
CS 2770: Computer Vision

Classification and Tools
(CNN, SVM)

Prof. Adriana Kovashka
University of Pittsburgh

February 7, 2019

Plan for this lecture

• What is classification?

• Support vector machines

– Separable case / non-separable case

– Linear / non-linear (kernels)

– The importance of generalization

• Convolutional neural networks

• Given a feature representation for images, how

do we learn a model for distinguishing features

from different classes?

Zebra

Non-zebra

Decision

boundary

Slide credit: L. Lazebnik

Classification

Classification
• Assign input vector to one of two or more classes

• Input space divided into decision regions

separated by decision boundaries

Slide credit: L. Lazebnik

Examples of image classification

• Two-class (binary): Cat vs Dog

Adapted from D. Hoiem

Examples of image classification

• Multi-class (often): Object recognition

Caltech 101 Average Object Images
Adapted from D. Hoiem

Examples of image classification

• Place recognition

Places Database [Zhou et al. NIPS 2014]
Slide credit: D. Hoiem

http://places.csail.mit.edu/places_NIPS14.pdf

Examples of image classification

• Material recognition

[Bell et al. CVPR 2015]
Slide credit: D. Hoiem

http://arxiv.org/pdf/1412.0623.pdf

Examples of image classification

• Image style recognition

[Karayev et al. BMVC 2014] Slide credit: D. Hoiem

http://arxiv.org/pdf/1311.3715.pdf

Recognition: A machine

learning approach

The machine learning

framework

• Apply a prediction function to a feature representation of

the image to get the desired output:

f() = “apple”

f() = “tomato”

f() = “cow”
Slide credit: L. Lazebnik

The machine learning

framework

y = f(x)

• Training: given a training set of labeled examples {(x1,y1),

…, (xN,yN)}, estimate the prediction function f by minimizing

the prediction error on the training set

• Testing: apply f to a never before seen test example x and

output the predicted value y = f(x)

output prediction

function

image / image feature

Slide credit: L. Lazebnik

Prediction

The old-school way

Training

Labels
Training

Images

Training

Training

Image

Features

Image

Features

Testing

Test Image

Learned

model

Learned

model

Slide credit: D. Hoiem and L. Lazebnik

The simplest classifier

f(x) = label of the training example nearest to x

• All we need is a distance function for our inputs

• No training required!

Test

example
Training

examples

from class 1

Training

examples

from class 2

Slide credit: L. Lazebnik

K-Nearest Neighbors classification

k = 5

Slide credit: D. Lowe

• For a new point, find the k closest points from training data

• Labels of the k points “vote” to classify

If query lands here, the 5

NN consist of 3 negatives

and 2 positives, so we

classify it as negative.

Black = negative

Red = positive

Nearest Neighbors according to bag of SIFT + color histogram + a few others

Slide credit: James Hays

im2gps: Estimating Geographic Information from a Single Image
James Hays and Alexei Efros, CVPR 2008

Where was this image taken?

Linear classifier

• Find a linear function to separate the classes

f(x) = sgn(w1x1 + w2x2 + … + wDxD) = sgn(w  x)

Slide credit: L. Lazebnik

• What should the weights be?

x1

x2

(0, 0)

• Decision = sign(wTx) = sign(w1*x1 + w2*x2)

Linear classifier

(1, 0)

w

Lines in R2

0=+ bxw









=

c

a
w 








=

y

x
x

0=++ bcyax

Let

w

()00 , yx

D

w

xw ||

22

00 b

ca

bcyax
D

+
=

+

++
=


distance from

point to line

Kristen Grauman

Linear classifiers

• Find linear function to separate positive and

negative examples

0:negative

0:positive

+

+

b

b

ii

ii

wxx

wxx

Which line

is best?

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

• Discriminative

classifier based on

optimal separating

line (for 2d case)

• Maximize the

margin between the

positive and

negative training

examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)(positive

−+−=

+=

by

by

iii

iii

wxx

wxx

MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

For support, vectors, 1=+ bi wx

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)(positive

−+−=

+=

by

by

iii

iii

wxx

wxx

Support vectors

For support, vectors, 1=+ bi wx

Distance between point

and line: ||||

||

w

wx bi +

www

211
=

−
−=M

For support vectors:

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

Margin ww

xw 1
=

+bΤ

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)(positive

−+−=

+=

by

by

iii

iii

wxx

wxx

MarginSupport vectors

For support, vectors, 1=+ bi wx

Distance between point

and line: ||||

||

w

wx bi +

Therefore, the margin is 2 / ||w||

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

1. Maximize margin 2/||w||

2. Correctly classify all training data points:

Quadratic optimization problem:

Minimize

Subject to yi(w·xi+b) ≥ 1

ww
T

2

1

1:1)(negative

1:1)(positive

−+−=

+=

by

by

iii

iii

wxx

wxx

One constraint for each

training point.

