CS 2770: Computer Vision Generative Adversarial Networks

Prof. Adriana Kovashka University of Pittsburgh April 16, 2019

Plan for this lecture

- Generative models: What are they?
- Technique: Generative Adversarial Networks
- Applications
- Conditional GANs
- Cycle-consistency loss
- Dealing with sparse data, progressive training

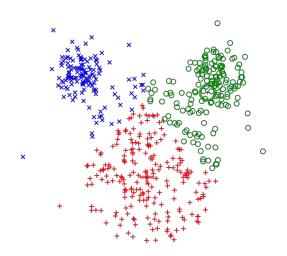
Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.



K-means clustering

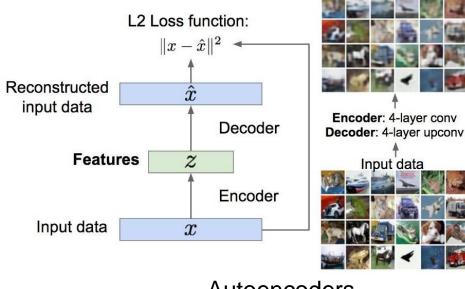
Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.



Autoencoders (Feature learning)

Reconstructed data

Generative Models

Training data ~ p_{data}(x)

Generated samples ~ $p_{model}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Generative Models

Training data ~ p_{data}(x)

Generated samples ~ $p_{model}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Addresses density estimation, a core problem in unsupervised learning **Several flavors:**

- Explicit density estimation: explicitly define and solve for p_{model}(x)
- Implicit density estimation: learn model that can sample from p_{model}(x) w/o explicitly defining it

Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models can be used to enhance training datasets with diverse synthetic data
- Generative models of time-series data can be used for simulation

Taxonomy of Generative Models

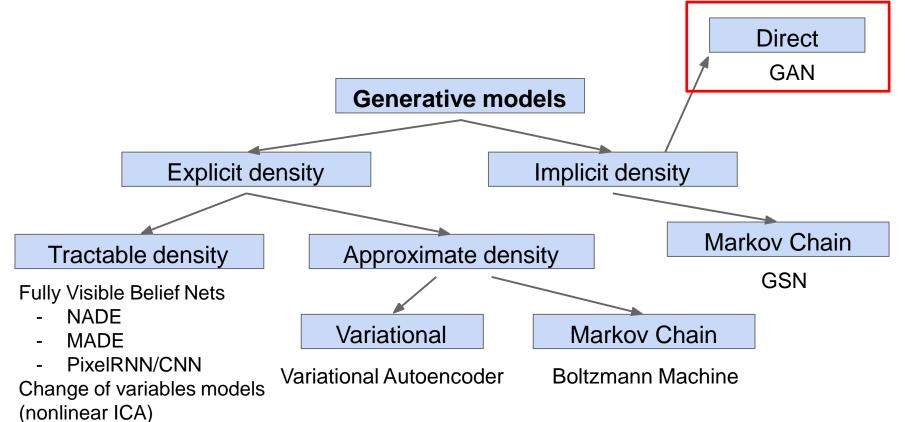


Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Generative Adversarial Networks

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?

Generative Adversarial Networks

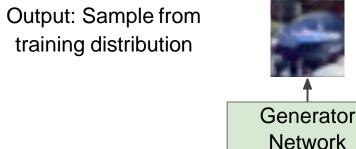
Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?

A: A neural network!



Ζ

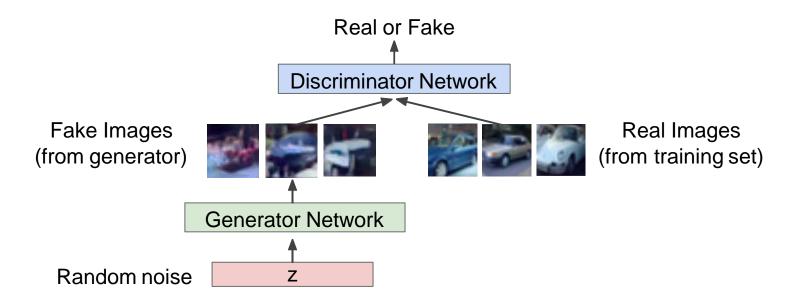
Input: Random noise

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

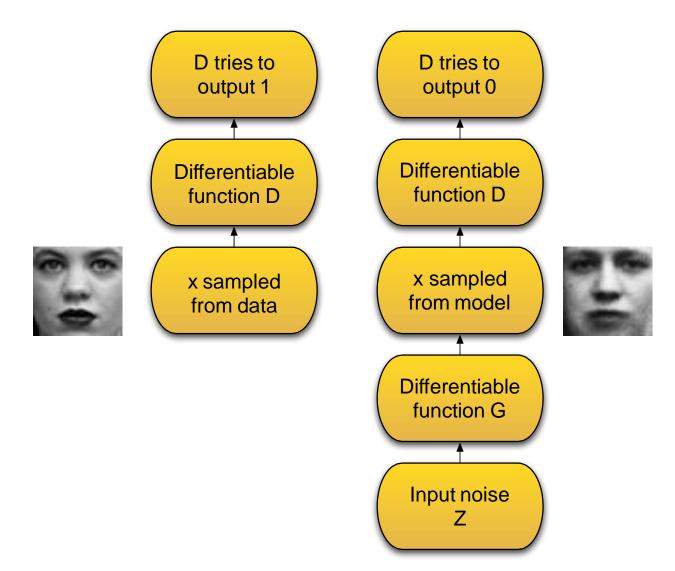
Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

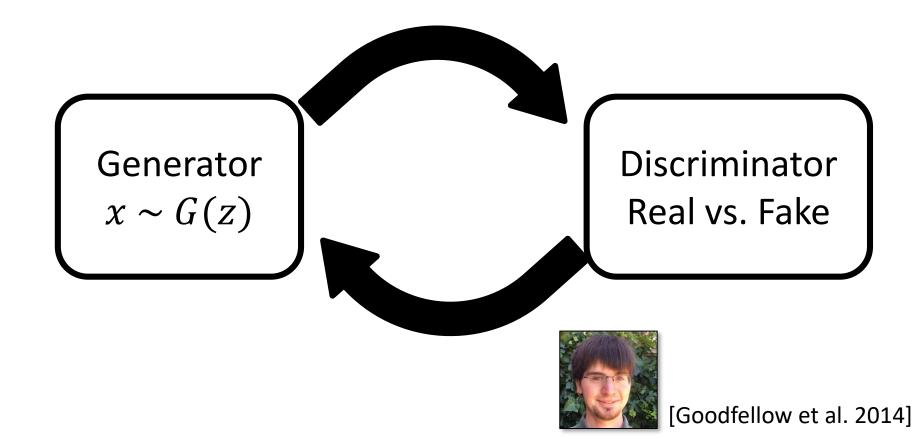
Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images



Adversarial Networks Framework



Adversarial Networks Framework



Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
Discriminator output

iscriminator output for real data x Discriminator output for generated fake data G(z)

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

п.

