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So far: Image Classification

Slide by: Justin Johnson

Vector:
4096

|
Fully-Connected:
4096 to 1000

Class Scores
Cat: 0.9

Dog: 0.05
Car: 0.01



Other Computer Vision Tasks

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

GRASS, CAT, CAT DOG, DOG,CAT  DOG, DOG, CAT
“ TREE\fKY P SN /
No objects, just pixels Single Object Multiple Object

Slide by: Justin Johnson



Classification + Localization

GﬁRAESES’SKY’ CAT DOG, DOG,CAT  DOG, DOG, CAT
— e W,
No objects, just pixels Single Object Multiple Object

Slide by: Justin Johnson



Classification + Localization

Class Scores
Fully Cat: 0.9

Connected: Dog: 0.05
4096 to 1000 Car: 0.01
Vector: FMA
Connected:

4096 to 4 Box
Coordinates

(X, y, w, h)

Treat localization as a
regression problem!

Slide by: Justin Johnson



Classification + Localization

Correct label:

Cat
Class Scores l
Fully Cat: 0.9 Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car: 0.01

Vector: FM.
Connected:

4096 4006104  BoOX
Coordinates —» L2 Loss
o (X, y, w, h)
Treat localization as a T

regression problem! Correct box:
(X', y,w,h)

Slide by: Justin Johnson



Classification + Localization

Correct label:
Cat

Class Scores l
Fully Cat: 0.9 Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car: 0.01

|

Multitask LOSS 4+ —»Loss

Vector: FM.
Connected:

4096 4006104  BOX
Coordinates —» L2 Loss
(X, vy, w, h) T

Treat localization as a

regression problem! Correct box:
(X', y,w,h)

Slide by: Justin Johnson



Classification + Localization

Correct label:

Cat
Class Scores l
Fully Cat: 0.9 Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car: 0.01

|

+ —Loss

. Vector: FN
Often pretrained on ImageNet Connected:

4096
(Transfer learning) 4096 to0 4 Box :
Coordinates —» L2 Loss

(X1 Yy, W, h) T

Treat localization as a

regression problem! Correct box:

(X, y, w, h)

Slide by: Justin Johnson



Plan for this lecture

* Fully supervised detection
— Pre-CNN: Deformable part models
— Detection with region proposals: R-CNN, Fast/er R-CNN
— Detection without region proposals: YOLO
— Semantic and instance segmentation: FCN, Mask R-CNN

 Weak or out-of-domain supervision
— Weakly supervised object detection
— Domain adaptation



Object Detection

DOG, DOG, CAT DOG, DOG, CAT

" TREE, SKY IS N Y
Y Y _ _

No objects, just pixels Single Object Multiple Object

Slide by: Justin Johnson



Object detection: basic framework

 Build/train object model
« Generate candidate regions in new image

e Score the candidates

Adapted from Kristen Grauman



Window-template-based models
Building an object model

Given the representation, train a binary classifier

( )

Car/non-car

Classifier
\_ Y,

!

NoYemtcarcar.

Kristen Grauman



Window-template-based models
Generating and scoring candidates

( )

Car/non-car

Classifier
\_ )

Kristen Grauman



Window-template-based object detection: recap

Training:

1. Obtain training data
2. Define features
3. Define classifier

Given new image:

1. Slide window Training examples

2. Score by classifier llll

~N

~ A
—»| Car/non-car

\: Classifier
\_

Feature
\extractlon Y

J

Kristen Grauman



Dalal-Triggs pedestrlan detector

. Extract fixed-sized (64x128 pixel) window at
multiple positions and scales

. Compute HOG (histogram of gradient)
features within each window

. Score the window with a linear SVM classifier

. Perform non-maxima suppression to remove
overlapping detections with lower scores

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO05



Histograms of oriented gradients (HOG)

Divide image into 8x8 regions

Orientation: 9 bins Histograms in
(for unsigned angles) gyg pixel cells
90
135 45
180 0
225 315
270

Votes weighted by magnitude

Adapted from Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO05



Train SVM for pedestrian detection using HoG

pos w neg w

‘ —wlz+b

| " ' 016

sign(0.16) =1

=> pedestrian

G
&Y /
O Z Margin

Adapted from Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO05



Remove overlapping detections @

Non-max suppression

Score =0.8

Score =0.1

erlap
| ‘

Score =0.8

Adapted from Derek Hoiem



Are window templates enough?

* Many objects are articulated, or have parts that
can vary in configuration

Images from Caltech-256, D. Ramanan

Adapted from N. Snavely, D. Tran



Parts-based Models

Define object by collection of parts modeled by
1. Appearance
2. Spatial configuration

A

yHl‘HU)}‘M |

ScanG A

Slide credit: Rob Fergus



How to model spatial relations?

