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Tracking how an object moves

Modeling and replicating motion
Recognizing human actions
ConvNets for video




Motion: Why is it useful?



Motion: Why is it useful?

e Even “impoverished” motion data can evoke a
strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its
Analysis", Perception and Psychophysics 14, 201-211, 1973.

Derek Hoiem



Tracking: some applications

Body pose tracking, Censusing a bat Video-wb.ased

activity recognition population interfaces
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Kristen Grauman



Tracking examples

Traffic: https://www.youtube.com/watch?v=DiZHQ4peqjg

Soccer: http://www.youtube.com/watch?v=ZgQIItFAnxg

Face: http://www.youtube.com/watch?v=i bZNVmhJ2o

Body: https://www.youtube.com/watch?v=_Ahy0Gh69-M

Eve: http://www.youtube.com/watch?v=NCtYdUEMotg

Gaze: http://www.youtube.com/watch?v=-G6Rw5cU-1c

Amin Sadeghi


https://www.youtube.com/watch?v=DiZHQ4peqjg
http://www.youtube.com/watch?v=ZqQIItFAnxg
http://www.youtube.com/watch?v=i_bZNVmhJ2o
https://www.youtube.com/watch?v=_Ahy0Gh69-M
http://www.youtube.com/watch?v=NCtYdUEMotg
http://www.youtube.com/watch?v=-G6Rw5cU-1c

Things that make visual tracking difficult

* Erratic movements, moving very quickly
* Occlusions, leaving and coming back
e Surrounding similar-looking objects

Adapted from Amin Sadeghi



Strategies for tracking

* Tracking by repeated detection

— Works well if object is easily detectable (e.g., face
or colored glove) and there is only one

— Need some way to link up detections
— Best you can do, if you can’t predict motion

Amin Sadeghi



Strategies for tracking

e Tracking w/ dynamics: Using model of expected
motion, predict object location in next frame

— Restrict search for the object
— Measurement noise is reduced by trajectory smoothness
— Robustness to missing or weak observations

— Assumptions: Camera is not moving instantly to new viewpoint,
objects do not disappear/reappear in different places in the scene

Amin Sadeghi



Detection vs. tracking

Kristen Grauman



Detection vs. tracking

Detection: We detect the object independently In
each frame and can record its position over time,
e.g., based on detection window coordinates

Adapted from Kristen Grauman



Detection vs. tracking

Tracking with dynamics: We use image
measurements to estimate position of object, but
also incorporate position predicted by dynamics,
l.e., our expectation of the object’'s motion pattern

Kristen Grauman



Tracking: prediction + correction

Belief

Measurement

Corrected prediction

Kristen Grauman



Tracking: prediction + correction
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General model for tracking

e State X: The actual state of the
moving object that we want to
estimate but cannot observe

— E.g. position, velocity
e Observations Y: Our actual
measurement or observation of

state X, which can be very noisy o (%)
e At each timet, the state changes to
X;and we get a new observation Y, ® O @ © @

 Qur goal is to recover the most
likely state X, given:
— All observations so far, i.e.y, y,, ..., ¥;

— Knowledge about dynamics of state
transitions

Adapted from Amin Sadeghi and Kristen Grauman



Steps of tracking

e Prediction: What is the next state of the
object given past measurements?

P(Xt‘YO = Yor o g = yt‘l)



Steps of tracking

e Prediction: What is the next state of the
object given past measurements?