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in **minimax game**

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
Discriminator output for real data x
Discriminator output for generated fake data G(z)

- Discriminator (θ_d) wants to maximize objective such that D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)
- Generator (θ_g) wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Gradient signal

dominated by region

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

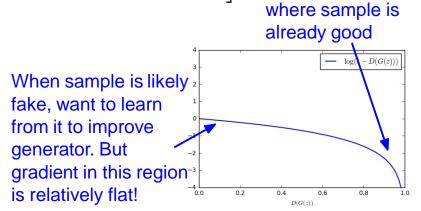
1. Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient descent on generator

 $\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$

In practice, optimizing this generator objective does not work well!



Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

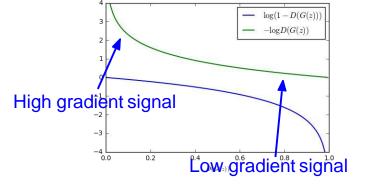
1. Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Instead: Gradient ascent on generator, different objective \mathbb{T}

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong. Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.



Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Putting it together: GAN training algorithm

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]$$

end for

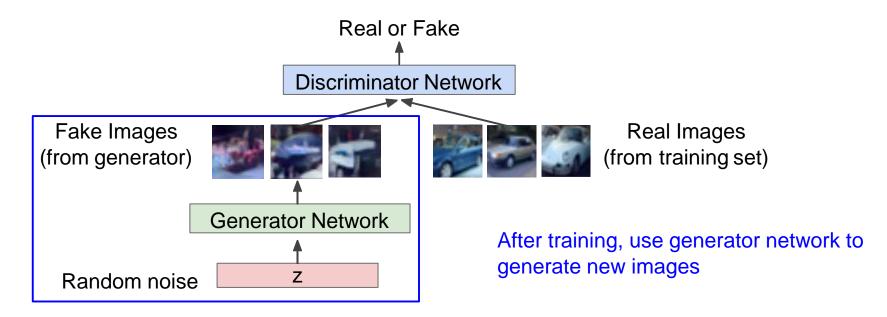
- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by ascending its stochastic gradient (improved objective):

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))$$

end for

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images



GAN training is challenging

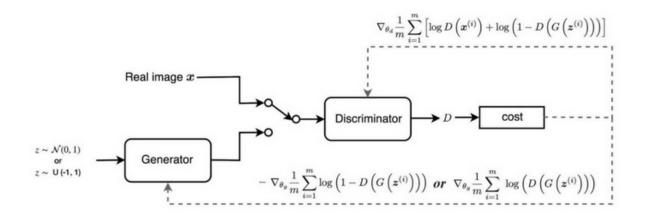
- Vanishing gradient when discriminator is very good
- Mode collapse too little diversity in the samples generated
- Lack of convergence because hard to reach Nash equilibrium
- Loss metric doesn't always correspond to image quality; Frechet Inception Distance (FID) is a decent choice

Alternative loss functions

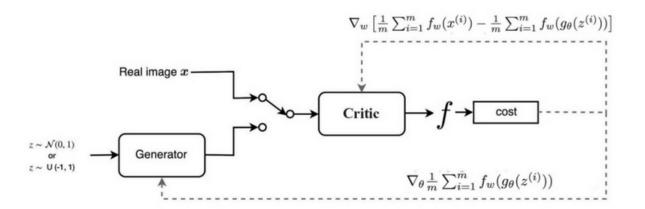
Name	Paper Link	Value Function
GAN	Arxiv	$\begin{split} L_D^{GAN} &= E\big[\log\big(D(x)\big)\big] + E\big[\log\big(1 - D(G(z))\big)\big] \\ L_G^{GAN} &= E\big[\log\big(D(G(z))\big)\big] \end{split}$
LSGAN	Arxiv	$L_D^{LSGAN} = E[(D(x) - 1)^2] + E[D(G(z))^2]$ $L_G^{LSGAN} = E[(D(G(z)) - 1)^2]$
WGAN	Arxiv	$L_D^{WGAN} = E[D(x)] - E[D(G(z))]$ $L_G^{WGAN} = E[D(G(z))]$ $W_D \leftarrow clip_by_value(W_D, -0.01, 0.01)$
WGAN_GP	Arxiv	$\begin{split} L_D^{WGAN_GP} &= L_D^{WGAN} + \lambda E[(\nabla D(\alpha x - (1 - \alpha G(z))) - 1)^2] \\ L_G^{WGAN_GP} &= L_G^{WGAN} \end{split}$
DRAGAN	Arxiv	$\begin{split} L_D^{DRAGAN} &= L_D^{GAN} + \lambda E[\left(\nabla D(\alpha x - (1 - \alpha x_p)) - 1\right)^2] \\ L_G^{DRAGAN} &= L_G^{GAN} \end{split}$
CGAN	Arxiv	$\begin{split} L_D^{CGAN} &= E\big[\log\big(D(x,c)\big)\big] + E\big[\log\big(1 - D(G(z),c)\big)\big] \\ L_G^{CGAN} &= E\big[\log\big(D(G(z),c)\big)\big] \end{split}$
infoGAN	Arxiv	$\begin{split} L_{D,Q}^{infoGAN} &= L_D^{GAN} - \lambda L_I(c,c') \\ L_G^{infoGAN} &= L_G^{GAN} - \lambda L_I(c,c') \end{split}$
ACGAN	Arxiv	$\begin{split} L_{D,Q}^{ACGAN} &= L_D^{GAN} + E[P(class = c x)] + E[P(class = c G(z))] \\ L_G^{ACGAN} &= L_G^{GAN} + E[P(class = c G(z))] \end{split}$
EBGAN	Arxiv	$\begin{split} L_D^{EBGAN} &= D_{AE}(x) + \max(0, m - D_{AE}(G(z))) \\ L_G^{EBGAN} &= D_{AE}(G(z)) + \lambda \cdot PT \end{split}$
BEGAN	Arxiv	$\begin{split} L_D^{BEGAN} &= D_{AE}(x) - k_t D_{AE}(G(z)) \\ L_G^{BEGAN} &= D_{AE}(G(z)) \\ k_{t+1} &= k_t + \lambda(\gamma D_{AE}(x) - D_{AE}(G(z))) \end{split}$

WGAN vs GAN

GAN:



WGAN



https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

Tips and tricks

- Use batchnorm, ReLU
- Regularize norm of gradients
- Use one of the new loss functions
- Add noise to inputs or labels
- Append image similarity to avoid mode collapse
- Use labels when available (CGAN)

https://github.com/soumith/talks/blob/master/2017-ICCV_Venice/How_To_Train_a_GAN.pdf https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b

