CS 2770: Computer Vision
Self-Supervised and

Embodied Learning

Prof. Adriana Kovashka
University of Pittsburgh
April 9, 2019

Motivation

e What's the data we’ve learned from thus far?
e Labeled static datasets

— Expensive to obtain
— Doesn’t match how humans learn

e Alternatives
— Unsupervised learning (no labels) — next time

— Self-supervised learning (“fake” /emergent labels)
— Embodied/active learning (agents in environments)

Self-supervised learning

Unsupervised Visual Representation
Learning by Context Prediction

Carl Doersch, Alexei Efros and Abhinav Gupta
ICCV 2015

ImageNet + Deep Learning

» Beagle

- Image Retrieval

- Detection (RCNN)

- Segmentation (FCN)
- Depth Estimation

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

ImageNet + Deep Learning

S Te1% 7~
‘wI«‘
XA

N>
\|&” \1/

S
>

[S 1NN #Z 1\ 7|
>
‘ P AV«
' [D7 L]

-

Geometry? Boundaries?

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Context as Supervision

[Collobert & Weston 2008; Mikolov et al. 2013]

store-bought gimmicks and appliances, the toasters and

E"'Colntext_i_@l 1{ n_for Images

l _— — _— — _— 1

l _— — _— — _— 1

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Semantics from a non-semantic task

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Relative Position Task

{aad bk [] & 8 possible locations

ndoly Smpl Pach
Sample Second Patch

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Patch Embedding

CNN Note: connects across instances!

Doersch et aI. ’Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Architecture

Softmaxloss | i (]
Fully connected L e
‘ Taas” ----: Taas”
Fully connected
i, -

Fully connected

Max Pooling

Fully connected

Convolution

Max Pooling

Convolution

Convolution

Convolution

Convolution

LRN

Convolution

Max Pooling

LRN

Convolution

Max Pooling

LRN

Convolution

Max Pooling

LRN

Max Pooling

[

. Tied Weights .
Convolution fF======- Convolution
o, o,

Patch 1 / / Patch 2

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

What is learned?

ImageNet AlexNet

Eiu..-x‘.ﬁ

AR Adeled s

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Pre-Training for R-CNN

Y NG
1. Input 2. Extract region
Image proposals (~2k)

=] warped region

P aeroplane? no.
, .

person? yes.

tvmonitor? no.

3. Compute
CNN features

!

4. Classify
regions

Pre-train on relative-position task, w/o labels

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

[Girshick et al. 2014]

VOC 2007 Performance

(pretraining for R-CNN)

54.2
46.3

40.7

% Average Precision

ImageNet Labels Ours No Pretraining

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

Shuffle and Learn: Unsupervised Learning
using Temporal Order Verification

Ishan Misra, C. Lawrence Zitnick, and Martial Hebert
ECCV 2016

(a)

Positive Tuples (b) Negative Tuples
Temporally Correct order ' :

Original video

Temporally Incorrect order

Fig.1: (a) A video imposes a natural temporal structure for visual data. In many
cases, one can easily verify whether frames are in the correct temporal order (shuffied
or not). Such a simple sequential verification task captures important spatiotemporal
signals in videos. We use this task for unsupervised pre-training of a Convolutional
Neural Network (CNN). (b) Some examples of the automatically extracted positive
and negative tuples used to formulate a classification task for a CNN.

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016

(a) Data Sampling (b) Triplet Siamese network for sequence

verification
Input Tuple Pt AlexNet architecture

D

Frame Motion

awry,

Positive Tuples

fe8

fi D

concatenation
classification

fo fe fa

Bias the \:
sampling |
to high |

motion |

windows \

Y

Fig. 2: (a) We sample tuples of frames from high motion windows in a video. We form
positive and negative tuples based on whether the three input frames are in the correct
temporal order. (b) Our triplet Siamese network architecture has three parallel network
stacks with shared weights upto the £c7 layer. Each stack takes a frame as input, and
produces a representation at the f£c7 layer. The concatenated fc7 representations are
used to predict whether the input tuple is in the correct temporal order.

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016

Table 2: Mean classification accuracies over the 3 splits of UCF101 and HMDB51
datasets. We compare different initializations and finetune them for action recognition.