P(Xt‘Yo = Yor o g = yt‘l)

e Correction: Compute an updated estimate of
the state from prediction and measurements

P(Xt‘Yo = Yo - ’Yt—l — ytl



Problem statement

 \We have models for

Likelihood of next state given current state

(dynamics model):
P(X,|X )

Likelihood of observation given the state
(observation or measurement model):

P(Yt‘xt)

* We want to recover, for each t: P(Xt\yo, ,yt)

Amin Sadeghi



The Kalman filter

e Linear dynamics model: state undergoes linear
transformation plus Gaussian noise

e Observation model: measurement is linearly
transformed state plus Gaussian noise

e The predicted/corrected state distributions are
Gaussian

— You only need to maintain the mean and covariance
— The calculations are easy

Amin Sadeghi



Example: Constant
velocity (1D points)

1 d position

measurements

time

1 d position

Kristen Grauman



Example: Constant
velocity (1D points)

« State vector: position p and velocity v

- i P, | Pi = Py T (At)vt—l T&
Vi Vi =V  +6
. 1 At p, -
X, =|D,X,_, + nolise = + nolse
0 1|v,

« Measurement is position only

Y, = Mx, +noise [t 0] ™ |+ noise

Vi




Prediction and correction See hidden shides

for derivation

Prediction:
P(Xt | Yor yt—l): _[ P(Xt | Xt—l)P(Xt—l | Yo oo yt—l)dxt—l

\ J N\ /
Y Y

dynamics corrected estimate
from previous step

servation predicted
model estimate

.
Py, | X P(X, | Yo -, Yer)
P(y, | X OP(X, [ Yor e Yip JAX,

Adapted from Amin Sadeghi

Correction:

P(Xt\yo,....,yt):J_



Prediction and correction

 Prediction:

Know corrected state from previous time step, and all
measurements up to (excluding) the current one -

Predict distribution over next state

Time advances: P(X y y
t[JOY )11

t++

) Receive measurement

e Correction:
Know prediction of state, and next measurement 2>

Update distribution over current state

P(X,|Yys---/Vi)

Kristen Grauman



Example w/ constant velocity

X measurement
* predicted mean estimate
+ corrected mean estimate

bars: variance estimates
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Adapted from Kristen Grauman
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Example w/ constant velocity
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* predicted mean estimate
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Example w/ constant velocity
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Adapted from Kristen Grauman
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Example w/ constant velocity
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Example w/ constant velocity
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Amin Sadeghi
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ConvNets for video




Modeling Motion: Optical Flow

(a) Input Image (b) Prediction

Walker et al., “Dense Optical Flow Prediction from a Static Scene”, ICCV 2015



Modeling Motion: Optical Flow
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llg et al., “FlowNet 2.0: Evolution of Optical Flow Estimation With Deep Networks”, CVPR 2017



http://openaccess.thecvf.com/content_cvpr_2017/html/Ilg_FlowNet_2.0_Evolution_CVPR_2017_paper.html

Transferring Motion

Input Image Source video (melting face)
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Optical flow in Optical flow in
generated video source video

Key idea: Generate videos with similar flow patterns as source videos (+ many details).

Thomas, Song and Kovashka, in submission to ECCV 2018



Transferring Motion

Input Image (Frame 1) Frame 15 Frame 30

Input Image (Frame 1) Frame 15 Frame 30

Blooming
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Thomas, Song and Kovashka, in submission to ECCV 2018



Transferring Motion

Baking Blooming

Thomas, Song and Kovashka, in submission to ECCV 2018
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What is an action/activity?

Action: a transition from one state to another
 What is the name of the action?

* Whois the actor?

* How is the state of the actor changing?

 What (if anything) is being acted on?

* How is that thing changing?

 Whatis the purpose of the action (if any)?

Adapted from Derek Hoiem



How can we identify actions?

%) ¥
Dew New, new

Held
Objects

Nearby
Objects

Derek Hoiem



Representing Actions

* Via tracked points

Adapted from Derek Hoiem Matikainen et al. 2009



http://www.cs.cmu.edu/~rahuls/pub/voec2009-rahuls.pdf

Representing Actions

* Via spatio-temporal interest points (corners in
space+time)