Samples from the model

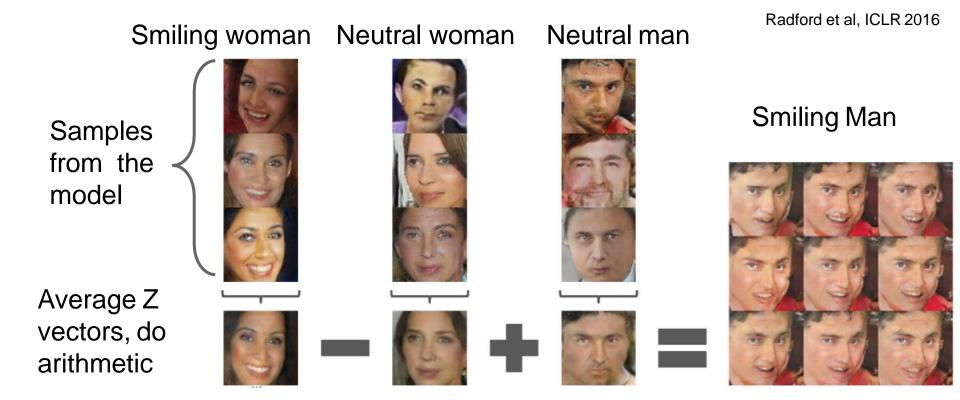
Smiling woman Neutral woman

Neutral man

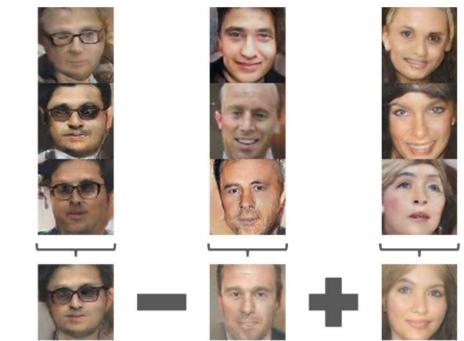
Radford et al, ICLR 2016

Serena Young

Radford et al, ICLR 2016 Smiling woman Neutral woman Neutral man Samples from the model Average Z vectors, do arithmetic



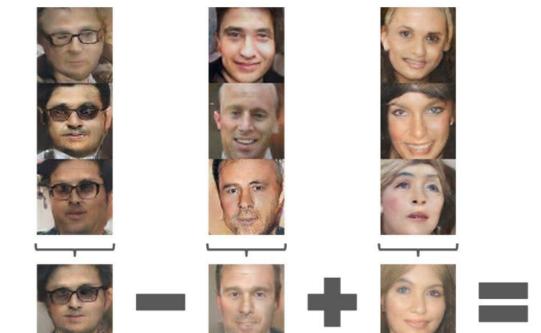
Glasses man No glasses man No glasses woman



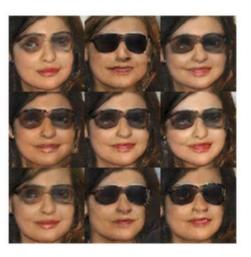
Serena Young

Radford et al, ICLR 2016

Glasses man No glasses man No glasses woman



Woman with glasses



Radford et al, ICLR 2016

What is in this image?

(Yeh et al., 2016)

Generative modeling reveals a face

(Yeh et al., 2016)

Artificial Fashion: vue.ai

Celebrities Who Never Existed

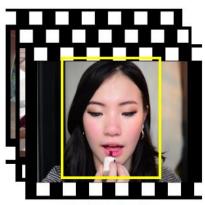
Karras et al., "Progressive Growing of GANs for Improved Quality, Stability, and Variation", ICLR 2018

Creative Adversarial Networks

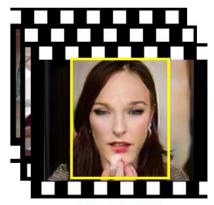
CAN: Top ranked by human subjects

(Elgammal et al., 2017)

GANs for Privacy (Action Detection)



Identity: Jessica Action: Applying Make-up on Lips



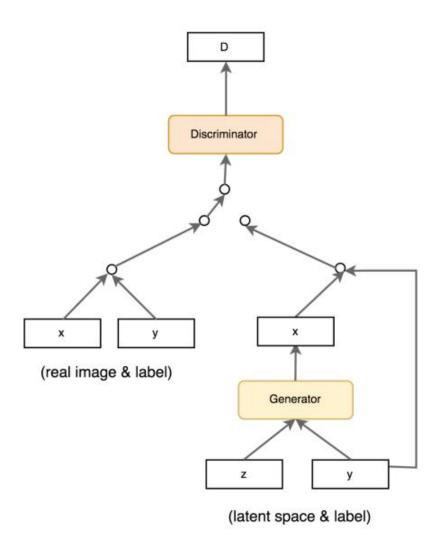
Identity: ??? Action: Applying Make-up on Lips

Ren et al., "Learning to Anonymize Faces for Privacy Preserving Action Detection", ECCV 2018

Plan for this lecture

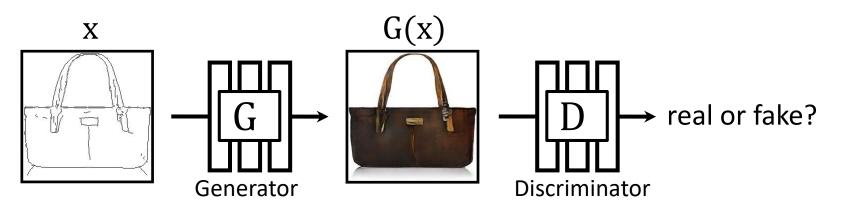
- Generative models: What are they?
- Technique: Generative Adversarial Networks
- Applications
- Conditional GANs
- Cycle-consistency loss
- Dealing with sparse data, progressive training

Conditional GANs



https://medium.com/@jonathan_hui/gan-cgan-infogan-using-labels-to-improve-gan-8ba4de5f9c3d

GANs

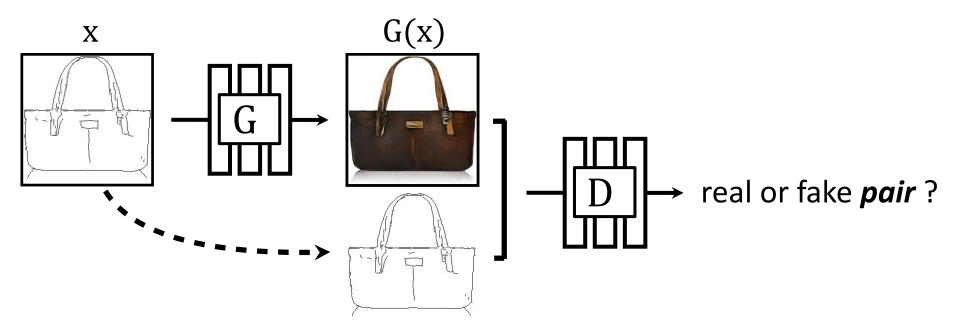


G: generate fake samples that can fool D D: classify fake samples vs. real images

[Goodfellow et al. 2014]

