Sketches → Images



Trained on Edges → Images

Data from [Eitz, Hays, Alexa, 2012]

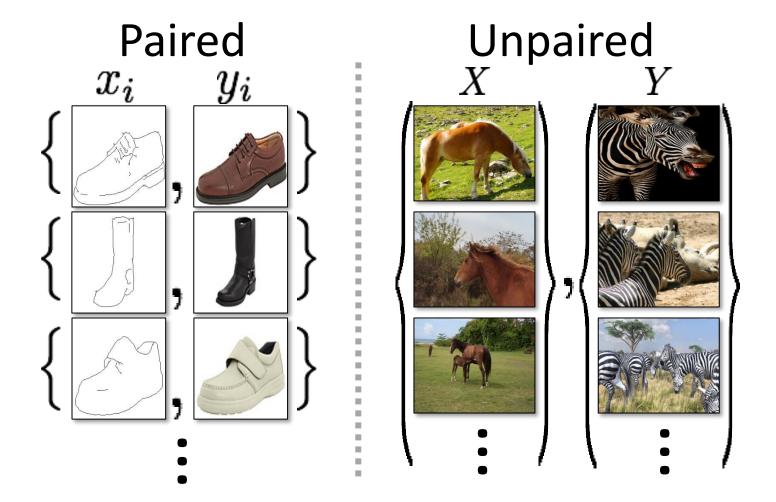


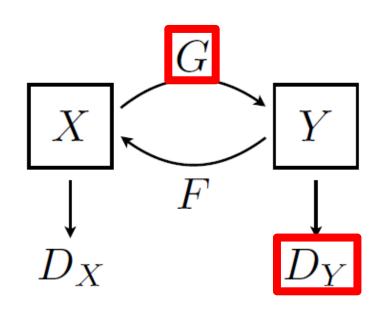


@matthematician

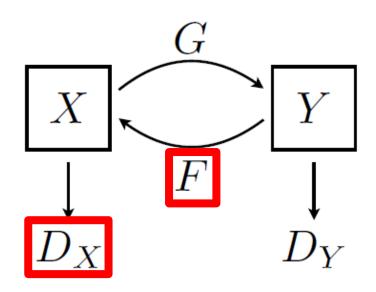
Vitaly Vidmirov @vvid

https://affinelayer.com/pixsrv/

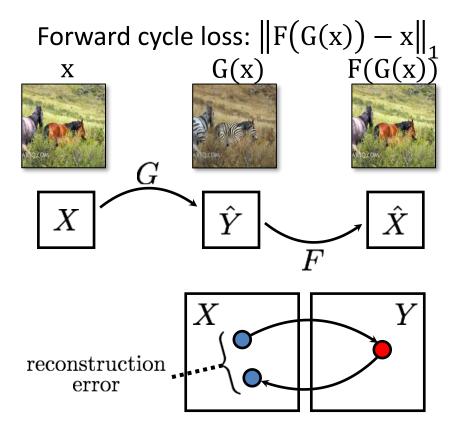


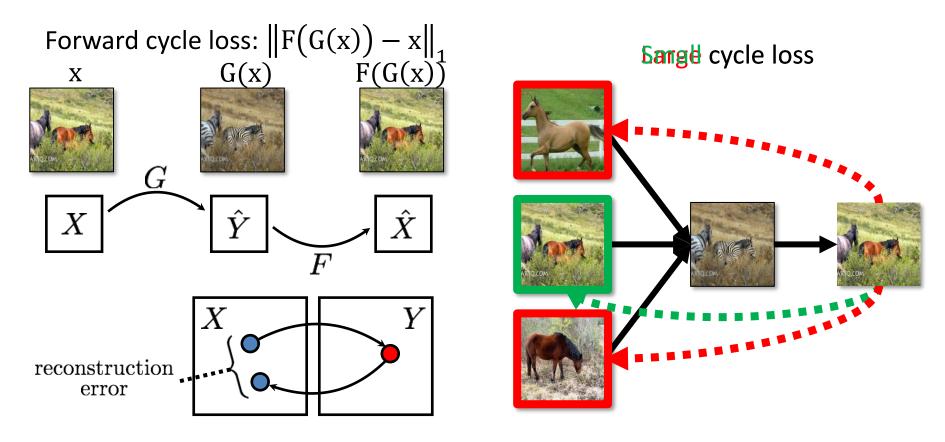


Discriminator D_Y : $L_{GAN}(G(x), y)$ Real zebras vs. generated zebras



Discriminator D_Y : $L_{GAN}(G(x), y)$ Real zebras vs. generated zebras Discriminator D_X : $L_{GAN}(F(y), x)$ Real horses vs. generated horses