Dataset Initialization Mean Accuracy
UCF101 Random 38.6
(Ours) Tuple verification 50.2
HMDB51 Random 13.3
UCF Supervised 15.2
(Ours) Tuple verification 18.1

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016

Learning image representations tied to
ego-motion

Dinesh Jayaraman and Kristen Grauman
ICCV 2015

The kitten carousel experiment
[Held & Hein, 1963]

- - h f " p—
ARy S AR RV AT gy £ : - AL AT

Sxone 2) B
: munu Rt 11 uuuuulrr JEEJ LS s | 5
» o'."%'r)f ’,-“ ; .r‘i. u{ - -t o';. .

v, a;
7 x’ -'J’N-'x W M8t hw o.s.-}’, ST P Py

i1 #
i) n\” o u#{ Ll
,(‘

(i 0' passwe kitten

s. :‘\ ""'

s
i .

ANTEN | 0 |
Key to perceptual development: Q
self generated motlon + visual feedback \

Iz il

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Problem with today’s visual learning

Status quo: Learn from
“disembodied” bag of
labeled snapshots.

Our goal: Learn in the
context of acting and moving
In the world.

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Our idea: Ego-motion < vision

Goal: Teach computer vision system the connection:
“*how | move” & “how my visual surroundings change”

Ego-motion motor signals Unlabeled video

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Ego-motion < vision: view prediction

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Ego-motion < vision for recognition

Learning this connection requires:

—_—

» Depth, 3D geometry Also key to
» Semantics — recognition!
» Context

Can be learned without manual labels!

Our approach: unsupervised feature learning
using egocentric video + motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of
transformations

z(gx) = z(X)
- J
/Equivariant features : predictably responsive to N

some classes of transformations, through simple
mappings (e.d., linear)

“‘equivariance map”
z(gx) =~ M,z(X)

o /

Invariance discards information;
equivariance organizes lit.

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Approach idea: Ego-motion equivariance

Training data Equivariant embedding

Unlabeled video + organized by ego-motions
motor signals

Pairs of frames related by
similar ego-motion should
be related by same
feature transformation

motor signal

time -

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Approach overview

Our approach: unsupervised feature learning using
egocentric video + motor signals

1. Extract training frame pairs from video
2. Learn ego-motion-equivariant image features

3. Train on target recognition task in parallel

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Training frame pair mining

Discovery of ego-motion clusters

yaw change

forward distance

e @

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Ego-motion equivariant feature learning

Given: Desired: for all motions g and all images x,
zo(gX) =~ M,Zg(X)

Unsupervised training

0
Al
r % o
&ix
x?
g 4

| Myzg(X;) — Zo(gX;) Il2

uuu""u‘\unQ

ax loss L. (Xy, Vi)

class yy e\,M andéW' intly trained

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Summary

/Ego-motion training pairs Neural network training Equwarlant embeddlb

4 left turn

A s left turn # ~uright turn
PDBE— | Bm
: 2

pERe-O-| - i
A 4

APPROACH

Scene and object recognition Next-best view selectlon
N R Football field? g
5 Pagoda?
fﬂ Airport?
o Cathedral? -
Army base?
cup frying pan

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Results: Recognition

Learn from unlabeled car video (KITTI)

s % Bl -

’, Geiger et al, IJRR '13

Exploit features for static scene classification
(SUN, 397 classes)

Xiao et al, CVPR 10

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Results: Recognition

Do ego-motion equivariant features improve recognition?

6 labeled training

" ~ KITTI—SUN |, BEEetd | examples per class

1.5 397 classes : 121
: 1.02 ;

0.70 i

recognition accuracy (%)

0.5+ :
0.25 P . :
i invariance i
o :
< s & N <2
&0 2 AN SN oY
?:‘)(\ o8 0(\\6\6 0®e\® o
o P

Up to 30% accuracy increase
over state of the art!