Jun-Yan Zhu

Conditional GANs

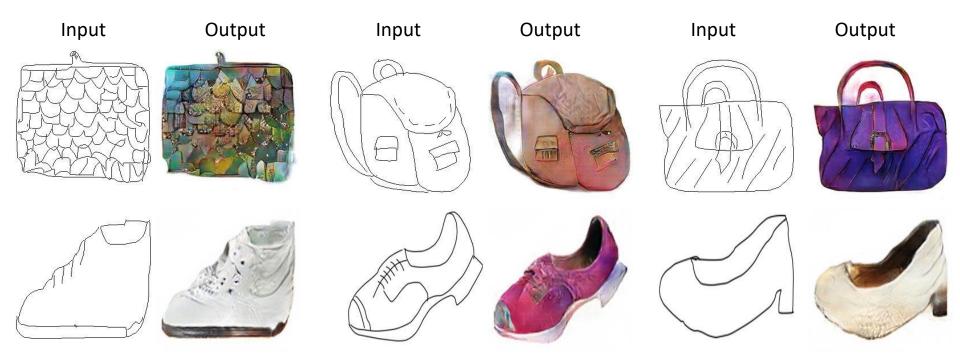


Adapted from Jun-Yan Zhu

$Edges \rightarrow Images$

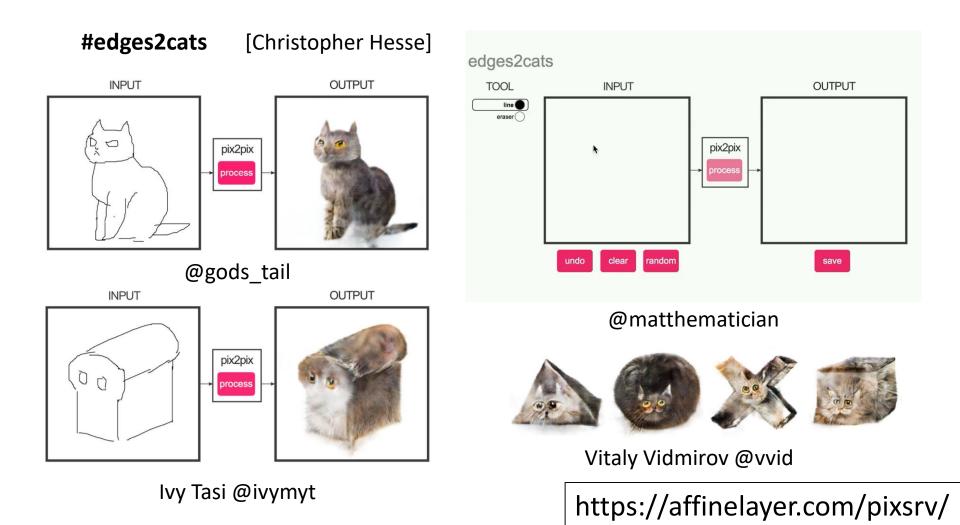
Edges from [Xie & Tu, 2015]

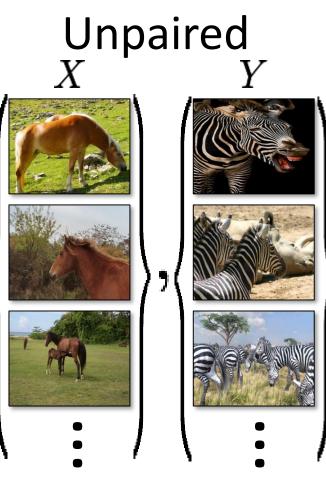
Sketches → Images

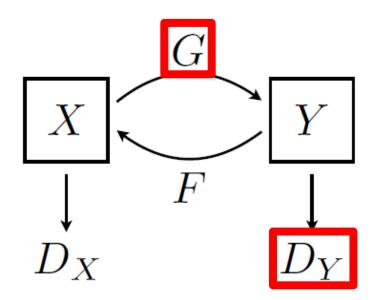


Trained on Edges \rightarrow Images

Data from [Eitz, Hays, Alexa, 2012]

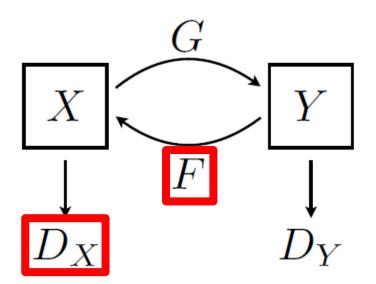






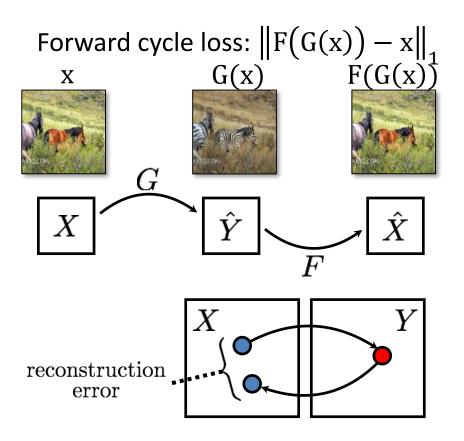
Discriminator $D_Y: L_{GAN}(G(x), y)$ Real zebras vs. generated zebras

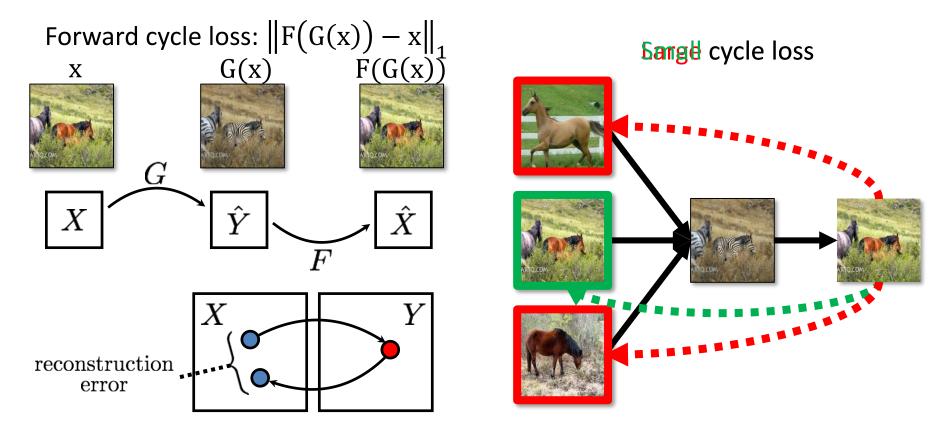
Zhu et al., "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks", ICCV 2017



Discriminator $D_Y: L_{GAN}(G(x), y)$ Real zebras vs. generated zebras Discriminator $D_X: L_{GAN}(F(y), x)$ Real horses vs. generated horses