Note sign trick.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

• Solution: = i iii y xw 

Support

vector

Learned

weight

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

• Solution:

b = yi – w·xi (for any support vector)

• Classification function:

• Notice that it relies on an inner product between the test

point x and the support vectors xi

• (Solving the optimization problem also involves

computing the inner products xi · xj between all pairs of

training points)

= i iii y xw 

()by

xf

ii +=

+=

 xx

xw

i isign

b)(sign)(



If f(x) < 0, classify as negative, otherwise classify as positive.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Inner product

Adapted from Milos Hauskrecht

()by

xf

ii +=

+=

 xx

xw

i isign

b)(sign)(



• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Andrew Moore

Nonlinear SVMs

Φ: x→ φ(x)

• General idea: the original input space can

always be mapped to some higher-dimensional

feature space where the training set is

separable:

Andrew Moore

Nonlinear SVMs

Nonlinear kernel: Example

• Consider the mapping),()(2xxx =

22

2222

),(

),(),()()(

yxxyyxK

yxxyyyxxyx

+=

+==

x2

Svetlana Lazebnik

• The linear classifier relies on dot product between

vectors K(xi,xj) = xi · xj

• If every data point is mapped into high-dimensional

space via some transformation Φ: xi → φ(xi), the dot

product becomes: K(xi,xj) = φ(xi) · φ(xj)

• A kernel function is similarity function that

corresponds to an inner product in some expanded

feature space

• The kernel trick: instead of explicitly computing the

lifting transformation φ(x), define a kernel function K

such that: K(xi,xj) = φ(xi) · φ(xj)

Andrew Moore

The “Kernel Trick”

Examples of kernel functions

◼ Linear:

◼ Polynomials of degree up to d:

◼ Gaussian RBF:

◼ Histogram intersection:

)
2

exp()(
2

2



ji

ji

xx
,xxK

−
−=

=
k

jiji kxkxxxK))(),(min(),(

j

T

iji xxxxK =),(

Andrew Moore / Carlos Guestrin

𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗 + 1)𝑑

Hard-margin SVMs

Maximize margin

The w that minimizes…

Maximize margin Minimize misclassification

Slack variable

The w that minimizes…

Misclassification
cost

data samples

Soft-margin SVMs

What about multi-class SVMs?

• Unfortunately, there is no “definitive” multi-
class SVM formulation

• In practice, we have to obtain a multi-class
SVM by combining multiple two-class SVMs

• One vs. others
• Training: learn an SVM for each class vs. the others

• Testing: apply each SVM to the test example, and assign it
to the class of the SVM that returns the highest decision
value

• One vs. one
• Training: learn an SVM for each pair of classes

• Testing: each learned SVM “votes” for a class to assign to
the test example

Svetlana Lazebnik

Multi-class problems

One-vs-all (a.k.a. one-vs-others)
• Train K classifiers

• In each, pos = data from class i, neg = data from classes other

than i

• The class with the most confident prediction wins

• Example:

– You have 4 classes, train 4 classifiers

– 1 vs others: score 3.5

– 2 vs others: score 6.2

– 3 vs others: score 1.4

– 4 vs other: score 5.5

– Final prediction: class 2

Multi-class problems

One-vs-one (a.k.a. all-vs-all)
• Train K(K-1)/2 binary classifiers (all pairs of classes)

• They all vote for the label

• Example:

– You have 4 classes, then train 6 classifiers

– 1 vs 2, 1 vs 3, 1 vs 4, 2 vs 3, 2 vs 4, 3 vs 4

– Votes: 1, 1, 4, 2, 4, 4

– Final prediction is class 4

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002

Moghaddam and Yang, Face & Gesture 2000

Kristen Grauman

Example: Learning gender w/ SVMs

Kristen Grauman

Support faces

Example: Learning gender w/ SVMs

Some SVM packages

• LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/

• LIBLINEAR

https://www.csie.ntu.edu.tw/~cjlin/liblinear/

• SVM Light http://svmlight.joachims.org/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://svmlight.joachims.org/