* One extreme: fixed template

Derek Hoiem



Fixed part-based template

 Object model = sum of scores of features at
fixed positions

?
+3 42 -2-1 -25 =-0.5 >7.5

Non-object

?
+4 +1 +3 +0.5=10.5 >7.5

Object

Derek Hoiem



How to model spatial relations?

* Another extreme: bag of words

Derek Hoiem



How to model spatial relations?

e Star-shaped model

o0 |*
o ©

Derek Hoiem



Parts-based Models

* Articulated parts model

— Object is configuration of parts

— Each part is detectable and can move around

Adapted from Derek Hoiem, images from Felzenszwalb



Discriminative part-based models

Root Part  Deformation
filter filters weights

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection
with Discriminatively Trained Part Based Models, PAMI 32(9), 2010

Lana Lazebnik


http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf

Discriminative part-based models
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P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection

with Discriminatively Trained Part Based Models, PAMI 32(9), 2010

Lana Lazebnik


http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf

Scoring an object hypothesis

* The score of a hypothesis Is
the sum of appearance scores
minus the sum of deformation costs

P1I,-.., Pn - location of parts

= (PO,---, p;:)

po: location of root

score(Po, - .., Pn) =

1
/

>

F
i=0 T

f

part loc anchor loc (where we
(where we see part) expect to see part)

(dxi,dyi) = (zi,y:) — I{Q{ID-. Yo) + v:)

Displacements
I.e. how much the part p, moved from its

expected anchor location in the x, y directions

n
_ § d?: .
i=1

Appearance weights Part features

Felzenszwalb et al.

Oaldz;. dy;)|+ b

Deformation weights
i.e. how much we’ll penalize the part p;
for moving from its expected location



Detection

feature map at twice the resolution

featur:

i
\
'
+
~

response of part filters

response of root filter

color encoding of filter
response values

combined score of

root locations
Felzenszwalb et al.



Car model

Component 1

Lana Lazebnik



Car detections

high scoring true positives high scoring false positives
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Person model
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Person detections

high scoring false positives

high scoring true positives (not enough overlap)

|
=
(3 b a

Lana Lazebnik



Cat model

Lana Lazebnik



Cat detections

high scoring true positives

high scoring false positives
(not enough overlap)







Plan for this lecture

* Fully supervised detection
— Pre-CNN: Deformable part models
— Detection with region proposals: R-CNN, Fast/er R-CNN
— Detection without region proposals: YOLO
— Semantic and instance segmentation: FCN, Mask R-CNN

 Weak or out-of-domain supervision
— Weakly supervised object detection
— Domain adaptation



Complexity and the plateau

[Source: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc20{07,08,09,10,11,12}/results/index.html]

70
60
plateau & increasing complexity
50
41% 41%
40 37% < &

O DPM++, Selective
)89 DPPM++  MKL,  Search,

23% < Selective DPM++, ©Top
17% < DPM, Search MKL COmpetition
20 o DPM, — MKL results (2007 -
ppm  HOG+BOW 2012)
10
0

VOC’'07 VOC’'08 VOC'09 VOC'10 VvOoC'11 VvoC’12
PASCAL VOC challenge dataset

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



Impact of Deep Learning

80% PASCAL VOC
70%

60% Before deep convnets
1 A
50%

{ ‘\ \ J

40% A !
A Using deep convnets

30%

20%

mean Average Precision (mAP)

10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

year

Slide by: Justin Johnson



Object Detection as Regression?

CAT: (x,y, w, h)

DOG: (X, Yy, w, h)
DOG: (x, Y, w, h)
CAT: (X, ¥, w, h)

DUCK: (X, y, w, h)
DUCK: (X, y, w, h)

Slide by: Justin Johnson



Object Detection as Regression?

CAT: (X, y, w, h) 4 numbers

DOG: (X, Yy, w, h)

DOG: (x, ¥, W, h) 16 numbers
CAT: (x,y, w, h)

DUCK: (x, ¥, W, h) Many
DUCK: (X, ¥, W, h) numbers!

Each image needs a different
number of outputs!

Slide by: Justin Johnson



Object Detection as Classification:
Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? NO
Background? YES

Slide by: Justin Johnson



Object Detection as Classification:
Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? YES
Cat? NO

Background? NO

Slide by: Justin Johnson



Object Detection as Classification:
Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? YES
Cat? NO

Background? NO

Slide by: Justin Johnson



Object Detection as Classification:
Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? YES
Background? NO

Slide by: Justin Johnson



Object Detection as Classification:

Slide by: Justin Johnson

Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object

or background

Problem: Need to apply CNN to huge
number of locations and scales, very
computationally expensive!