Zhu et al., "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks", ICCV 2017





Helps cope with mode collapse

Zhu et al., "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks", ICCV 2017

Training Details: Objective

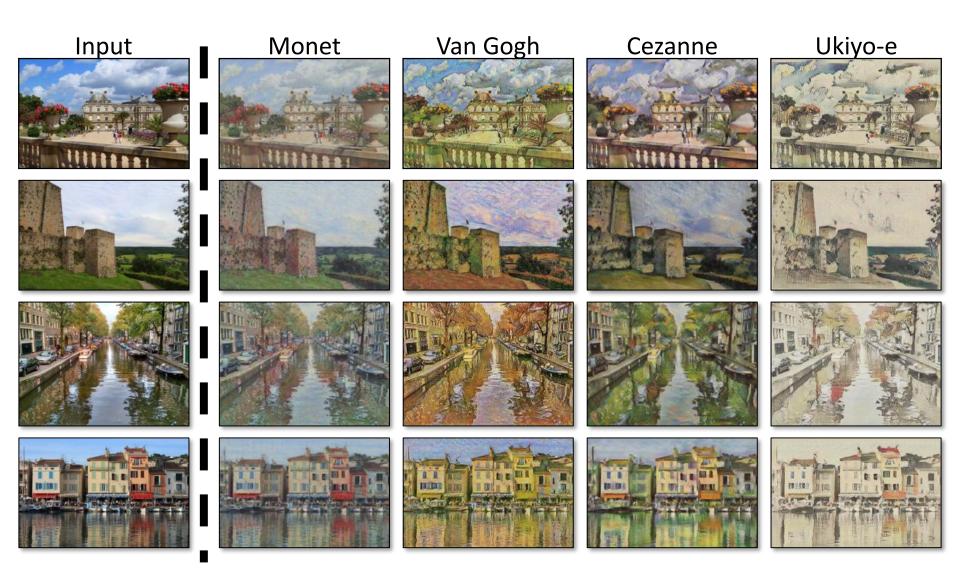
$$\mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)} [\log D_Y(y)] \\ + \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log(1 - D_Y(G(x)))],$$

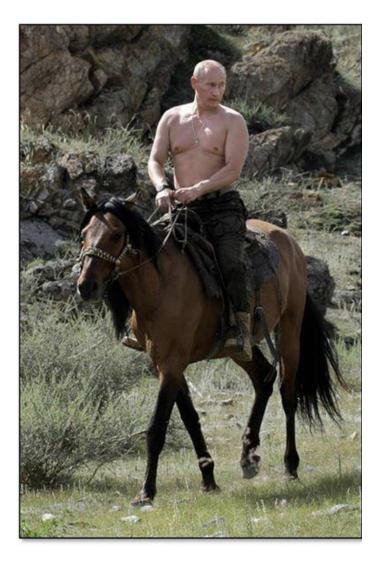
$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\|F(G(x)) - x\|_1] \\ + \mathbb{E}_{y \sim p_{\text{data}}(y)} [\|G(F(y)) - y\|_1].$$

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) + \mathcal{L}_{\text{GAN}}(F, D_X, Y, X) + \lambda \mathcal{L}_{\text{cyc}}(G, F),$$

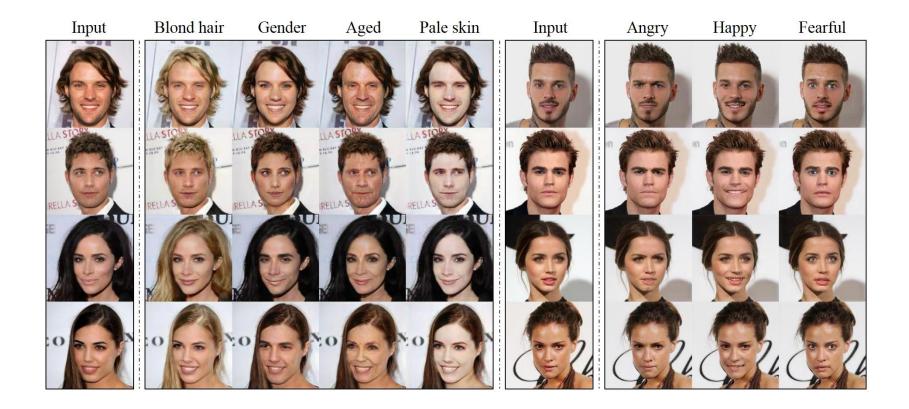
$$G^*, F^* = \arg\min_{G,F} \max_{D_x,D_Y} \mathcal{L}(G,F,D_X,D_Y).$$

Zhu et al., "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks", ICCV 2017





StarGAN



Choi et al., "StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation", CVPR 2018

Plan for this lecture

- Generative models: What are they?
- Technique: Generative Adversarial Networks
- Applications
- Conditional GANs
- Cycle-consistency loss
- Dealing with sparse data, progressive training

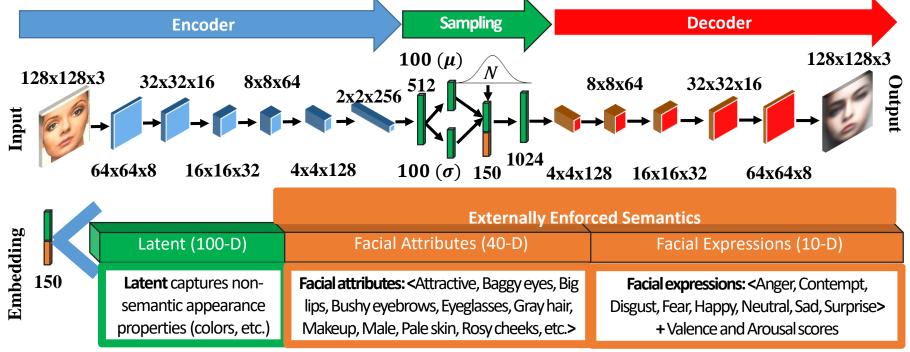
Generating with little data for ads

• Faces are persuasive and carry meaning/sentiment

- We learn to generate faces appropriate for each ad category
- Because our data is so diverse yet limited in count, standard approaches that directly model pixel distributions don't work well

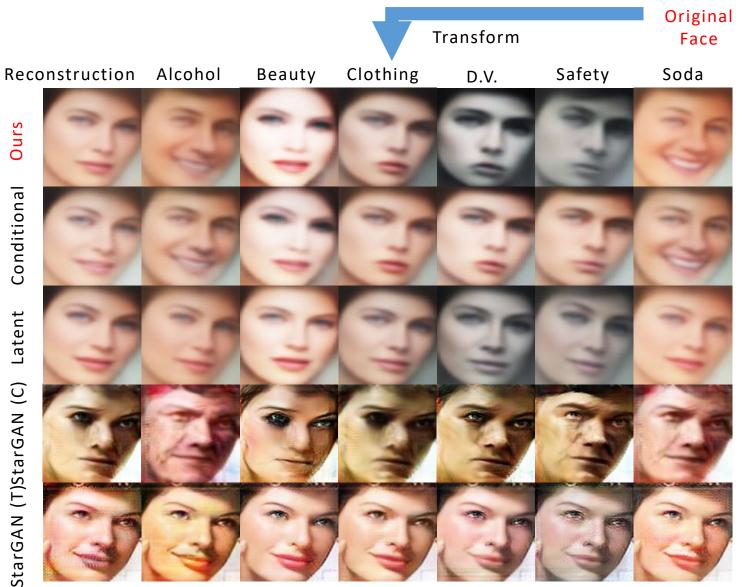
Generating with little data for ads

- Instead we model the distribution over attributes for each category (e.g. domestic violence ads contain "black eye", beauty contains "red lips")
- Generate an image with the attributes of an ad class
- Model attributes w/ help from external large dataset