Linear classifiers vs nearest neighbors

• Linear pros:

+ Low-dimensional parametric representation

+ Very fast at test time

• Linear cons:

– Can be tricky to select best kernel function for a problem

– Learning can take a very long time for large-scale problem

• NN pros:

+ Works for any number of classes

+ Decision boundaries not necessarily linear

+ Nonparametric method

+ Simple to implement

• NN cons:

– Slow at test time (large search problem to find neighbors)

– Storage of data

– Especially need good distance function (but true for all classifiers)

Adapted from L. Lazebnik

• What do we want?
– High accuracy on training data?
– No, high accuracy on unseen/new/test data!
– Why is this tricky?

• Training data
– Features (x) and labels (y) used to learn mapping f

• Test data
– Features (x) used to make a prediction
– Labels (y) only used to see how well we’ve learned f!!!

• Validation data
– Held-out set of the training data
– Can use both features (x) and labels (y) to tune parameters of

the model we’re learning

Training vs Testing

Generalization

• How well does a learned model generalize from

the data it was trained on to a new test set?

Training set (labels known) Test set (labels

unknown)

Slide credit: L. Lazebnik

• Underfitting: Models with too

few parameters are

inaccurate because of a large

bias (not enough flexibility).

• Overfitting: Models with too

many parameters are

inaccurate because of a large

variance (too much sensitivity

to the sample).

Adapted from D. Hoiem

Red dots = training data (all that we see before we ship off our model!)

Green curve = true underlying model Blue curve = our predicted model/fit

Purple dots = possible test points

Generalization

• Components of generalization error

– Noise in our observations: unavoidable

– Bias: how much the average model over all training sets differs

from the true model

• Inaccurate assumptions/simplifications made by the model

– Variance: how much models estimated from different training

sets differ from each other

• Underfitting: model is too “simple” to represent all the

relevant class characteristics

– High bias and low variance

– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant

characteristics (noise) in the data

– Low bias and high variance

– Low training error and high test error

Slide credit: L. Lazebnik

Generalization

Polynomial Curve Fitting

Slide credit: Chris Bishop

Sum-of-Squares Error Function

Slide credit: Chris Bishop

0th Order Polynomial

Slide credit: Chris Bishop

1st Order Polynomial

Slide credit: Chris Bishop

3rd Order Polynomial

Slide credit: Chris Bishop

9th Order Polynomial

Slide credit: Chris Bishop

Over-fitting

Root-Mean-Square (RMS) Error:

Slide credit: Chris Bishop

Data Set Size:

9th Order Polynomial

Slide credit: Chris Bishop

Data Set Size:

9th Order Polynomial

Slide credit: Chris Bishop

Regularization

Penalize large coefficient values

(Remember: We want to minimize this expression.)

Adapted from Chris Bishop

Regularization:

Slide credit: Chris Bishop

Regularization:

Slide credit: Chris Bishop

Polynomial Coefficients

Slide credit: Chris Bishop

Polynomial Coefficients

Adapted from Chris Bishop

No regularization Huge regularization

Regularization: vs.

Slide credit: Chris Bishop

Training vs test error

Training error

Test error

Underfitting Overfitting

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem

The effect of training set size

Many training examples

Few training examples

Complexity Low Bias

High Variance

High Bias

Low Variance

T
e
s
t
E

rr
o
r

Slide credit: D. Hoiem

Choosing the trade-off between

bias and variance

• Need validation set (separate from the test set)

Training error

Validation error

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem

Summary of generalization

• Try simple classifiers first

• Better to have smart features and simple

classifiers than simple features and smart

classifiers

• Use increasingly powerful classifiers with more

training data

• As an additional technique for reducing variance,

try regularizing the parameters

Slide credit: D. Hoiem

Plan for the rest of the lecture

Neural network basics
• Definition

• Loss functions

• Optimization w/ gradient descent and backpropagation

Convolutional neural networks (CNNs)
• Special operations

• Common architectures

Practical matters
• Getting started: Preprocessing, initialization, optimization,

normalization

• Improving performance: regularization, augmentation, transfer

• Hardware and software

Understanding CNNs
• Visualization

• Breaking CNNs

Neural network basics

ImageNet Challenge 2012

Validation classification

Validation classification

Validation classification

[Deng et al. CVPR 2009]