Dog? NO
Cat? YES
Background? NO



Region Proposals

e Find “blobby” image regions that are likely to contain objects
e Relatively fast to run; e.g. Selective Search gives 1000 region
proposals in a few seconds on CPU

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012

Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

Slide by: Justin Johnson



Speeding up detection: Restrict set of windows we
pass through SVM to those w/ high “objectness”

KA I N 0T - T X P T s 7 e = —
**\ Tt el AU M S e

(a) - (b) (c)
Fig. 1: Desired behavior of an objectness measure. 7he desired
objectness measure should score the blue windows, partially cov-
ering the objects, lower than the ground truth windows (green),
and score even lower the red windows containing only stuff or
small parts of objects.

Alexe et al., “Measuring the objectness of image windows”, PAMI 2012 and CVPR 2010



Proposals cue: color contrast at boundary

(a) it e 7 (b) BREE. s .
Fig. 3: CC success and failure. Success: the windows containing

the objects (cyan) have high color contrast with their surrounding
ring (vellow) in images (a) and (b). Failure: the color contrast for
windows in cyan in image (c) is much lower.

Alexe et al., “Measuring the objectness of image windows”, PAMI 2012 and CVPR 2010



Proposals cue:
no segments “straddling” the object box

(c)

SS cue. Given the segmentation (b) of image (a), for
a window w we compute SS(w, fss) (eq. 4). In (c), most of the
surface of wi is covered by superpixels contained almost entirely
inside it. Instead, all superpixels passing by ws continue largely
outside it. Therefore, wy has a higher SS score than ws. The
window ws has an even higher score as it fits the object tightly.

Fig. 5: Tﬂje)

Alexe et al., “Measuring the objectness of image windows”, PAMI 2012 and CVPR 2010



Proposals cue:
many edges wholly contained inside box

IS SATAL

/‘f":_Al\i' ‘ |
= o e el
i - P A

Zitnick and Dollar, “Edge Boxes: Locating Object Proposals from Edges”, ECCV 2014



R-CNN

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN

L/ Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN

Conv Forward each
Conv Net region through
ConvNet
Conv Net
et ﬁ Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN

SVMs Classify regions with

SVMs SVMs
s Conv Forward each
Conv Net region through
ConvNet
Conv Net
et E Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN

Linear Regression for bounding box offsets

Bbox reg || SVMs Classify regions with

Bbox reg || SVMs SVMs
Bbox reg SVMs ‘
Conv For.\;r\/ardh(::achh
Conv Net region throug
Net ConvNet
Conv € !
Net Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN: Regions with CNN features

ﬂl aeroplane? no.
> person? yes.
CNNM :
4| tvmonitor? no.
Input Extract region Compute CNN Classify regions
image  proposals (~2k/ image) features (linear SVM)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN at test time: Step 1
gi SEE ﬂ|aeroplafne?no.

=£>| person? yes.
CNNM

4| tvmonitor? no.

Input Extract region
image  proposals (~2k/ image)

Proposal-method agnostic, many choices
- Selective Search [van de Sande, Uijlings etal.] (Used in this work)
- Objectness [Alexe etal.]
- Category independent object proposals [Endres & Hoiem]
- CPMC [Carreira & Sminchisescul]

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN at test time: Step 2

ﬂl aeroplane? no.

=&>| person? yes.
CNNM

4| tvmonitor? no.

Input Extract region Compute CNN
. . —
image  proposals (~2k/ image) features

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN at test time: Step 2

ﬂl aeroplane? no.

=&>| person? yes.
CNNM

Q| tvmonitor? no.

Input Extract region Compute CNN
. . —>
image  proposals (~2k/ image) features

Dilate proposal

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN at test time: Step 2

ﬂl aeroplane? no.

=&>| person? yes.
CNNM

4| tvmonitor? no.

Input Extract region Compute CNN
. . —
image  proposals (~2k/ image) features

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN at test time: Step 2

ﬂl aeroplane? no.

=&>| person? yes.
CNNM

4| tvmonitor? no.

Input Extract region Compute CNN
. . —
image  proposals (~2k/ image) features

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R CNN at test time: Step 2

ﬂl aeroplane? no.

=&>| person? yes.
CNNM

Q| tvmonitor? no.

Input Extract region Compute CNN
. . —>
image  proposals (~2k/ image) features

TN

L | . , c. Forward propagate
Crop b. Scale (anisotropic) Output; “ch”fepatSres

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014




R-CNN at test time: Step 3
‘. 3= ﬂ|aeroplafne? no.

=£>| person? yes.