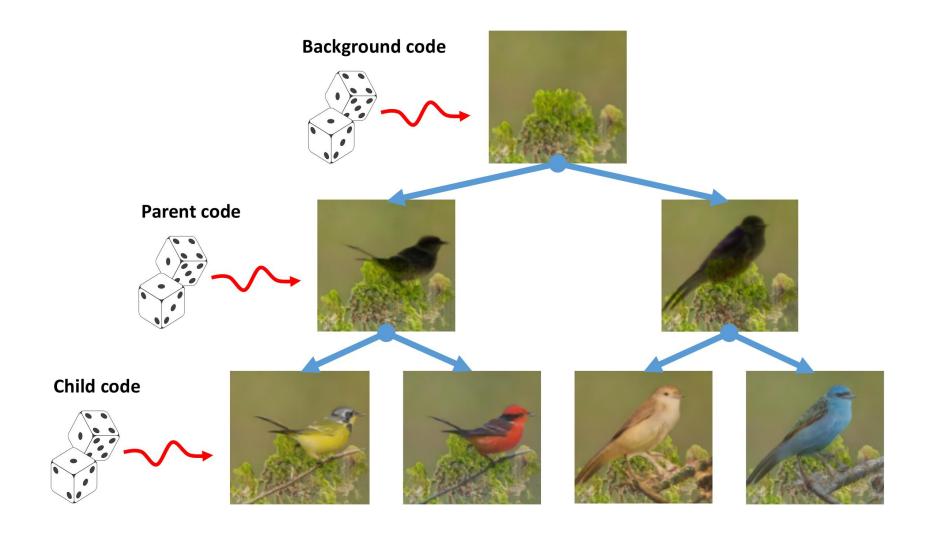
Thomas and Kovashka, BMVC 2018

Generating with little data for ads



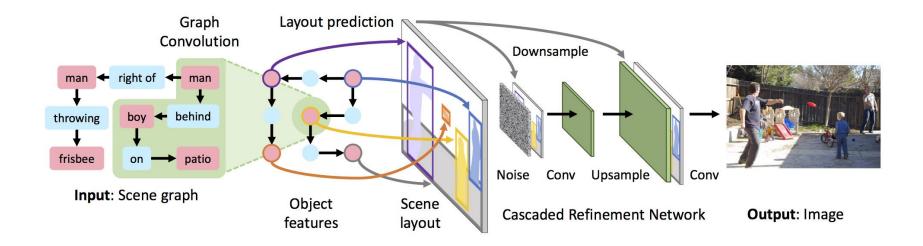
Thomas and Kovashka, BMVC 2018

Stagewise generation

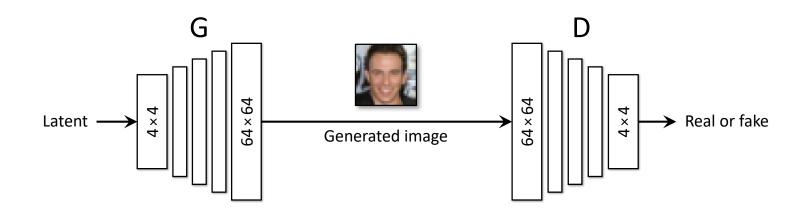


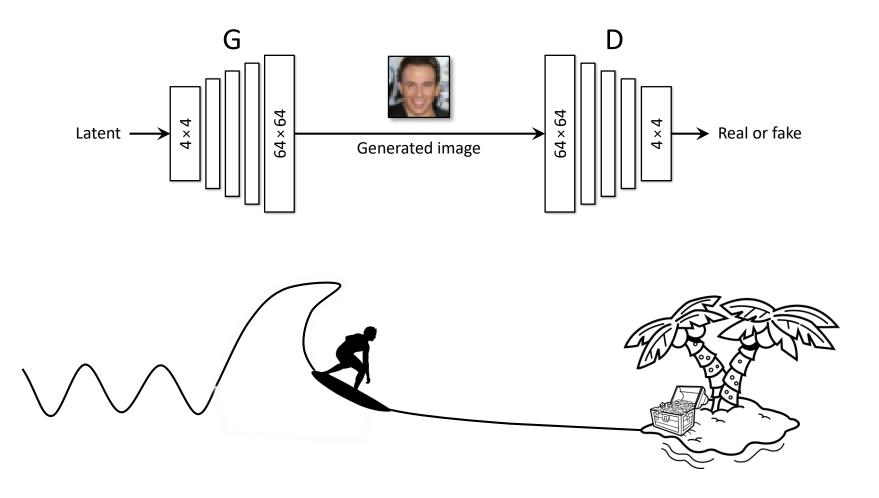
Singh et al., "FineGAN: Unsupervised Hierarchical Disentanglement for Fine-Grained Object Generation and Discovery", CVPR 2019