• ~14 million labeled images, 20k

classes

• Images gathered from Internet

• Human labels via Amazon Turk

• Challenge: 1.2 million training images,

1000 classes

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep

Convolutional Neural Networks, NIPS 2012
Lana Lazebnik

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

ImageNet Challenge 2012

• AlexNet: Similar framework to LeCun’98 but:
• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)

• More data (106 vs. 103 images)

• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

• Better regularization for training (DropOut)

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep

Convolutional Neural Networks, NIPS 2012
Adapted from Lana Lazebnik

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

ImageNet Challenge 2012

Krizhevsky et al. -- 16.4% error (top-5)

Next best (non-convnet) – 26.2% error

0

5

10

15

20

25

30

35

SuperVision ISI Oxford INRIA Amsterdam

T
o

p
-5

 e
rr

o
r

ra
te

 %

Lana Lazebnik

What are CNNs?

• Convolutional neural networks are a type of

neural network with layers that perform

special operations

• Used in vision but also in NLP, biomedical etc.

• Often they are deep

Figure from http://neuralnetworksanddeeplearning.com/chap5.html

Traditional Recognition Approach

Hand-designed

feature extraction

(e.g. SIFT, HOG)

Trainable

classifier

Image/ Video

Pixels

• Features are key to recent progress in recognition,

but research shows they’re flawed…

• Where next?

Object

Class

Adapted from Lana Lazebnik

What about learning the features?

• Learn a feature hierarchy all the way from pixels to

classifier

• Each layer extracts features from the output of

previous layer

• Train all layers jointly

Layer 1 Layer 2 Layer 3 Object

Class

Image/

Video

Pixels

Lana Lazebnik

“Shallow” vs. “deep” architectures

Hand-designed

feature extraction

Trainable

classifier

Image/

Video

Pixels

Object

Class

Layer 1 Layer N
Simple

classifier
Object

Class

Image/

Video

Pixels

Traditional recognition: “Shallow” architecture

Deep learning: “Deep” architecture

…

Lana Lazebnik

Neural network definition

• Activations:

• Nonlinear activation function h (e.g. sigmoid,

RELU):
Figure from Christopher Bishop

Recall SVM:

wTx + b

• Layer 2

• Layer 3 (final)

• Outputs (e.g. sigmoid/softmax)

• Finally:

Neural network definition

(binary)

(multiclass)

(binary)

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Activation functions

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Inspiration: Neuron cells

• Neurons

• accept information from multiple inputs,

• transmit information to other neurons.

• Multiply inputs by weights along edges

• Apply some function to the set of inputs at each node

• If output of function over threshold, neuron “fires”

Text: HKUST, figures: Andrej Karpathy

Deep neural networks

• Lots of hidden layers

• Depth = power (usually)

Figure from http://neuralnetworksanddeeplearning.com/chap5.html

W
e

ig
h

ts
 t

o
 l
e
a

rn
!

W
e

ig
h

ts
 t

o
 l
e

a
rn

!

W
e

ig
h

ts
 t

o
 l
e
a

rn
!

W
e

ig
h

ts
 t

o
 l
e
a

rn
!

How do we train them?

• The goal is to iteratively find such a set of

weights that allow the activations/outputs to

match the desired output

• We want to minimize a loss function

• The loss function is a function of the weights

in the network

• For now let’s simplify and assume there’s a

single layer of weights in the network

Classification goal

Example dataset: CIFAR-10

10 labels

50,000 training images

each image is 32x32x3

10,000 test images.

Andrej Karpathy

Classification scores

[32x32x3]

array of numbers 0...1

(3072 numbers total)

f(x,W)

image parameters

10 numbers,

indicating class

scores

Andrej Karpathy

Linear classifier

[32x32x3]

array of numbers 0...1

10 numbers,

indicating class

scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1

Andrej Karpathy

Linear classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Andrej Karpathy

Linear classifier

Going forward: Loss function/Optimization

1. Define a loss function

that quantifies our

unhappiness with the

scores across the training

data.

2. Come up with a way of

efficiently finding the

parameters that minimize

the loss function.

(optimization)

TODO:

Andrej Karpathy

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Linear classifier

Suppose: 3 training examples, 3 classes.