CNNM :
4| tvmonitor? no.
Input Extract region Compute CNN Classify
. . —>
image  proposals (~2k/ image) features regions
——— person? 1.6
=
o § % horse? -0.3
< . . . g
4096-dimensional linear classifiers
proposal

fcs feature vector SSVM or softmax)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



Step 4: Object proposal refinement

[ —

Linear regression

on CNN features

Original Predicted
proposal object bounding box

Bounding-box regression

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN on ImageNet detection

ILSVRC2013 detection test set mAP

*R-CNN BB
*QverFeat (2)
UvA-Euvision

*NEC-MU
*QverFeat (1)
Toronto A
SYSU Vision

GPU_UCLA

I post competition result
UIUC-IFP §1.0% Il competition result

60 80 100
mean average precision (mAP) in %

Delta

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN

Linear Regression for bounding box offsets

Bbox reg || SVMs Classify regions with

Bbox reg || SVMs SVMs
Bbox reg SVMs ‘
Conv For.\;r\/ardh(::achh
Conv Net region throug
Net ConvNet
Conv € !
Net Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Post hoc component

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



What’s wrong with slow R-CNN?

* Ad hoc training objectives

* Fine-tune network with softmax classifier (log loss)
* Train post-hoc linear SVMs (hingeloss)
* Train post-hoc bounding-box regressions (least squares)

* Training is slow (84h), takes a lot of disk space

* Inference (detection) is slow
* 47s [ image with VGG16 [Simonyan & Zisserman, ICLR15]

Forward each region

CCCCCCC

CCCCCCC

Regions of Interest

oooooooooooooo

. =1
s 3 = & L/’iff
H -y | Sy —
. 2
A WA= ¢ - A
. LS

Input image

Girshick, “Fast R-CNN”, ICCV 2015 ~2000 ConvNet forward passes per image



Fast R-CNN

* Fast test time
* One network, trained in one stage

* Higher mean average precision

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN

/ /”conv5” feature map of image

Forward whole image through ConvNet

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN

Regions of ﬁ@:i/ conv5” feature map of image
Interest (Rols) /

from a proposal Forward whole image through ConvNet

method

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN

“Rol Pooling” layer

Regions of %&M “conv5” feature map of image
Interest (Rols) /

from a proposal Forward whole image through ConvNet

method

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN

i
Softmax near
o softmax
classifier
FCs Fully-connected layers

LS ,—7 /7 “RolPooling” layer

Regions of %&M"comﬁ” feature map of image
Interest (Rols) / 8 )

from a proposal Forward whole image through ConvNet

method

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN

Linear +
SOftI’T}.aX softmax Linear
classifier
| FCs
> I T, 3

LT [T [T

Bounding-box
regressors

Fully-connected layers

“Rol Pooling” layer

Regions of %&ﬁ/ “conv5” feature map of image

Interest (Rols) /

from a proposal
method

Girshick, “Fast R-CNN”, ICCV 2015

Forward whole image through ConvNet



Fast R-CNN (Training)

Log loss + Smooth L1 loss Multi-task loss

ol
Linear +

softmax Linear

FCs
L}
LT

=
Wi~ =
/ T

p
A7

ConvNet

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN (Training)

Log loss + Smooth L1 loss Multi-task loss
Linear + /
softmax Linear

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN vs R-CNN

Fast R-CNN R-CNN
Train time (h) 9.5 84
Speedup 8.8x 1x
Test time / image | 0.32s 47.0s
Test speedup 146x 1x
mAP 66.9% 66.0%

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

Girshick, “Fast R-CNN”, ICCV 2015



Faster R-CNN

Make CNN do proposals!

Insert Region Proposal Rl
Network (RPN) to predict ~3
proposals from features %

proposals/ , /
Jointly train with 4 losses: » '

Rol pooling

1. RPN classify object / not object Region Proposal Network 8 oy

2. RPN regress box coordinates W

3. Final classification score (object feature map -
classes)

4. Final box coordinates

CNN .
4 /

Vo2 T AR )

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015



Faster R-CNN

R-CNN Test-Time Speed

R-CNN
SPP-Net
Fast R-CNN 2.3

Faster R-CNN| 0.2

0 15 30

45



Accurate object detection is slow!

Pascal 2007 mAP | Speed
DPM v5 33.7 .07 FPS | 14 slimg
R-CNN 66.0 .05 FPS | 20 s/img

N 4 Mile, 1760 feet

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



Accurate object detection is slow!

