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Motivation

• What’s the data we’ve learned from thus far? 

• Labeled static datasets

– Expensive to obtain

– Doesn’t match how humans learn

• Alternatives

– Unsupervised learning (no labels) – next time

– Self-supervised learning (“fake”/emergent labels)

– Embodied/active learning (agents in environments)



Self-supervised learning



Unsupervised Visual Representation 
Learning by Context Prediction

Carl Doersch, Alexei Efros and Abhinav Gupta

ICCV 2015



ImageNet + Deep Learning

Beagle

- Image Retrieval
- Detection (RCNN)
- Segmentation (FCN)
- Depth Estimation
- …

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



ImageNet + Deep Learning

Beagle

Do we even need semantic labels?
Pose?

Boundaries?Geometry?

Parts?
Materials?

Do we need this task?

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Context as Supervision
[Collobert & Weston 2008; Mikolov et al. 2013]

Deep
Net



Context Prediction for Images
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Semantics from a non-semantic task

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Randomly Sample Patch
Sample Second Patch

CNN CNN

Classifier

Relative Position Task
8 possible locations

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



CNN CNN

Classifier

Patch Embedding

Input Nearest Neighbors

CNN Note: connects across instances!

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Architecture
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Ours

What is learned?

Input ImageNet AlexNet

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Pre-Training for R-CNN

Pre-train on relative-position task, w/o labels

[Girshick et al. 2014]Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



VOC 2007 Performance
(pretraining for R-CNN)
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Shuffle and Learn: Unsupervised Learning 
using Temporal Order Verification

Ishan Misra, C. Lawrence Zitnick, and Martial Hebert 

ECCV 2016



Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



Learning image representations tied to 
ego-motion

Dinesh Jayaraman and Kristen Grauman

ICCV 2015



Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

The kitten carousel experiment
[Held & Hein, 1963]

active kitten passive kitten

Key to perceptual development:

self-generated motion + visual feedback



Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Problem with today’s visual learning

Status quo: Learn from 
“disembodied” bag of 
labeled snapshots.

Our goal: Learn in the 
context of acting and moving
in the world.



Goal: Teach computer vision system the connection:

“how I move” ↔ “how my visual surroundings change”

Our idea: Ego-motion ↔ vision

+

Ego-motion motor signals Unlabeled video

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion ↔ vision: view prediction

After moving:

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion ↔ vision for recognition

Learning this connection requires:

➢ Depth, 3D geometry

➢ Semantics

➢ Context

Can be learned without manual labels!

Also key to 

recognition!

Our approach: unsupervised feature learning 

using egocentric video + motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of 

transformations

𝐳 𝑔𝐱 ≈ 𝐳(𝐱)

Invariance discards information;

equivariance organizes it. 

Equivariant features : predictably responsive to 

some classes of transformations, through simple 

mappings (e.g., linear)

𝐳 𝑔𝐱 ≈ 𝑀𝑔𝐳(𝐱)

“equivariance map”

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Equivariant embedding 

organized by ego-motions

Pairs of frames related by 

similar ego-motion should 

be related by same 

feature transformation

left turn

right turn

forward

Learn

Approach idea: Ego-motion equivariance

time →

m
o

to
r 

s
ig

n
a

l

Training data

Unlabeled video + 

motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach overview

Our approach: unsupervised feature learning using 

egocentric video + motor signals

1. Extract training frame pairs from video

2. Learn ego-motion-equivariant image features

3. Train on target recognition task in parallel

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Training frame pair mining

Discovery of ego-motion clusters

Right turn

=forward

=right turn

=left turn
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Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



∥ 𝑀𝑔𝐳𝛉(𝐱𝑖) − 𝐳𝛉(𝑔𝐱𝑖) ∥𝟐

Ego-motion equivariant feature learning

𝐱𝑖

𝑔𝐱𝑖

𝐳𝛉(𝐱𝑖)

𝐳𝛉(𝑔𝐱𝑖)

𝑀𝑔

Desired: for all motions 𝑔 and all images 𝐱,

𝐳𝛉 𝑔𝐱 ≈ 𝑀𝑔𝐳𝛉(𝐱)

𝛉

𝛉

Given:

𝛉 𝐳𝛉(𝐱𝑘)𝐱𝑘 𝑊 softmax loss 𝐿𝐶(𝐱𝑘 , y𝑘)

Unsupervised training

Supervised training

𝐳𝛉(𝑔𝐱𝑖)

𝐳𝛉(𝐱𝑖) 𝑀𝑔

Feature space

class y𝑘 𝛉, 𝑀𝑔 and 𝑊 jointly trained

𝑔

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion training pairs Neural network training Equivariant embedding

Scene and object recognition
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Next-best view selection

cup frying pan

Summary
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Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Results: Recognition

Learn from unlabeled car video (KITTI)

Exploit features for static scene classification 

(SUN, 397 classes)

Geiger et al, IJRR ’13

Xiao et al, CVPR ’10
Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



KITTI⟶ SUN

Do ego-motion equivariant features improve recognition?

397 classes
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Results: Recognition

6 labeled training 

examples per class

Up to 30% accuracy increase 

over state of the art!
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Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



The Curious Robot: Learning Visual 
Representations via Physical Interactions

Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han,    
Yong-Lae Park, and Abhinav Gupta 

ECCV 2016



Embodied representations

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Grasping

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Pushing

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Poking

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Pose/viewpoint invariance

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Representations from interactions

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Object-Graphs for Context-Aware 
Category Discovery

Yong Jae Lee and Kristen Grauman

CVPR 2010



Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010

Goal

• Discover new object categories, based on their relation 
to categories for which we have trained models 

Unlabeled Image Data Discovered categories



Existing approaches
Previous work treats unsupervised visual discovery as 
an appearance-grouping problem.

1

3 4

2

Can you identify the recurring pattern?

Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010



How can seeing previously learned objects in novel 
images help to discover new categories?

1

3 4

2

Our idea

Can you identify the recurring pattern?

Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010



Discover visual categories within unlabeled images by 
modeling interactions between the unfamiliar regions 
and familiar objects.

Our idea

1

3 4

2

Can you identify the recurring pattern?

Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010



Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010
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Unknown 
Regions

Clusters from region-region affinities

Detect 
Unknowns

Object-level 
Context

Discovery
Learn 

Models

Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010



MSRC-v2

PASCAL 2008

Corel

MSRC-v0

Object Discovery Accuracy

Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010



Examples of Discovered Categories

Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010



Discussion

• Many types of supervision have been tried

• What other types of supervision “for free” can 
we use?

• How do we know if a certain supervision type 
would work? 

• Can we make this type of learning perform on 
par with supervised learning?



Embodied learning



Agent

Environment

Action a
t

State st Reward rt  

Next state s

Lecture 14 - 54

Reinforcement Learning

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

t+1

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Cart-Pole Problem

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity

Action: horizontal force applied on the cart

Reward: 1 at each time step if the pole is upright

Lecture 14 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Atari Games

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

Lecture 14 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Go

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

Lecture 14 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Agent

Environment

Action a
t

State st Reward rt  

Next state s

How can we mathematically formalize the RL problem?

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

t+1

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Markov Decision Process

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the  

world

Defined by:

: set of possible states

: set of possible actions

: distribution of reward given (state, action) pair

: transition probability i.e. distribution over next state given (state, action) pair

: discount factor

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Markov Decision Process

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

- At time step t=0, environment samples initial state s0 ~ p(s0)

- Then, for t=0 until done:

- Agent selects action at

- Environment samples reward rt ~ R( . | st, at)

- Environment samples next state st+1 ~ P( . | st, at)

- Agent receives reward rt and next state st+1

- A policy u is a function from S to A that specifies what action to take in  

each state

- Objective: find policy u* that maximizes cumulative discounted reward:

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



A simple MDP: Grid World

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

★

★

actions = {

1. right

2. left

3. up

4. down

}

Objective: reach one of terminal states (greyed out) in  

least number of actions

Set a negative “reward”  

for each transition

(e.g. r = -1)

states

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



A simple MDP: Grid World

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Random Policy Optimal Policy

★

★

★

★

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



The optimal policy u*

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

We want to find optimal policy u* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



The optimal policy u*

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

We want to find optimal policy u* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?  

Maximize the expected sum of rewards!