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

Adapted from Andrej Karpathy

Want: syi
>= sj + 1

i.e. sj – syi
+ 1 <= 0

If true, loss is 0

If false, loss is magnitude of violation

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 5.1 - 3.2 + 1)

+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

cat

car

frog

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1

Losses: 2.9

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

cat 3.2

car 5.1

frog -1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)

= max(0, 5.3 + 1)

+ max(0, 5.6 + 1)

= 6.3 + 6.6

= 12.9

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0 12.9

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

and the full training loss is the mean

over all examples in the training data:

L = (2.9 + 0 + 12.9)/3
2.9 0 12.9Losses: = 15.8 / 3 = 5.3

Lecture 3 - 12

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

Weight Regularization
λ = regularization strength

(hyperparameter)

In common use:

L2 regularization

L1 regularization

Dropout (will see later)

Adapted from Andrej Karpathy

Want to maximize the log likelihood, or (for a loss function)

to minimize the negative log likelihood of the correct class:cat

car

frog

3.2

5.1

-1.7

scores = unnormalized log probabilities of the classes.

where

Another loss: Softmax (cross-entropy)

Andrej Karpathy

cat

car

frog

unnormalized log probabilities

24.5

164.0

0.18

3.2

5.1

-1.7

exp normalize

unnormalized probabilities

0.13

0.87

0.00

probabilities

L_i = -log(0.13)

= 0.89

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy

Other losses

• Triplet loss (Schroff, FaceNet)

• Anything you want!

a denotes anchor

p denotes positive

n denotes negative

How to minimize the loss function?

Andrej Karpathy

How to minimize the loss function?

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives).

Andrej Karpathy

gradient dW:

[-2.5,

0.6,

0,

0.2,

0.7,

-0.5,

1.1,

1.3,

-2.1,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

dW = ...

(some function

data and W)

Andrej Karpathy

Loss gradients

• Denoted as (diff notations):

• i.e. how does the loss change as a function

of the weights

• We want to change the weights in such a

way that makes the loss decrease as fast as

possible

Gradient descent

• We’ll update weights

• Move in direction opposite to gradient:

L

Learning rate
Time

Figure from Andrej Karpathy

original W

negative gradient direction
W_1

W_2

Gradient descent

• Iteratively subtract the gradient with respect

to the model parameters (w)

• I.e. we’re moving in a direction opposite to

the gradient of the loss

• I.e. we’re moving towards smaller loss

Mini-batch gradient descent

• In classic gradient descent, we compute the

gradient from the loss for all training

examples

• Could also only use some of the data for

each gradient update

• We cycle through all the training examples

multiple times

• Each time we’ve cycled through all of them

once is called an ‘epoch’

• Allows faster training (e.g. on GPUs),

parallelization

Andrej Karpathy

Learning rate selection

The effects of step size (or “learning rate”)

Gradient descent in multi-layer nets

• We’ll update weights

• Move in direction opposite to gradient:

• How to update the weights at all layers?

• Answer: backpropagation of error from

higher layers to lower layers

Backpropagation: Graphic example

First calculate error of output units and use this

to change the top layer of weights.

output

hidden

input

Update weights into j

Adapted from Ray Mooney, equations from Chris Bishop

k

j

i

w(2)

w(1)

Backpropagation: Graphic example

Next calculate error for hidden units based on

errors on the output units it feeds into.

output

hidden

input

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop

Backpropagation: Graphic example

Finally update bottom layer of weights based on

errors calculated for hidden units.

output

hidden

input

Update weights into i

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop

Computing gradient for each weight

• We need to move weights in direction

opposite to gradient of loss wrt that weight:

wji = wji – η dE/dwji

wkj = wkj – η dE/dwkj

• Loss depends on weights in an indirect way,

so we’ll use the chain rule and compute:

dE/dwji = dE/dzj dzj/daj daj/dwji

(and similarly for dE/dwkj)

• The error (dE/dzj) is hard to compute

(indirect, need chain rule again)

• We’ll simplify the computation by doing it

step by step via backpropagation of error

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f

activations

Lecture 4 - 22

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

Lecture 4 - 23

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

“local gradient”

f

gradients

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 24

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 25

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 26

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Example: algorithm for sigmoid, sqerror

• Initialize all weights to small random values

• Until convergence (e.g. all training examples’ error

small, or error stops decreasing) repeat:

• For each (x, t=class(x)) in training set:

– Calculate network outputs: yk

– Compute errors (gradients wrt activations) for each unit:

» δk = yk (1-yk) (yk - tk) for output units

» δj = zj (1-zj) ∑k wkj δk for hidden units

– Update weights:

» wkj = wkj - η δk zj for output units

» wji = wji - η δj xi for hidden units

Adapted from R. Hwa, R. Mooney

Recall: wji = wji – η dE/dzj dzj/daj daj/dwji

Over-training prevention

• Running too many epochs can result in over-fitting.