Pascal 2007 mAP |Speed

DPM v5 33.7 .07 FPS | 14 s/limg
R-CNN 66.0 .05 FPS | 20 s/img
Fast R-CNN 70.0 S FPS | 2s/img
Faster R-CNN | 73.2 7 FPS | 140 ms/img
YOLO 69.0 45 FPS | 22 ms/img

-~ 2 feet

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



Plan for this lecture

* Fully supervised detection
— Pre-CNN: Deformable part models
— Detection with region proposals: R-CNN, Fast/er R-CNN
— Detection without region proposals: YOLO
— Semantic and instance segmentation: FCN, Mask R-CNN

 Weak or out-of-domain supervision
— Weakly supervised object detection
— Domain adaptation



Detection without Proposals:
YOLO / SSD

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

Inputimage Divide image into grid Output:
3XHXW 7x7 7X7Tx(5*B+C)

Image a set of base boxes
centered at each grid cell
Here B =3

Redmon et al, “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016
Liu et al, “SSD: Single-Shot MultiBox Detector’, ECCV 2016

Slide by: Justin Johnson



Split the image into a grid

- J B

) e e,

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



Each cell predicts boxes and confidences:

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



Each cell also predicts a probability
P(Class | Object)

Bicycle

Dog

.. Dining
EEEEEEEEt

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



Combine the box and class predictions

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



Finally do NMS and threshold detections

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



This parameterization fixes the output

. S|Ze
Each cell predicts:

- For each bounding box: E

4 coordinates (x, y, w, h)
1 confidence value 7
- Some number of class
probabilities e
7 Gt kol s bkl s A 4 A
For Pascal VOC: % % o %, % 95 o, %y L,
% £ (%_/oé %.
) /é /@oy
. % oy
- IX7 grid
gric Ist-5th  6th- 10th 11th - 30th
- 2 bounding boxes / cell Box #1 Box #2 Class Probabilities
- 20 classes

7TX7Tx(2x5+20)=7x7x30tensor =1470 outputs

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



YOLO works across many natural images

bir
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Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



It also generalizes well to new domains

diningtable &

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016
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Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



YOLOvV2: Fast, Accurate Detection

[ |
g 30+ E o },O[
o Faster R-CNN gopsizn 544x544 O Ol/
W Resnet o) ] 480x480 O 8
G (@) : 416x416

SSD300
CIL) Faster R-CNN : (o)
a O : 352x352
Fast R-CNN '

L 7040 :

[ |
E . 288x288
O R-CNN .
> O '

[ ]
< ' YoLO
c : O
G 1
q) [ ]
= 60+ .

0 30 50 100

Frames Per Second

Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



Typically use softmax over all classes

_C0CO

——

airplane apple backpack banana bat bear bed bench bicycle bird /0 zebra

_()_ImageNet

Afghan  African African African African African Airedale American American American 22k zucchini
hound chameleon crocodile elephant grey hunting dog alligatorblack bearchameleon

Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



Can’t just mash classes together...

_()_Combined?

/

qirplqne qpp'l_e chkpqck banana bat bear Airedale American American American 22|( zucchini
alligatorblack bearchameleon

Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



Can’t just mash classes together...

_()_Combined?

/

qirplqne qpp'l_e chkpqck banana bat bear Airedale American American American 22|( zucchini
alligatorblack bearchameleon

Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



Can’t just mash classes together...

_()_Combined?

/

qirplqne qpp'l_e chkpqck banana bat bear Airedale American American American 22|( zucchini
alligatorblack bearchameleon

/

Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



Can’t just mash classes together...

_()_Combined?

/

qirplqne qpp'l_e chkpqck banana bat bear Airedale American American American 22|( zucchini
alligatorblack bearchameleon

Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



physical object . WO rl dT rl e e

animal artifact hatural object phenomenon

vascular
plant

tabby  Persian”

-~

biplane jet airbus  stealth golden potato felt sed American
fighter fern fern fern lavender twinflower

Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



WordTree

physical object

natural object phenomenon

tabby Persian_”

biplane jet airbus stealth golden potato felt sea American
fighter fern fern fern lavender twinflower

Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



Each node is a conditional probability

P(Ccanine | mammal)

P(dog | canine)

P(terrier | dog)

( ) P(Bedlington terrier | terrier)

P(Norfolk terrier | terrier) P(Yorkshire terrier | terrier)

Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



Each node is a conditional probability

P(Bedlington terrier) =
P(object) *
P (living thing | object) *

P(canine | mammal)

P(dog | canine) _

P(dog | canine) *

P(terrier | dog) *
/ P(Bedlington terrier | terrier)

P(terrier | dog)

( ) P(Bedlington terrier | terrier)

P(Norfolk terrier | terrier) P(Yorkshire terrier | terrier)

Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



Imagenet 1k

} softmax :
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Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017
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Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017
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Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017
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Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017
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Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



Plan for this lecture

* Fully supervised detection
— Pre-CNN: Deformable part models
— Detection with region proposals: R-CNN, Fast/er R-CNN
— Detection without region proposals: YOLO
— Semantic and instance segmentation: FCN, Mask R-CNN

 Weak or out-of-domain supervision
— Weakly supervised object detection
— Domain adaptation