Helps cope with mode collapse

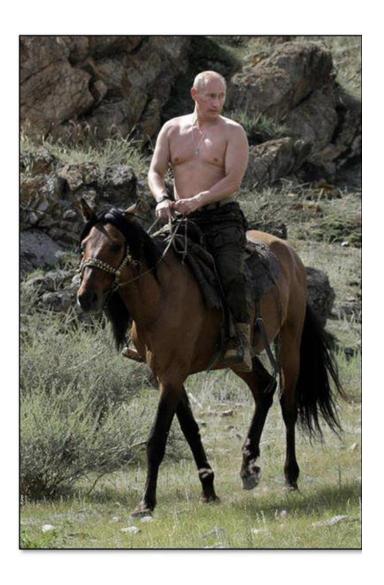
Training Details: Objective

$$\mathcal{L}_{GAN}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{data}(y)} [\log D_Y(y)] + \mathbb{E}_{x \sim p_{data}(x)} [\log (1 - D_Y(G(x)))],$$

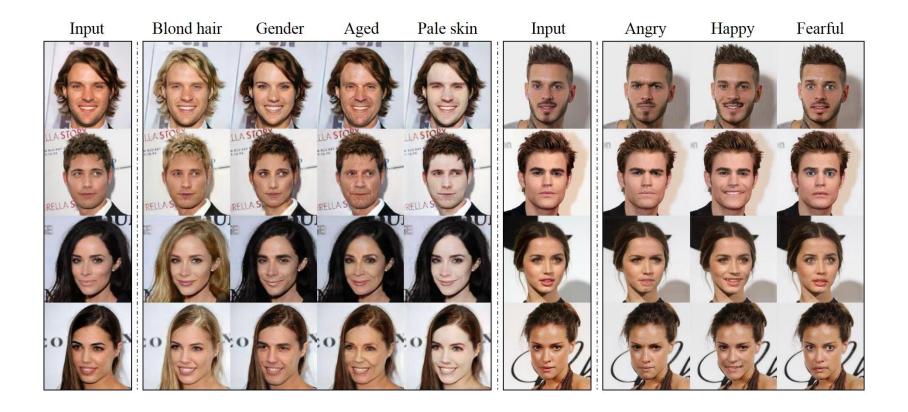
$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\|F(G(x)) - x\|_1] + \mathbb{E}_{y \sim p_{\text{data}}(y)} [\|G(F(y)) - y\|_1].$$

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y) + \mathcal{L}_{GAN}(F, D_X, Y, X) + \lambda \mathcal{L}_{cyc}(G, F),$$

$$G^*, F^* = \arg\min_{G, F} \max_{D_T, D_Y} \mathcal{L}(G, F, D_X, D_Y).$$



StarGAN



Plan for this lecture

- Generative models: What are they?
- Technique: Generative Adversarial Networks
- Applications
- Conditional GANs
- Cycle-consistency loss
- Dealing with sparse data, progressive training

Generating with little data for ads

Faces are persuasive and carry meaning/sentiment

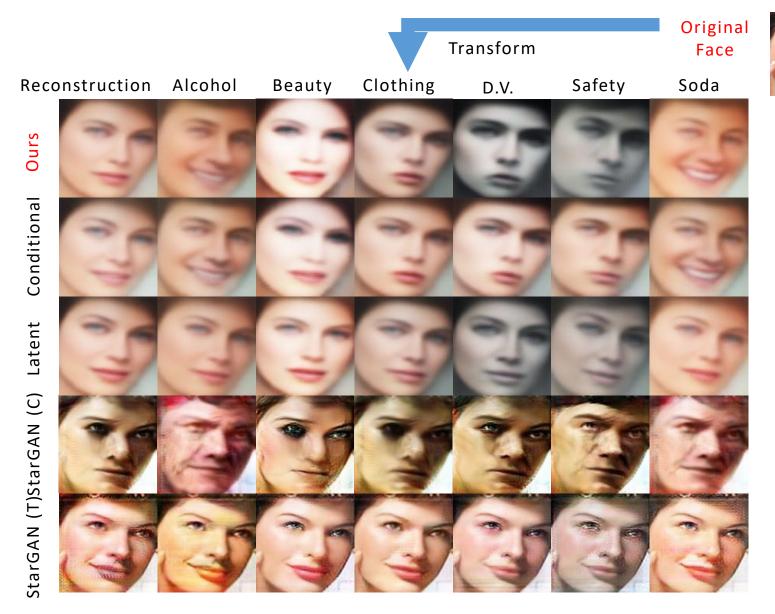
- We learn to generate faces appropriate for each ad category
- Because our data is so diverse yet limited in count, standard approaches that directly model pixel distributions don't work well