Formally: with

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Definitions: Value function and Q-value function

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy  

from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from  

taking action a in state s and then following the policy:

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Bellman equation

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,  

then the optimal strategy is to take the action that maximizes the expected value of

The optimal policy u* corresponds to taking the best action in any state as specified by Q*

The optimal Q-value function Q* is the maximum expected cumulative reward achievable  

from a given (state, action) pair:

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Solving for the optimal policy:
Q-learning

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Q-learning: Use a function approximator to estimate the action-value function

function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



:
neural network  

with weights

Q-network Architecture

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Current state st: 84x84x4 stack of last 4 frames

(after RGB->grayscale conversion, downsampling, and cropping)

Last FC layer has 4-d

output (if 4 actions),  

corresponding to Q(s
t
,  

a
1
), Q(s

t
, a

2
), Q(s

t
, a

3
),  

Q(s
t
,a

4
)

Number of actions between 4-18  

depending on Atari game

A single feedforward pass  

to compute Q-values for all  

actions from the current  

state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson 
& Serena Yeung

May 22, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

Initialize replay memory, Q-network

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson 
& Serena Yeung

May 22, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

Play M episodes (full games)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson 
& Serena Yeung

May 22, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Initialize state  

(starting game  

screen pixels) at the  

beginning of each  

episode

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

For each timestep t  

of the game

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson 
& Serena Yeung

May 22, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

With small probability,  

select a random  

action (explore),  

otherwise select  

greedy action from  

current policy

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Take the action (a
t
),  

and observe the  

reward rt and next  

state st+1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Store transition in

replay memory

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Experience Replay:

Sample a random  

minibatch of transitions  

from replay memory  

and perform a gradient  

descent step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Policy Gradients

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

What is a problem with Q-learning?

The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard  

to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly, e.g. finding the best policy from a collection of  

policies?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Formally, let’s define a class of parameterized policies:

For each policy, define its value:

Policy Gradients

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

We want to find the optimal policy

How can we do this?

Gradient ascent on policy parameters!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



REINFORCE Algorithm (orig. Williams 1992)

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Gradient estimator:

Interpretation:

- If r(r) is high, push up the probabilities of the actions seen

- If r(r) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were  

good. But in expectation, it averages out!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Policy Gradients

Andrej Karpathy



Policy Gradients

• Loss:

• xi = state

• yi = sampled action

• Ai = “advantage” e.g. +1/-1 for win/lose in 
simplest version, or discounted, or 
improvement over “baseline”

∑i Ai log p(yi∣xi)

Adapted from Andrej Karpathy



Policy Gradients vs Q-Learning

• Estimating exact value of state-action pairs vs choosing 
what actions to take (value not important)

• Policy gradients can handle continuous action spaces 
(Gaussian policy)

• Step-by-step (did I correctly estimate the reward at this
time) vs delayed feedback (run policy and wait until 
game terminates)

• Policy gradients suffers from high variance and 
instability; might want to make gradients smaller (e.g. 
relative to a baseline)



Actor-Critic Algorithm

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

We can combine Policy Gradients and Q-learning  by training both an 

actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor  

how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values  

of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an  

action was better than expected

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Actor-Critic Algorithm

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung
Thomas Simonini

https://medium.freecodecamp.org/@thomassimonini


Example Q-network

Murrugarra-Llerena and Kovashka, “Image Retrieval with Mixed Initiative and Multimodal Feedback”, BMVC 2018



Example Q-network (actions)

Murrugarra-Llerena and Kovashka, “Image Retrieval with Mixed Initiative and Multimodal Feedback”, BMVC 2018



NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

NN

(x5, y5)

Softmax

Input  

image

y=2

REINFORCE in action: Recurrent Attention Model (RAM)

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

[Mnih et al. 2014]

Lecture 14 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



RL for object detection

Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015



RL for object detection

Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015



RL for navigation

Zhu et al., “Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning”, ICRA 2017



RL for navigation

Yang et al., “Visual Semantic Navigation using Scene Priors”, ICLR 2019



RL for question-answering

Das et al., “Embodied Question Answering”, CVPR 2018



RL for question-answering

Das et al., “Embodied Question Answering”, CVPR 2018



What’s next?