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

The Curious Robot: Learning Visual
Representations via Physical Interactions

Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han,
Yong-Lae Park, and Abhinav Gupta

ECCV 2016

Embodied representations

Conv Layer1 Filters Conv3 Neuron Activations Convjs Neuron Activations

Learned Visual Representation

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

Grasping

Successful grasps Unsuccessful grasps

Fig. 2. Examples of successful (left) and unsuccesful grasps (right). We use a patch
based representation: given an input patch we predict 18-dim vector which represents
whether the center location of the patch is graspable at 0°, 10°, ...170°.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

Pushing

Objects and push action pairs

a * o

1
-

>)\
u\ \bu ‘
Initial state Final state Initial state Final state Initial state Final state

Fig. 4. Examples of initial state and final state images taken for the push action. The
arrows demonstrate the direction and magnitude of the push action.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

Poking

Objects and poke tactile response pairs

-

Fig. 6. Examples of the data collected by the poking action. On the left we show the
object poked, and on the right we show force profiles as observed by the tactile sensor.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

Pose/viewpoint invariance

Fig. 7. Examples of objects in different poses provided to the embedding network.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

Representations from interactions

gr_convl gr fc3
256%3x3 o
[] Root Net [| Grasp Net "N gr fau &

|:| Push Net |:| Poke Net

4096
o0
convl conv2 conv3 convd / / Iw
96x11x11 256X5x5 384x3x3 384X3%3 gr fc2

1024 & @

convs

256%3%3
fco fc7 1
4096 4036

pu_convl —-——— ﬁ
48x3x3 =~ -
N

u fel po_fcl P LA
pu_ & 512 g _/ A}
1024 ﬂ \ | Embedding
1 I similarity
7| ¥ A _Byy
I 1
ou_fc2 4 po_fc2 =

T y 4
T
€=

Fig. 8. Our shared convolutional architecture for four different tasks.

shared

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

Classification/retrieval performance

Fig. 10. The first column corresponds to query image and rest show the retrieval. Note
how the network learns that cups and bowls are similar (row 5).

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

Classification/retrieval performance

Table 1. Classification accuracy on ImageNet Household, UW RGBD and Caltech-256

Household UW RGBD Caltech-256

Root network with random init. 0.250 0.468 0.242
Root network trained on robot tasks (ours) 0.354 0.693 0.317
AlexNet trained on ImageNet 0.625 0.820 0.656

Table 2. Image Retrieval with Recall@k metric

Instance level Category level
k=1 k=5 k=10 k=20| k=1 k=5 k=10 k=20
Random Network 0.062 0.219 0.331 0.475 | 0.150 0.466 0.652 0.800
Our Network 0.720 0.831 0.875 0.909 | 0.833 0.918 0.946 0.966
AlexNet 0.686 0.857 0.903 0.941 | 0.854 0.953 0.969 0.982

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016

Object-Graphs for Context-Aware
Category Discovery

Yong Jae Lee and Kristen Grauman
CVPR 2010

Goal

Unlabeled Image Data Dlscovered categorles

* Discover new object categories, based on their relation
to categories for which we have trained models

Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010

Existing approaches

Previous work treats unsupervised visual discovery as
an appearance-grouping problem.

Can you identify the recurring pattern?

d Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010

Our idea

How can seeing previously learned objects in novel
images help to discover new categories?

Can you identify the recurring pattern?

Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010

Our idea

Discover visual categories within unlabeled images by
modeling interactions between the unfamiliar regions
and familiar objects.

Q
A

Can you identify the recurring pattern?

d Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010

Context-aware visual discovery

sky

house

drive-
way ?

grass

Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010

Learn Detect Object-level

Discover
Models Unknowns Context y

Clusters from region-region affinities

Unknown
Regions

K (si,55) = Kapp(5i585) + Kovj—grapn(Si, S5)

Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010

Object Discovery Accuracy

SFFTAPI

o AV

20'4 R g
- -
E ==z
0.2 ¢ wObject-Graph |
BApp. Onl
G0 10 20 30
of clusters
0.4
>0.3 TV TV
R oo ADA AR —
@ vmesr YOO TVWE = PR
E B R
0.2 bject-Graph
BApp. Only
0.10 ‘ 30

10 20
of clusters

vvvvv
XA

ﬁApp. Only
Object-Graph
10 20 30

of clusters

>
E 0.4 wObject-Graph|
sApp. Onl
02 pp. Only
0 10 20 30

of clusters
Lee and Grauman, “Object-Graphs for Context-Aware Category Discovery”, CVPR 2010

Examples of Discovered Categories

Discussion

Many types of supervision have been tried

What other types of supervision “for free” can
we use?

How do we know if a certain supervision type
would work?

Can we make this type of learning perform on
par with supervised learning?