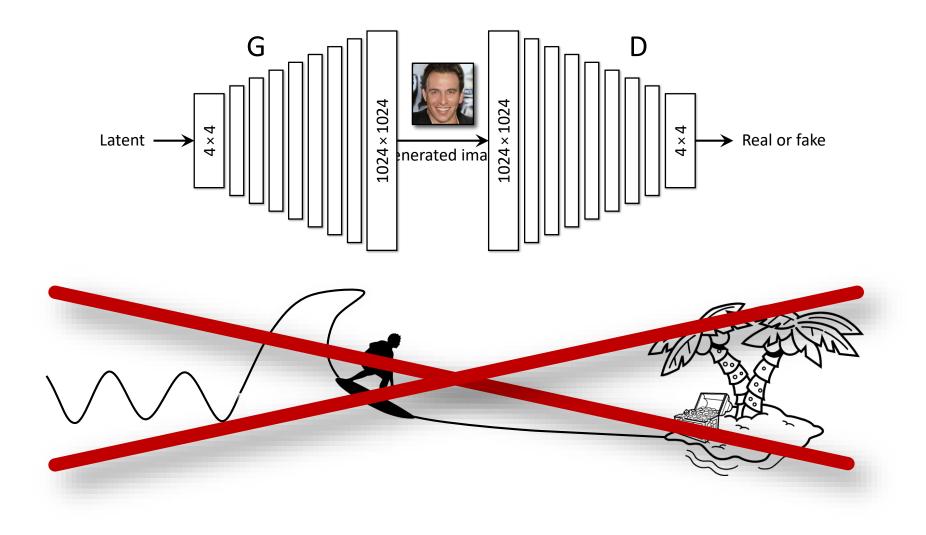
Stagewise generation

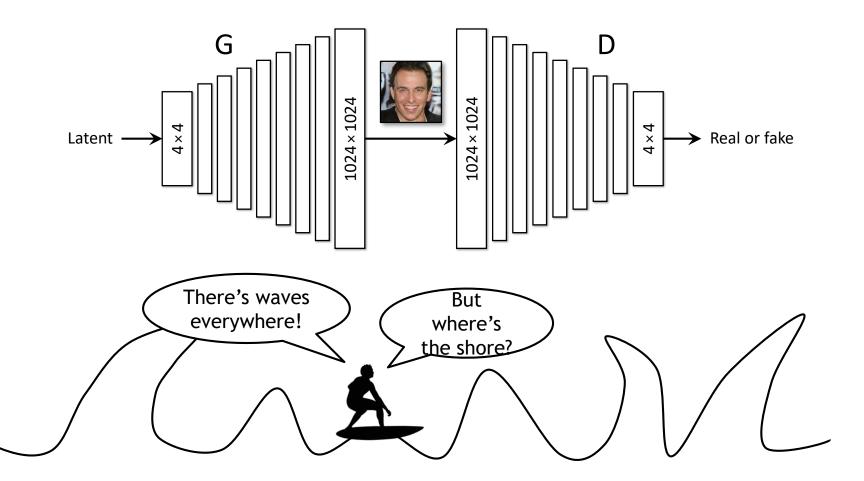


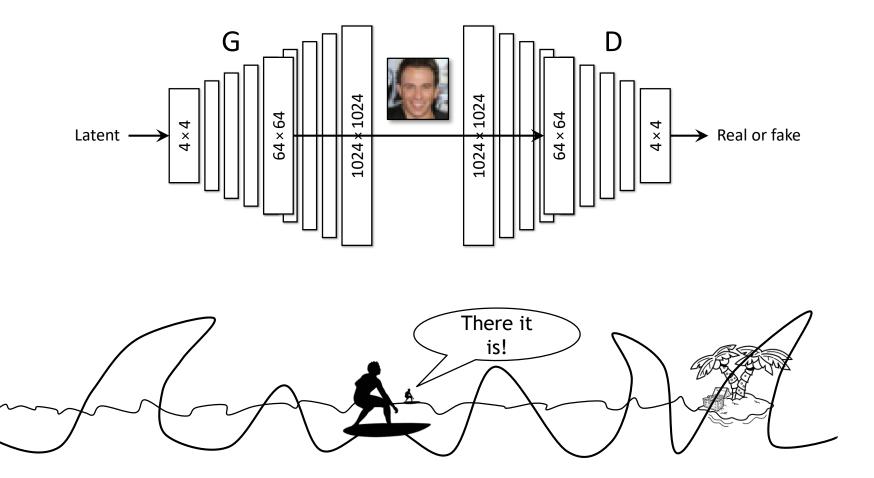
Johnson et al., "Image Generation from Scene Graphs", CVPR 2018