Generating with little data for ads

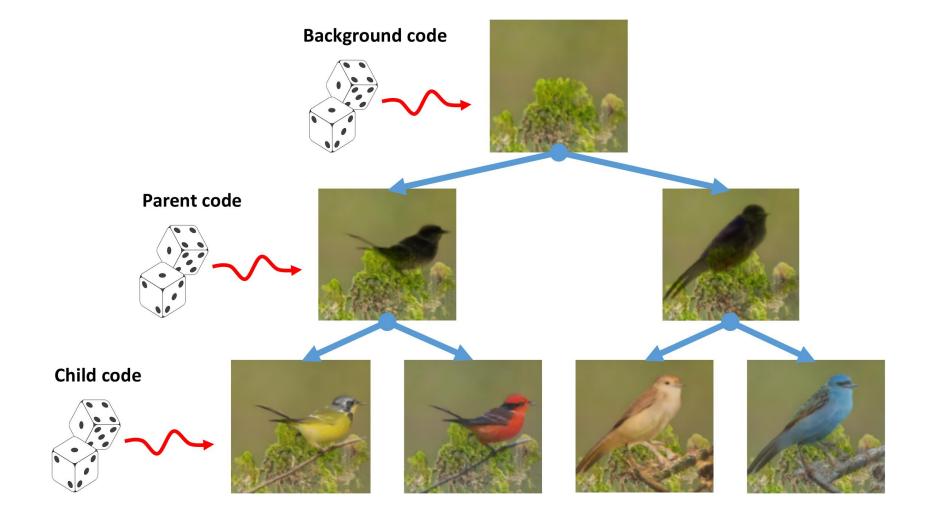
- Instead we model the distribution over attributes for each category (e.g. domestic violence ads contain "black eye", beauty contains "red lips")
- Generate an image with the attributes of an ad class

 Model attributes w/ help from external large dataset Sampling **Decoder Encoder** $100 (\mu)$ 128x128x3 128x128x3 32x32x16 8x8x64 2x2x256 512 8x8x64 32x32x16 Input $100 (\sigma) 150$ 64x64x8 16x16x32 4x4x128 64x64x8 **Externally Enforced Semantics** Embedding Latent (100-D) Facial Attributes (40-D) Facial Expressions (10-D) 150 Latent captures non-Facial attributes: < Attractive, Baggy eyes, Big Facial expressions: < Anger, Contempt, semantic appearance lips, Bushy eyebrows, Eyeglasses, Gray hair, Disgust, Fear, Happy, Neutral, Sad, Surprise> properties (colors, etc.) Makeup, Male, Pale skin, Rosy cheeks, etc.> + Valence and Arousal scores