Embodied learning

Reinforcement Learning

State s, Reward r,

Action a,
Next state st+1

Environment

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

—
M —F >

F77 77777777 777777777 7777777777

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Go

A BCDEFGH)] KLMNUOPOQRST

19 19

18 /R 18

17 () 17

16 i 16

15 ‘.qi(}_(/ 15

i: ‘ i: Objective: Win the game!

12 12

- hd ., State: Position of all pieces

9 s Action: Where to put the next piece down
; i > Reward: 1 if win at the end of the game, 0 otherwise
6 & £] 6

5 & 5

4 HC ﬁ 4

3 3

2 2

1 1

A BCDEFGH)] KLMNUOPOQRST

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

How can we mathematically formalize the RL problem?

State s, Reward r,

Action a,
Next state st+1

Environment

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

world

Defined by: (S, A, R, P,~)

. set of possible states

. set of possible actions

. distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
. discount factor

LEFAE 0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Markov Decision Process

- At time step t=0, environment samples initial state s, ~ p(s,)
- Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r,~ R(. | s,, &)

- Environment samples next state s,,, ~ P(. | s, a,)

- Agent receives reward r,and next state s, ,

- Anpolicy u is a function from S to A that specifies what action to take in
each state

t
- Objective: find policy u* that maximizes cumulative discounted reward: Z"f Tt
t=>0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

A simple MDP: Grid World

actions = { states
1. right — *
2. left <— Set a negative “reward”
3. u I o for each transition
- (e.9.r=-1)
4. down I
}

Objective: reach one of terminal states (greyed out) in
least number of actions

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

A simple MDP: Grid World

* 1]

+++* Dl %

SRR =N

Random Policy Optimal Policy

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

The optimal policy u*™
We want to find optimal policy u* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

The optimal policy u*™

We want to find optimal policy u* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Formally: 7* = argmaxE
T

Z’Yt?‘tlﬂ'] W|th 8p NP(S[}),ﬂt i W('|St)53t—|—l Np('|3t,,[1t)

t>0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, Iy, Sy, a5, I, .-

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
VT(s) =E Z'ytn[su =8,

>0

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E !Z 'yt:r't\SU = s8,ayp = a, ?T]

t>0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = mf‘XE nytrt|so =S,a0 = @, T
>0

Q* satisfies the following Bellman equation:
Q*(s,a) =Egneg {?" + v max Q*(s',a)|s, a,]

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+~yQ* (s, a’)

The optimal policy u* corresponds to taking the best action in any state as specified by Q*

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Solving for the optimal policy:
Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Qe a5 @0

function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S: a, 9) : FC-4 (Q-values) - Last FC layer has 4-d

neural network output (if 4 actions),

with weights § FC-256 corresponding to Q(s,,
a,), Q(s, a,), Q(s, ay),

A single feedforward pass Qsya,)

to compute Q-values for all

actions from the current Number of actions between 4-18

state => efficient! 11n g

|

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

depending on Atari game

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a;)
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N - Initialize replay memory, Q-network
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a;)
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights

for episode = 1, M do - Play M episodes (full games)
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do

With probability € select a random action a;,

otherwise select a; = max, Q*(¢(s¢),a;)

Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)

Store transition (@, ay, 7y, ¢re1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do

Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;) *
fort =1,T do

With probability € select a random action a;,

otherwise select a; = max, Q*(¢(s¢),a;)

Execute action a; in emulator and observe reward r; and image z;

Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)

Store transition (@, ay, 7y, ¢re1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Initialize state
(starting game
screen pixels) at the
beginning of each
episode

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
for iv?thl’ Tl‘)iobili ; . _ - For each timestep t
ith probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;) of the game
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity NV

Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do

With probability € select a random action a;, <
otherwise select a; = max, Q*(¢(s¢),a;)

Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)

Store transition (¢, @y, 7y, ¢¢+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

Skl T3 for terminal ¢,
g r; +ymaxy Q(¢j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 0))2 according to equation 3
end for
end for

With small probability,
select a random
action (explore),
otherwise select
greedy action from
current policy

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a;)
Execute action a; in emulator and observe reward r; and image z;

Set 8,1 = 84, a4, Ty and preprocess @y.1 = P(S141) - Take the action (a,),
Store transition (@, ay, 7y, ¢re1) in D and observe the
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D reward r,and next
Sety, = Tj , for terminal (.bj+1 state s, ,
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))? according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a;)
Execute action a; in emulator and observe reward r; and image z;
Set 841 = 84, a4, Ty41 and preprocess @1 = (841 e
Store transition (@, az, 7¢, G141) in D () < Store transition in
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D replay memory
S . { Tj for terminal ¢,
ety; = . : . ’. : .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,

Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a;)
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D _
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) fromD <« EXperience Replay:

Setq: — { T for terminal ¢, ; Sample a random
Yi r; + ymax, Q(¢j+1,a’;0) for non-terminal ¢, , minibatch of transitions
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3 from replay memory
end for and perform a gradient
end for descent step

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand

Can we learn a policy directly, e.g. finding the best policy from a collection of
policies?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Policy Gradients

Formally, let's define a class of parameterized policies: IT = {7y,0 € R™}

For each policy, define its value:

J(@) =E Z Yire|me

t>0

We want to find the optimal policy 6* = arg max J(6)

How can we do this?
Gradient ascent on policy parameters!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

REINFORCE Algorithm (orig. Williams 1992)

Gradient estimator: ~ VyJ(0) ~ ZT‘(T)VQ log mo(a|st)

t>0
Interpretation:
- If r(r) is high, push up the probabilities of the actions seen

- If r(r) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Policy Gradients

UP DOWN DOWN DOWN

o— o oo .0 .@ WIN

", Mo .0 L -0 LOSE

DDWN... DOWN._. DOWN.. DOWN UP @ LOSE
" .0 o0 WIN

Andrej Karpathy

Policy Gradients

* Loss: YiAilog p(yilxi)
* X, = state
* y. = sampled action

* A = “advantage” e.g. +1/-1 for win/lose in
simplest version, or discounted, or
improvement over “baseline”

Adapted from Andrej Karpathy

Policy Gradients vs Q-Learning

Estimating exact value of state-action pairs vs choosing
what actions to take (value not important)

Policy gradients can handle continuous action spaces
(Gaussian policy)

Step-by-step (did | correctly estimate the reward at this
time) vs delayed feedback (run policy and wait until
game terminates)

Policy gradients suffers from high variance and
instability; might want to make gradients smaller (e.g.
relative to a baseline)

Actor-Critic Algorithm

We can combine Policy Gradients and Q-learning by training both an
actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor
how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values
of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay

- Remark: we can define by the advantage function how much an
action was better than expected A" (s,a) = Q™(s,a) — V™(s)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Actor-Critic Algorithm

Really bad
action

I rotate
the piece

policy update: A = v Vg(log mg(s, a))Guw(s, a)

g learning function approximation
(estimate action value)

Value update: Aw = 3 (R(S, a) = ,qu(st'f—l? at+1> — qu(an at))vwcjw(sta at)

Pgllcy and valge have THarvar Gradient of our value
different learning rates function

Thomas Simonini

https://medium.freecodecamp.org/@thomassimonini

Example Q-network

il Yl i ;
i: ‘ Negative E
i : proxies !

history

N
-
Target

Image Positive

proxies history

Top images E

e -\l
; S
history '
‘ Nooo B2
- e '

Figure 3: Architecture of our proposed Q-network. It re

Feature

. Average
extraction

(3, 5, 4096) (3, 4096)

Feature
extraction Average
(3, 5, 4096) (3, 4096)

Feature
extraction Average
(3, 4096)

(3, 20, 4096)

1 conv

layer

\

50 20
units units

3
actions|

D_

Al: Free-form
attribute feedback

A2: Suggested
guestion

Attribute-feedback actions

A3: Sketch

Sketch-feedback action

ceives histories of top-ranked im-

ages, positive and negative proxy images, and taken actions. It predicts the best action given
a specific state. Inputs are denoted with dotted lines. Please see text for further explanation.

Murrugarra-Llerena and Kovashka, “Image Retrieval with Mixed Initiative and Multimodal Feedback”, BMVC 2018

Example Q-network (actions)

Image Search Iter 1 |ter 2 Iter 3 Itern Actions

E‘ A3: Sketch

| want a sporty
shoe
,.

5

Al: Free-form attribute feedback

%

Reference Image

Target Image Reference Image

- Comparison Pleass,

‘3 — response Attribute
> s e 2 : select an

innage

Comparison

response Attribute
| POINTY IN THE FRONT AS COMPARED TO

........