Semantic Segmentation

GRASS, CAT, CAT DOG, DOG,CAT  DOG, DOG, CAT
\ TREE\fKY P SN Y,
No objects, just pixels Single Object Multiple Object

Slide by: Justin Johnson



Semantic Segmentation

Label each pixel in the
Image with a category
label

Don’t differentiate
Instances, only care about
pixels

Slide by: Justin Johnson



Semantic Segmentation ldea:
Sliding Window

i Classify center
EXtractpatch el with CNN

Fullimag

AR ax
By
73

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Slide by: Justin Johnson



Semantic Segmentation ldea:
Sliding Window

i Classify center
EXtractpatch el with CNN

Fullimage

Problem: Very inefficient! Not
reusing shared features between

overlapping patches Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Slide by: Justin Johnson



Semantic Segmentation ldea:
Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv argmax

J

Scores: Predictions:

3XxHxXxW Y
CXHxW HxW

Convolutions:
DxHxW

Slide by: Justin Johnson



Semantic Segmentation ldea:
Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv Conv argmax

Input: _ _J o

3XxHxW Y Scores: Predictions:
CxHxW HxW

Convolutions:

Problem: convolutions at Dx HxW

original image resolution will
be very expensive ...

Slide by: Justin Johnson



Semantic Segmentation ldea:
Fully Convolutional

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:
D, x H/4 xW/4 D, x H/4 xW/4

[

Low-res:
D, X H/4 x\W/4

High-res: High-res:

Predictions:
3XHXW D, x H/2 xW/2 D, x H/2 xW/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide by: Justin Johnson



Semantic Segmentation ldea:
Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 277
convolution

Med-res: Med-res:
D, x H/4 xW/4 D, x H/4 xW/4

[

Low-res:
D, X H/4 x\W/4

High-res: High-res:

Predictions:
3XHXW D, x H/2 xW/2 D, x H/2 xW/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide by: Justin Johnson



In-Network upsampling: “Unpooling”

Nearest Neighbor

1| 2
3 4
Input: 2 x 2

Slide by: Justin Johnson

112

112

3| 4

31 4
Output: 4 x4

“Bed of Nails”

Input: 2 x 2

0|2

OO0

0| 4

0OJ0|0
Output: 4 x4



In-Network upsampling: “Max Unpooling”

Max Pooling

) Max Unpoolin
Remember which element was max! P 9

Use positions from

11216 3 pooling layer o o 2 0
3 5|2/ 1|— |5 6| —- . 112, ., 0o/1 0|0
1212 1 78 3 4 0O o|lo0o|oO
Rest of the network
7 314 8 3 0| 0 4
Input: 4 x4 Output: 2 x 2 Input: 2 x 2 Output: 4 x4

Corresponding pairs of
downsampling and
upsampling layers

Slide by: Justin Johnson



Learnable Upsampling:
Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x4

Slide by: Justin Johnson



Learnable Upsampling:
Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input gives
weight for
filter

Input: 2 x 2 Output: 4 x4

Slide by: Justin Johnson



Learnable Upsampling:
Transpose Convolution

Sum where

3 x 3 transpose convolution, stride 2 pad 1 output overlaps

> Filter moves 2 pixels in

Input gives the output for every one

weight for pixel in the input

filter
Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output: 4 x4

Slide by: Justin Johnson



Transpose Convolution: 1D Example

Input Filte

|

N
b&

Adapted from Justin Johnson

X

N

—

_—
~—

Output
ax|
ay
azf+[bx
by
bz

Output contains
copies of the filter
weighted by the
input, summing at
where at overlapsin
the output



Semantic Segmentation ldea:
Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Bﬁggmiﬁgr:)%:strided

i i downsampling and upsampling inside the network! .
Pooling, strided pling psampiing transpose convolution
convolution

Med-res: Med-res:
D, x H/4 xW/4 D, x H/4 xW/4

[

Low-res:
D, X H/4 x\W/4

High-res: High-res:

Predictions:
3XHXW D, x H/2 xW/2 D, x H/2 xW/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide by: Justin Johnson



Instance Segmentation

GﬁRAESES’SKY’ CAT DOG, DOG,CAT  DOG, DOG, CAT
— e W,
No objects, just pixels Single Object Multiple Object

Slide by: Justin Johnson



Mask R-CNN

He et al, “Mask R-CNN”, ICCV 2017

Parallel Heads

« Easy, fast to implement and use
T ) cls (
—
cls
Feat. Feat. Feat.
» hbox . bbo}{
N v reg . A reg M
(slow) R-CNN Fast/er R-CNN Mask R-CNN

Slide by: Kaiming He



Mask R-CNN

He et al, “Mask R-CNN”, ICCV 2017

/

/" Rol Align

Adapted from Justin Johnson

-

// //
— —
v/ Conv v/ Conv
// //

Classification Scores: C
Box coordinates (per class): 4 *C

Predict a mask for
each of C classes




Plan for this lecture

* Fully supervised detection
— Pre-CNN: Deformable part models
— Detection with region proposals: R-CNN, Fast/er R-CNN
— Detection without region proposals: YOLO
— Semantic and instance segmentation: FCN, Mask R-CNN

 Weak or out-of-domain supervision
— Weakly supervised object detection
— Domain adaptation



What if no bounding boxes to train?