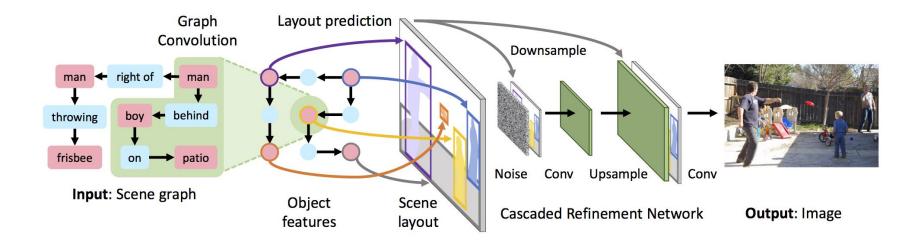
Generating with little data for ads

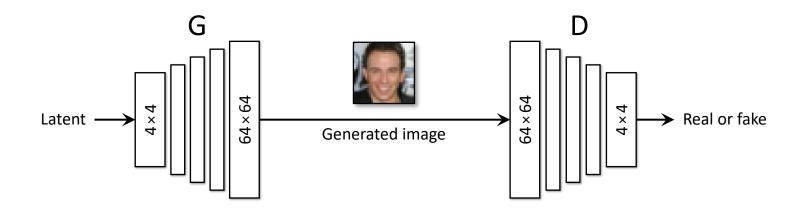


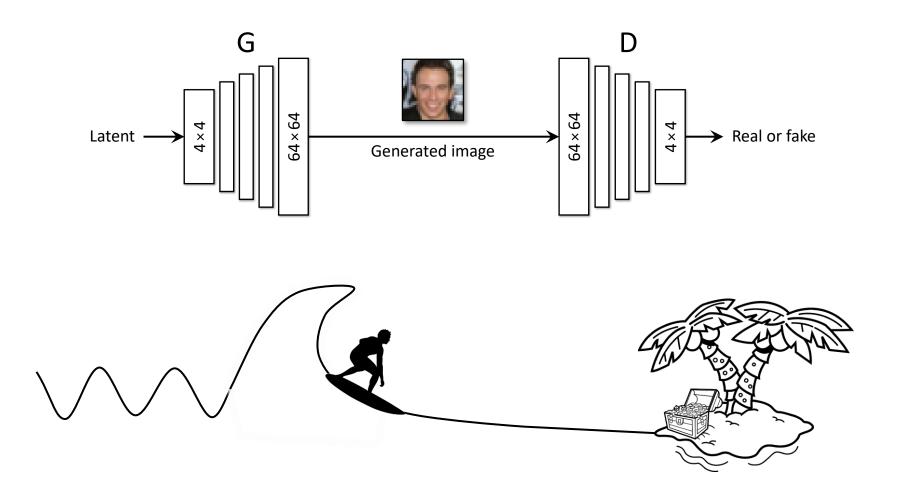
Stagewise generation

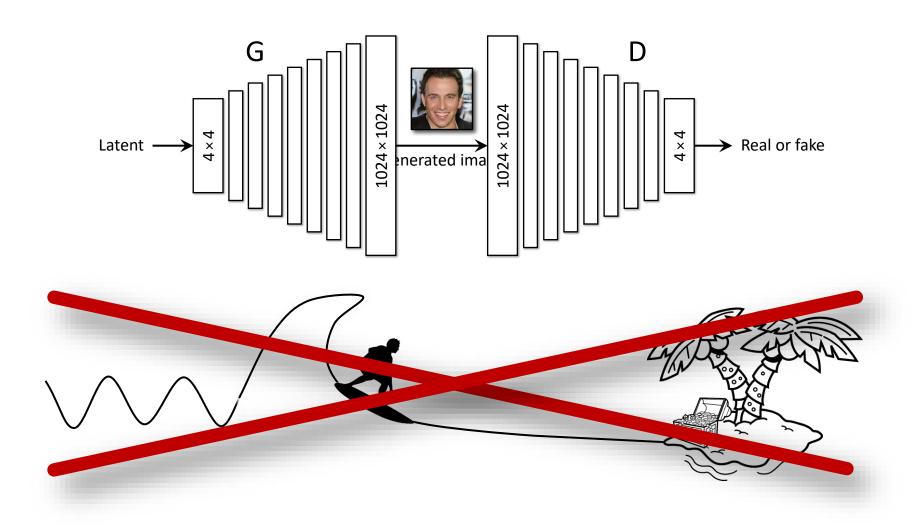


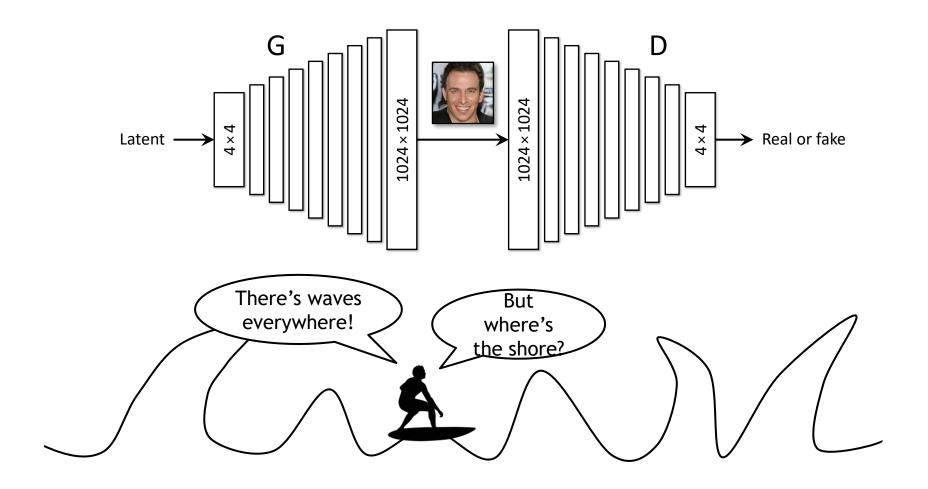
Stagewise generation