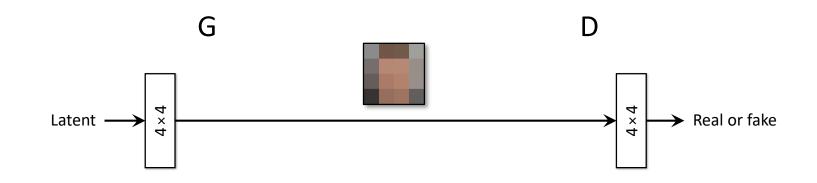


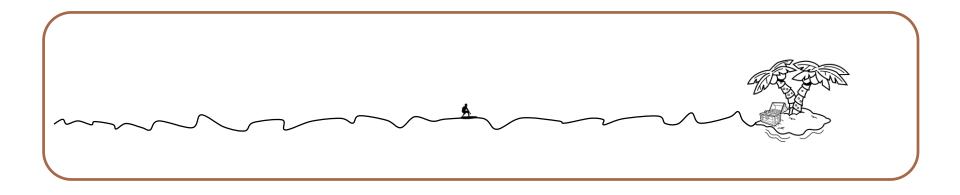


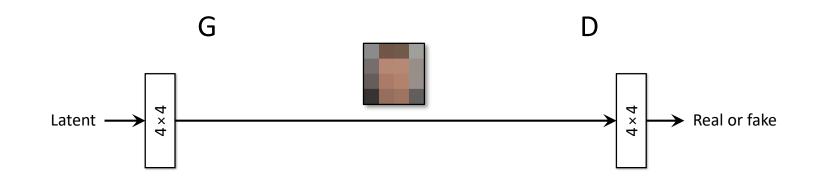


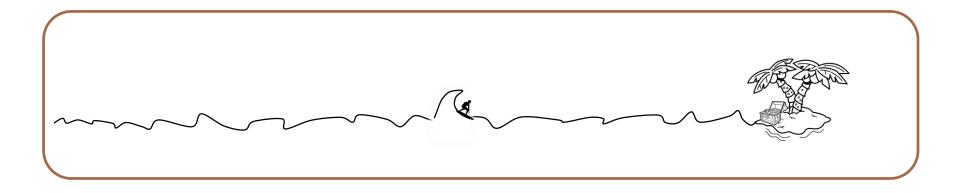


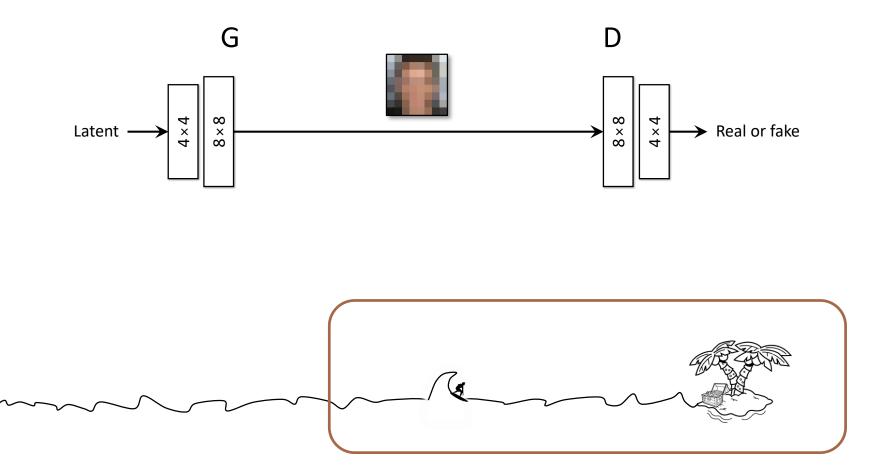


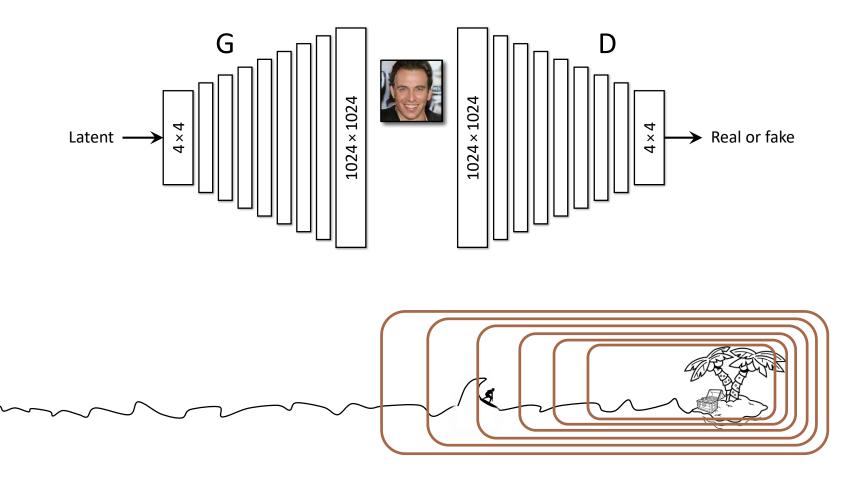


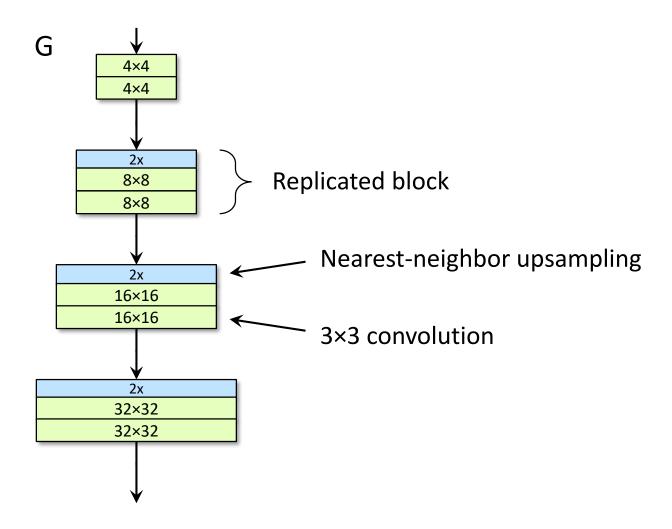


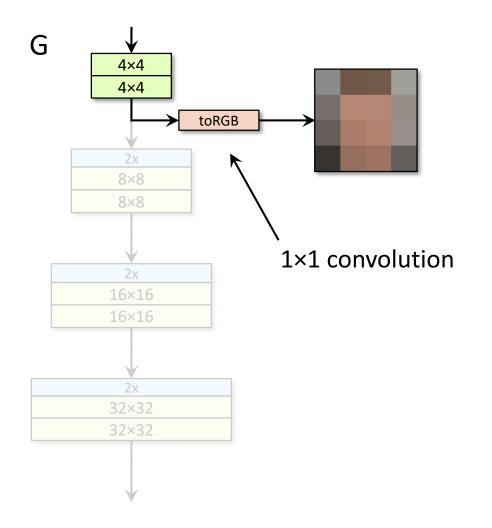


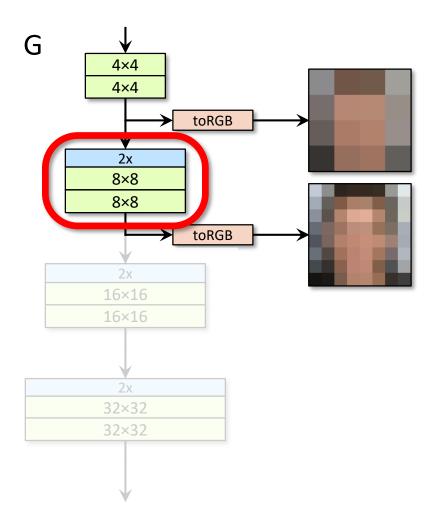


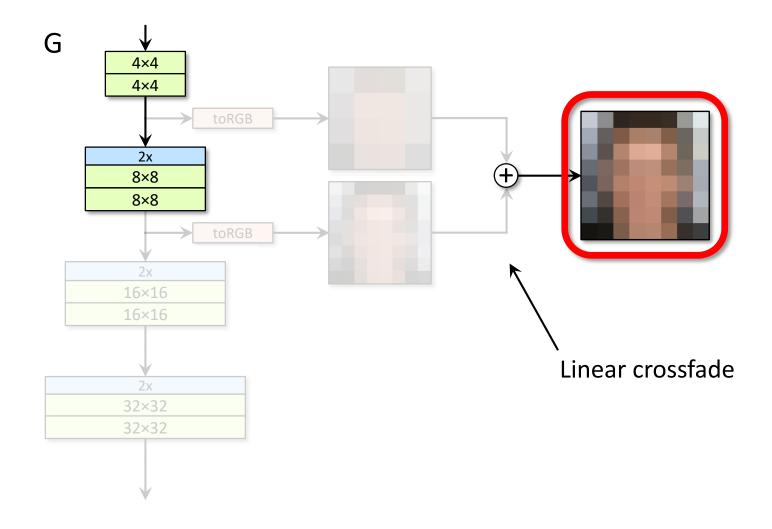


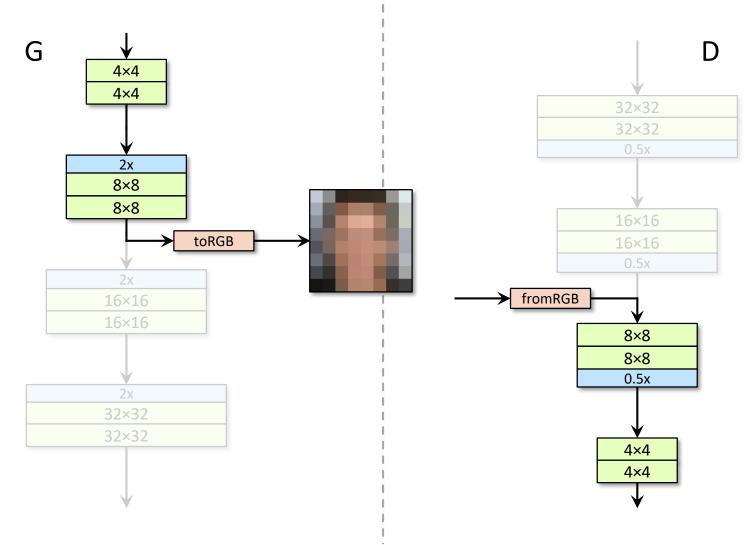












What's next algorithmically?

And what are some social implications?

"Deepfakes"

https://www.technologyreview.com/s/611726/the-defense-department-has-produced-the-first-tools-for-catching-deepfakes/ https://www.niemanlab.org/2018/11/how-the-wall-street-journal-is-preparing-its-journalists-to-detect-deepfakes/

You can be anyone you want...

Karras et al., "A Style-Based Generator Architecture for Generative Adversarial Networks", https://arxiv.org/pdf/1812.04948.pdf