 Weakly supervised object detection
— Image-level class labels
— Image-level captions



Class activation maps

/ Australian
C C C C 4 —3\ terrier
O O O O v O .
N N '
N \N/ p '\., /
V
b
O, el
Class Activation Mapping
Class
+ Wy % = eae W, # — Activation
Map
(Australian terrier)

Zhou et al., “Learning Deep Features for Discriminative Localization”, CVPR 2016



Class activation maps

* Letf,(x, y) be the activation in the k-th map at
location (x, y)

* Global average pooling: Fk=5  f (X, y)

* Input to softmaxis S_ = Z, w¢, F¥ where w¢,is
the weight for class c and map k

Se=> wiy felz,y) =) > wifelz,y)
k T,

Ty k

* Map for class c:

M.(z,y) =Y wi fu(z,y)

k

Zhou et al., “Learning Deep Features for Discriminative Localization”, CVPR 2016



Class activation maps

dome

0.195

Class activation maps of top 5 predictions

Class activation maps for one object class

Table 3. Localization error on the ILSVRC test set for various
weakly- and fully- supervised methods.

Method

supervision | top-3 test error
GoogleNet-GAP (heuristics) weakly 37.1
GoogleNet-GAP weakly 429
Backprop [ ] weakly 464
GoogLeNet [25] full 26.7
OverFeat [ 2] full 20.9
AlexNet |25] full 34.2

Zhou et al., “Learning Deep Features for Discriminative Localization”, CVPR 2016



Class activation maps

French horn French horn ) e I e French horn
FrenCh horn 0.775 0.934 0.0 0.966 D. 0.326 0.966

agaric
0.636,

GoogLeNet-GAP  VGG-GAP ~ AlexNet-GAP ~  GooglLeNet ~ Backpro AlexNet Backpro GoogLeNet
Figure 5. Class activation maps from CNN-GAPs and the class-specific saliency map from the backpropagation methods.

Figure 6. a) Examples of localization from GoogleNet-GAP. b) Comparison of the localization from GooleNet-GAP (upper two) and
the backpropagation using AlexNet (lower two). The ground-truth boxes are in green and the predicted bounding boxes from the class
activation map are in red.

Zhou et al., “Learning Deep Features for Discriminative Localization”, CVPR 2016



Localization from captions

Region Importance Score

on

standing

bears

Region-Word .
. Similarites  .*
Two large bears standing on a field .. s

‘W

Word Importance Score

Class Activation Map

Ye et al., “Learning to discover and localize visual objects with open vocabulary”, arxiv 2018



Localization from captions

* Learn via triplet loss

L(O) =) [Sim"" (@,t) - Sim" (2.8) + o] ,

* Aggregate similarity, all words and regions

G, @97 (33‘ t) _ Z {S-i'mg (:B)St;ct (t)TQS?:?nind(m: t)]

* Individual word/region similarity

_ G?'.mg ?_ ‘thﬁt f .

Si?nz;’m’.(mi: _[_‘j') _ < (f) f”f( J)>
|G 9(F)|[2|GT(E5) ]2

Ye et al., “Learning to discover and localize visual objects with open vocabulary”, arxiv 2018




Localization from captions

0 306]

0.517) 0 500}
0. 2101

0217 301 (0 172]

0.214]

Ye et al., “Learning to discover and localize visual objects with open vocabulary”, arxiv 2018



Localization from sound

224x224x64

bmz-uza
g A I

224x224x3

14x14x512 14x14x1024

Image network

14x14x128

Inp‘ut image

A
red
w‘lo s8¢ 3024:140 1024!_128 lgx?!xﬁ E E
g
512256 512x512 m "l l' | I
256x512 256x512 Aw | l“ '*

= | 128512 128x1024
i_' : el | — Image-Speech Affinity Tensor

(“Matchmap”)

!

Speech network i s
Compute similarities:
S MISA, SIMA, SISA

Input audio

Harwath et al., “Jointly Discovering Visual Objects and Spoken Words from Raw Sensory Input”, ECCV 2018



Localization from sound

Fig. 4: Speech-prompted localization maps for several word/object pairs. From top to
bottom and from left to right, the queries are instances of the spoken words “WOMAN.”
“BRIDGE,”, “SKYLINE", “TRAIN”, “CLOTHES” and “VEHICLES” extracted from

each image’s accompanying speech caption.