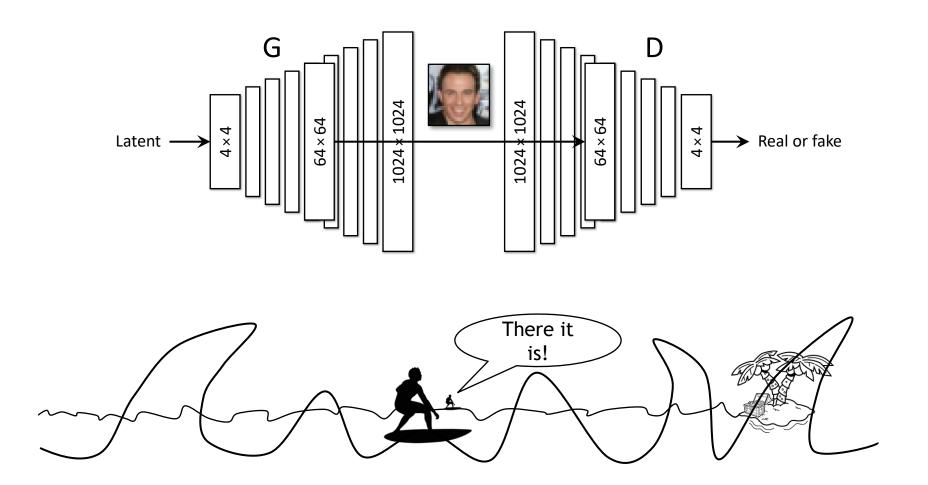


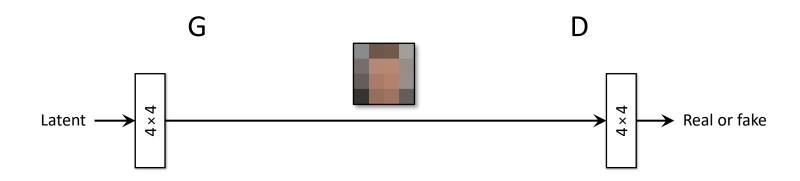


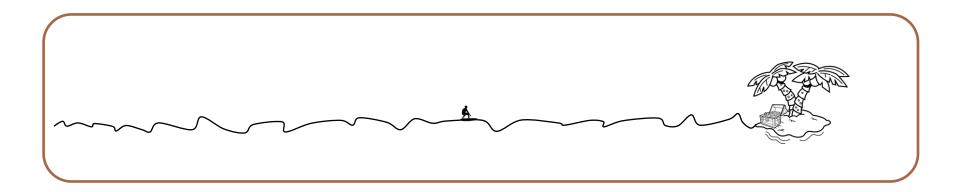


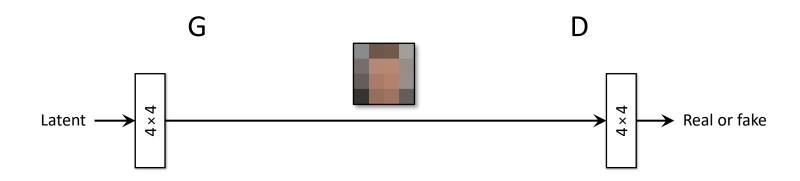


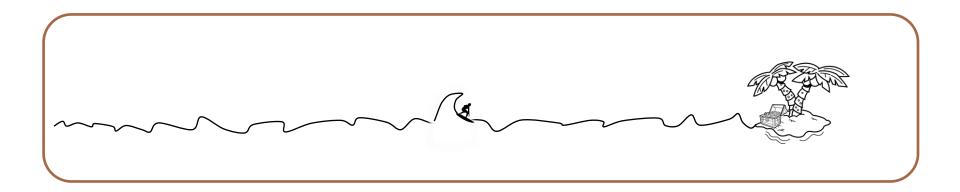


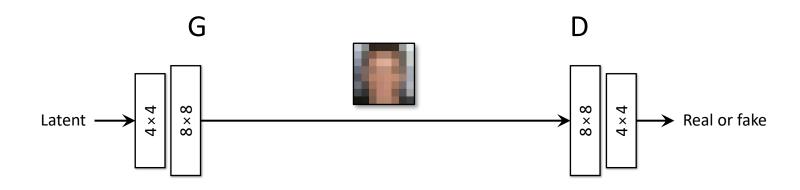


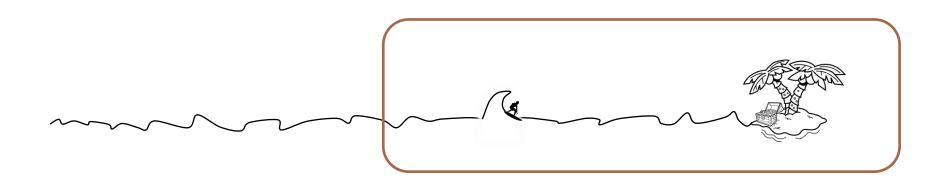