Spatio-temporal interest points

Adapted from Derek Hoiem Laptev 2005



http://www.irisa.fr/vista/Papers/2005_ijcv_laptev.pdf

One Action Recognition Approach

e Space-time interest point detectors

* Descriptors
— HOG, HOF

* Spatio-temporally-binned histograms
* SVMs with Chi-Squared Kernel

Il tl Ixlt2 h3x1 tl o2x2 tl

o Spatio-Temporal Binning

Interest Points

Laptev et al., “Learning Realistic Human Actions from Movies”, CVPR 2008 Adapted from Derek Hoiem



Results

AnswerPhone GetOutCar

HandShake

HugPerson

| Task || HoG BoF | HoF BoF || Best channel | Best combination

KTH multi-class 81.6% 89.7% 01.1% (hof h3x1 t3) | 91.8% (hof 1t2,  hog 1 t3)

Action AnswerPhone 13.4% 24.6% || 26.7% (hof h3x1t3) | 32.1% (hof 02x2 t1, hof h3x1 t3)

Action GetOutCar 21.9% 14.9% 22.5% (hof 02x2 1) | 41.5% (hof 02x2 t1., hog h3x1 t1)

Action HandShake 18.6% 12.1% 23.7% (hog h3x1 1) | 32.3% (hog h3x1 t1. hog 02x2 t3)

Action HugPerson 29.1% 17.4% || 34.9% (hog h3x11t2) | 40.6% (hog 112,  hog 02x2 t2, hog h3x1 t2)
Action Kiss 52.0% 36.5% 52.0% (hog 1 1) 53.3% (hog 1t1,  hof1tl, hof 02x2 t1)
Action SitDown 29.1% 20.7% 37.8% (hog 1 t2) 38.6% (hog 112,  hog 113)

Action SitUp 6.5% 5.7% 15.2% (hog h3x112) | 18.2% (hog 02x2 tl, hog 02x2 t2, hog h3x1 t2)
Action StandUp 45.4% 40.0% || 45.4% (hog11) 50.5% (hog 1tl,  hof112)

Laptev et al., “Learning Realistic Human Actions from Movies”, CVPR 2008
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ConvNets for Video
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ConvNets for Video

Spatial stream ConvNet

conv1 || conv2 || conv3d || conv4 || conv5s fullé full7 ||softmax

TXTX96 || 5xHx256 || 3x3x512 || 3x3xH12 || 3x3x512 || 4096 2048

stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2

single frame  [Po0l 2x2|{pool 2x2

Temporal stream ConvNet

. convil || conv2 || convd || conv4 || conv5 fullé full7 ||softmax
X796 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

- norm. pool 2x2 pool 2x2
multi-frame pool 2x2

. optical flow

input
video

Simonyan and Zisserman, “Two-Stream Convolutional Networks for Action Recognition in Videos”, NIPS 2014



ConvNets for Video

Single Frame Late Fusion

Early Fusion
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ConvNets for Video

space-time pool space-time pool space-time pool space-time pool space-time pool

| 2Dconv | | 2Dconv | [ 3Dconv_| [ 3Dconv | [(2+1)Dconv]
| 2Dconv_ | | 2Dconv | [ 3Dconv_| [ 3Dconv | [(2+1)Dconv]
2D conv 2D conv _ _ (241)D conv
| 2Dconv | [ 3Dconv | | 2Dconv | [ 3Dconv_| [(2+1)Dconv]|
| 2Dconv | * | 2Dconv | F | (2+1)D conv |
A A
clip clip clip clip clip
(a) R2D (b) MCx () rIMCx (d) R3D (e) R(2+1)D

Figure 1. Residual network architectures for video classification considered in this work. (a) R2D are 2D ResNets: (b) MCx are
ResNets with mixed convolutions (MC3 is presented in this figure); (c¢) rMCx use reversed mixed convolutions (rMC3 is shown here); (d)
R3D are 3D ResNets; and (e) R(2+1)D are ResNets with (2+1)D convolutions. For interpretability, residual connections are omitted.

Tran et al., “A Closer Look at Spatiotemporal Convolutions for Action Recognition”, CVPR 2018
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b) 3D-ConvNet
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