Harwath et al., “Jointly Discovering Visual Objects and Spoken Words from Raw Sensory Input”, ECCV 2018



Localization from sound

Standing in front of a With a red roof

lighthouse dress

”*. w. Train tracks run Into a mountain Many trees on the Of the track
E sides

Fig. 7: On the left are shown two images and their speech signals. Each color corre-
sponds to one connected component derived from two matchmaps from a fully random
MISA network. The masks on the right display the segments that correspond to each
speech segment. We show the caption words obtained from the ASR transcriptions be-
low the masks. Note that those words were never used for learning, only for analysis.

Harwath et al., “Jointly Discovering Visual Objects and Spoken Words from Raw Sensory Input”, ECCV 2018



Detection from documentaries

X8

She needs to be good. Her cubs Most:animals fea.rsloth veRrsas. ut langurs are the friends of spotted
have already got huge appetites 008 dARarently wilRsgs. ot |edss deer.
Ve g=.app not in this food around. ;
l keywords l tracklets
classifier
elephant
screen 1
bear samples update |.©
c2
langur
pool
. The cubs also
tiger == like a coolingdip  (mmmm | cn
boar merge tracklets g1 classify
and categories tracklets and
deer ground
keywords

1. Bootstrap 2. Joint Analysis

Chen et al., “Discover and Learn New Objects from Documentaries”, CVPR 2017



What if test data very diff from train?

* Adapt detection models



Adapting detectors

Figure 1. Illustration of different datasets for autonomous driv-
ing: From top to bottom-right, example images are taken from:
KITTI[TT]), Cityscapesfdl, Foggy Cityscapes(d9], SIMI0K[30).
Though all datasets cover urban scenes, images in those dataset
vary in style, resolution, illumination, object size, etc. The visual
difference between those datasets presents a challenge for apply-
ing an object detection model learned from one domain to another
domain.

Chen et al., “Domain Adaptive Faster R-CNN for Object Detection in the Wild”, CVPR 2018



Adapting detectors

bhornding box
(8)

input image

instance- Ie\ el I

repr exentation
(B, I)

é [j]

cls. reg. consistency

regularization

Y

ROI Pooling

image-level
representation
)
(a) Faster R-CNN (b) Domain adaptation components

Figure 2. An overview of our Domain Adaptive Faster R-CNN model: we tackle the domain shift on two levels, the image level and the
instance level. A domain classifier is built on each level, trained in an adversarial training manner. A consistency regularizer is incorporated
within these two classifiers to lcarn a domain-invariant RPN for the Faster R-CNN model.

Chen et al., “Domain Adaptive Faster R-CNN for Object Detection in the Wild”, CVPR 2018



Adapting detectors

img ins cons | car AP

Faster R-CNN 30.12
v 33.03

Ours v 35.79

v oo 37.86

v oV v 38.97

Table 1. The average precision (AP) of Car on the Cityscapes val-
idation set. The models are trained using the SIM 10k dataset as
the source domain and the Cityscapes training set as the target do-
main. img is short for image-level alignment, ins for instance-level
alignment and cons 15 short for our consistency loss

[ICorrect [ ]Mislocalization [_|Background

2 (7

Misioc:
38.29

(a) Faster RCNN (b) Ours (Ins. Only) (c) Ours (Img Only)

Figure 3. Error Analysis of Top Ranked Detections

Chen et al., “Domain Adaptive Faster R-CNN for Object Detection in the Wild”, CVPR 2018



Adapting classifiers

p— Source Modalities
Regular Images Transformed Images

\

STYLE
TRANSFORMER
NETWORK \

b el v g

Train classifier using
both source modalities

“horse”

Train
i Modalities Regularimages  Both source modalities

Thomas and Kovashka, “Artistic Object Recognition by Unsupervised Style Adaptation”, ACCV 2018

(b) Overview of our method

o+0

Target

Modality B cartoons

Transformed Images



Adapting classifiers

=F]
L]

=i}
|
o

"

Data Transformer

(Segmentation or Style
Transfer)

MSCOCO-Crops . Style-invariant network features
Image Database /
(Randomly Sample)

Invariancy
Loss

— Gradient
Reverser

Fig. 2. Training with multiple modalities and style-invariance constraint. We train
networks on real and synthetic data. We show an example of style transfer transforming
photos into labeled synthetic cartoons. The style-invariance loss trains the FC2 layer
to predict which modality the image came from. During backpropagation, we reverse
its gradient before propagating it to the layers used by both classifiers. This encourages
those layers to learn style-invariant features.

Thomas and Kovashka, “Artistic Object Recognition by Unsupervised Style Adaptation”, ACCV 2018



What’s next?