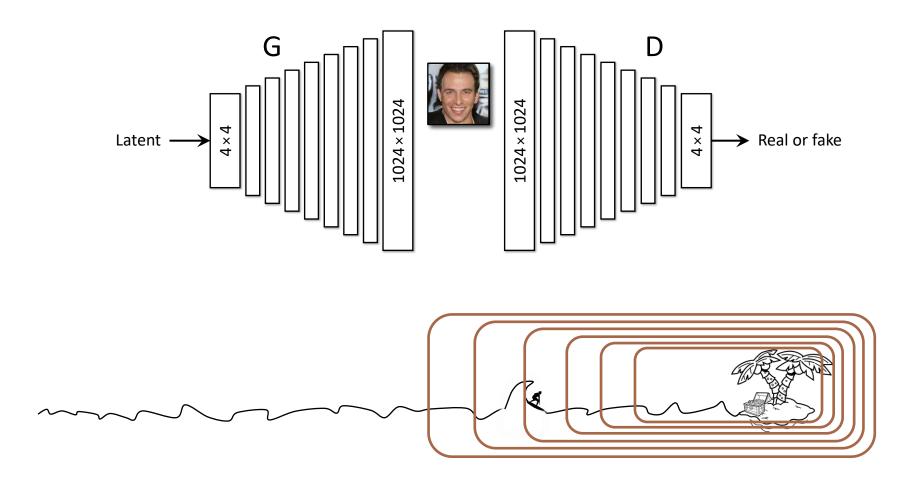


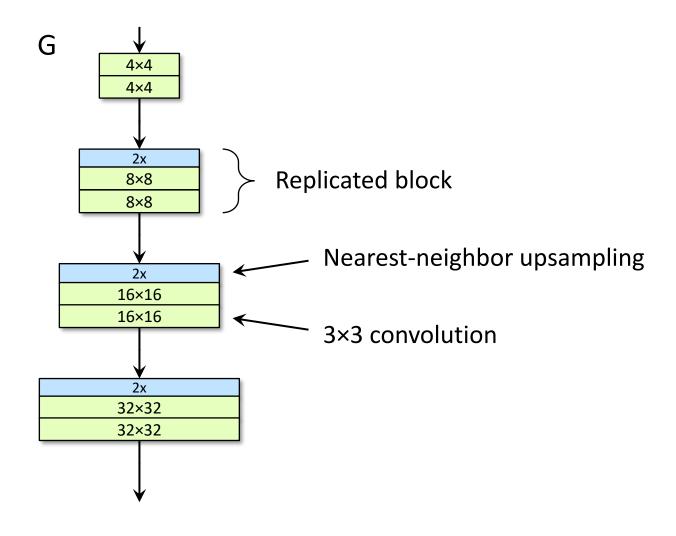


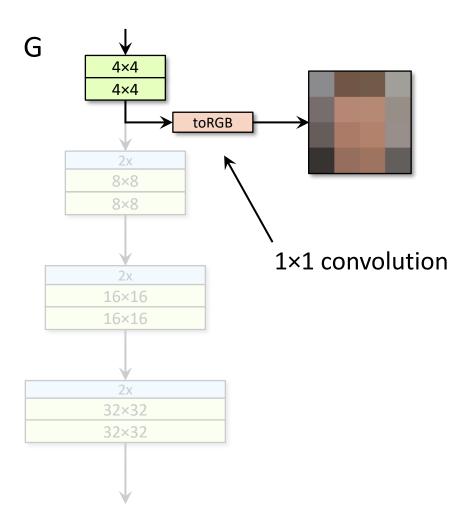


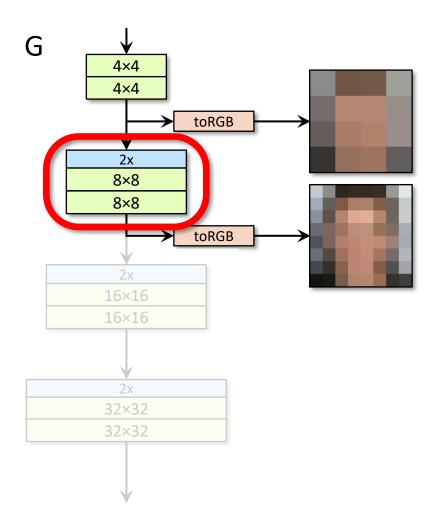


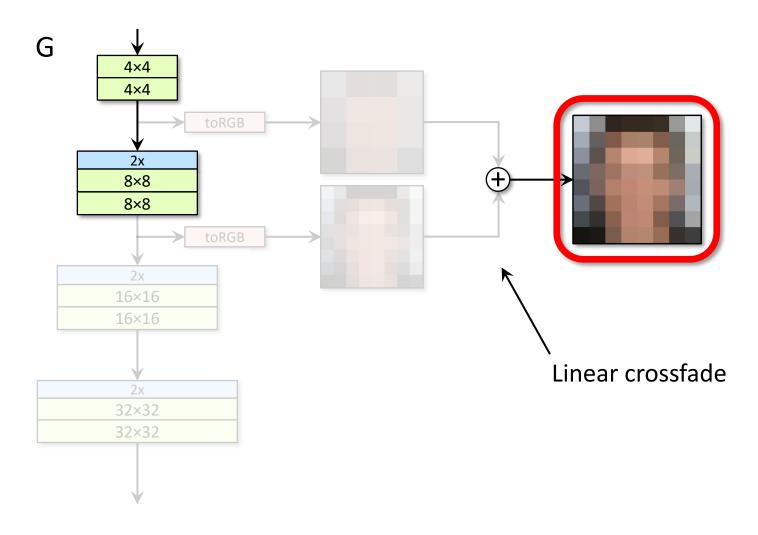


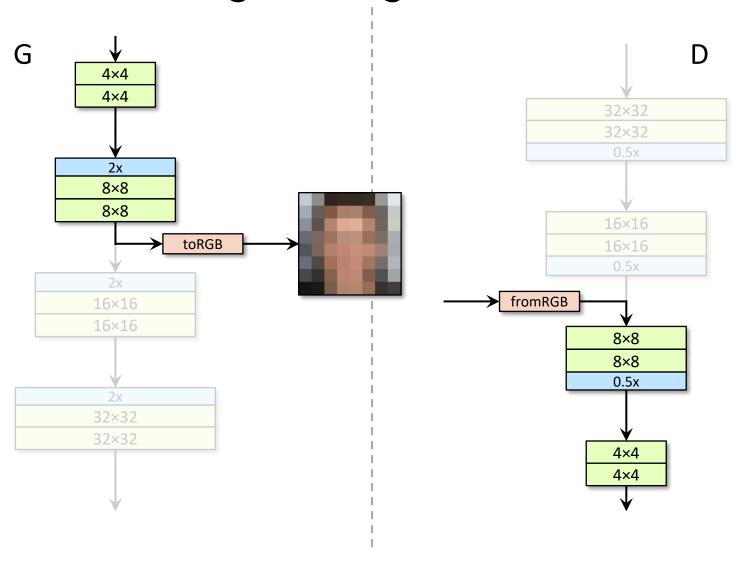












What's next algorithmically?

And what are some social implications?

"Deepfakes"

https://www.technologyreview.com/s/611726/the-defense-department-has-produced-the-first-tools-for-catching-deepfakes/https://www.niemanlab.org/2018/11/how-the-wall-street-journal-is-preparing-its-journalists-to-detect-deepfakes/

You can be anyone you want...