Figure 1: We learn how to intelligently combine different forms of user feedback for interac-
tive image search, and find the user’s desired content in fewer iterations. The image search
section depicts our search agent that predicts an appropriate action at a certain iteration.
For example, our agent selects free-form attribute feedback for iteration 1, and sketching for
iteration 2. The actions section presents the three possible interactions (actions) of our agent.

Murrugarra-Llerena and Kovashka, “Image Retrieval with Mixed Initiative and Multimodal Feedback”, BMVC 2018

REINFORCE in action: Recurrent Attention Model (RAM)

2

|

Input

image ‘

2

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Softmax

y=2

RL for object detection

Sequence of attended regions to localize the object

Figure 1. A sequence of actions taken by the proposed algorithm
to localize a cow. The algorithm attends regions and decides how
to transform the bounding box to progressively localize the object.

Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015

RL for object detection

Horizontal moves Vertical moves Scale changes Aspect ratio changes
Right Left Down Bigger Smaller Fatter Taller Trigger

Figure 2. Illustration of the actions in the proposed MDP, giving 4
degrees of freedom to the agent for transforming boxes.

Ra(s,s") = sign (IoU (b, g) — IoU (b, g)) R,(s,5) =

—n otherwise

action
hfstoryl;l
Size: 224 pixels
1024 102 9
units unit action
5 conv 4096
layers units

Layer 6 Layer 1 Layer2 Output

Input region Pre-trained CNN Deep QNetwork

Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015

+n it loU(b,g) > T

RL for navigation

target-driven visual navigation

\J update
observation

— | act < target 1

i
y
o

Fig. 1. The goal of our deep reinforcement learning model is to navigate
towards a visual target with a minimum number of steps. Our model takes
the current observation and the image of the target as input and generates
an action in the 3D environment as the output. Our model learns to navigate
to different targets in a scene without re-training.

Zhu et al., “Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning”, ICRA 2017

RL for navigation

Figure 1: Our goal is to use scene priors to improve navigation in unseen scenes and towards novel
objects. (a) There is no mug in the field of view of the agent, but the likely location for finding a
mug is the cabinet near the coffee machine. (b) The agent has not seen a mango before, but it infers
that the most likely location for finding a mango is the fridge since similar objects such as apple

appear there as well. The most likely locations are shown with the orange box.

St

p e

History frames l

Actor-Critic Model
Environment
HESNEESUNE—— 1 -~~~ -~~-~-—-=--~ -
) L
'
1
1
Value : at
1
“Television” 1
___________ | Action
% M ' Sampler
:Remote : FC (512) Policy :
1 ' !
g ! Gaph [B B ’
) i Convolutional
| % - Network
1
e - FC (512)
l\ Television J Joint

__________ Embedding

Figure 2: Overview of the architecture. Our model to incorporate semantic knowledge into se-
mantic navigation. Specifically, we learn a policy network that decides an action based on the visual
features of the current state, the semantic target category feature and the features extracted from the
knowledge graph. We extract features from the parts of the knowledge graph that are activated.

Yang et al., “Visual Semantic Navigation using Scene Priors”, ICLR 2019

RL for question-answering

)&

) ‘»"»& Q: What color is the car?

{
)

il
"\|||IUI

Figure 1: Embodied Question Answering — EmbodiedQA— tasks
agents with navigating rich 3D environments in order to answer
questions. These agents must jointly learn language understand-
ing, visual reasoning, and goal-driven navigation to succeed.

Das et al., “Embodied Question Answering”, CVPR 2018

RL for question-answering

CINN CNN CNN “
0 1 2 0
hess ¥ s e i ., e
gy q At 2 Ay 43
r’ PLNR L & ¥ ¥ v ¥ * ¥ r. PLNR v v - ¥ r’ PLNR
Q CTRL CTRL CTRL CTRL Q CTRL CTRL Q
0 1 1 1 0 1 0
At 41 RETURN Qg 42 0t +3 [a +2 RETURN ;43 @ 43 RETURN ap 1q
TURN RIGHT FORWARD FORWARD FORWARD FORWARD TURN LEFT TURN LEFT STOF

Figure 4: Our PACMAN navigator decomposes navigation into a planner and a controller. The planner selects actions and the controller
executes these actions a variable number of times. This enables the planner to operate on shorter timescales, strengthening gradient flows.

Das et al., “Embodied Question Answering”, CVPR 2018

What’s next?