• Keep a hold-out validation set and test accuracy on it
after every epoch. Stop training when additional
epochs actually increase validation error.

0 # training epochs

e
rr

o
r

on training data

on test data

Adapted from Ray Mooney

Comments on training algorithm

• Not guaranteed to converge to zero training error, may

converge to local optima or oscillate indefinitely.

• However, in practice, does converge to low error for

many large networks on real data, with good choice of

hyperparameters (e.g. learning rate).

• Thousands of epochs (epoch = network sees all training

data once) may be required, hours or days to train.

• To avoid local-minima problems, run several trials

starting with different random weights (random restarts),

and take results of trial with lowest training set error.

• May be hard to set learning rate and to select number of

hidden units and layers.

• Neural networks had fallen out of fashion in 90s, early

2000s; back with a new name and improved performance

(deep networks trained with dropout and lots of data).

Ray Mooney, Carlos Guestrin, Dhruv Batra

Plan for the rest of the lecture

Neural network basics
• Definition

• Loss functions

• Optimization w/ gradient descent and backpropagation

Convolutional neural networks (CNNs)
• Special operations

• Common architectures

Practical matters
• Getting started: Preprocessing, initialization, optimization,

normalization

• Improving performance: regularization, augmentation, transfer

• Hardware and software

Understanding CNNs
• Visualization

• Breaking CNNs

Convolutional neural networks

Convolutional Neural Networks (CNN)

• Neural network with specialized

connectivity structure

• Stack multiple stages of feature

extractors

• Higher stages compute more global,

more invariant, more abstract features

• Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document

recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.
Adapted from Rob Fergus

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

• Feed-forward feature extraction:

1. Convolve input with learned filters

2. Apply non-linearity

3. Spatial pooling (downsample)

• Recent architectures have additional

operations (to be discussed)

• Trained with some loss, backprop

Adapted from Lana Lazebnik

Convolutional Neural Networks (CNN)

Input Image

Convolution

(Learned)

Non-linearity

Spatial pooling

Output (class probs)

…

1. Convolution

• Apply learned filter weights

• One feature map per filter

• Stride can be greater than

1 (faster, less memory)

Input Feature Map

.

.

.

Adapted from Rob Fergus

2. Non-Linearity

• Per-element (independent)

• Some options:
• Tanh

• Sigmoid: 1/(1+exp(-x))

• Rectified linear unit (ReLU)

– Avoids saturation issues

Adapted from Rob Fergus

3. Spatial Pooling

• Sum or max over non-overlapping /
overlapping regions

Rob Fergus, figure from Andrej Karpathy

3. Spatial Pooling

• Sum or max over non-overlapping /
overlapping regions

• Role of pooling:
• Invariance to small transformations

• Larger receptive fields (neurons see more of input)

Max

Sum

Adapted from Rob Fergus

32

3

32x32x3 image

width

height

32

depth

Convolutions: More detail

Andrej Karpathy

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

Convolutions: More detail

Andrej Karpathy

32

32

3

Convolution Layer

32x32x3 image

5x5x3 filter

1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutions: More detail

Andrej Karpathy

32

32

3

Convolution Layer
activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all

spatial locations

Convolutions: More detail

Andrej Karpathy

32

32

3

Convolution Layer

32x32x3 image

5x5x3 filter

activation maps

1

28

28

convolve (slide) over all

spatial locations

consider a second, green filter

Convolutions: More detail

Andrej Karpathy

32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Convolutions: More detail

Andrej Karpathy

Preview: ConvNet is a sequence of Convolution Layers, interspersed with

activation functions

32

32

3

28

28

6

CONV,

ReLU

e.g. 6

5x5x3

filters

Convolutions: More detail

Andrej Karpathy

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with

activation functions

32

32

3

CONV,

ReLU

e.g. 6

5x5x3

filters 28

28

6

CONV,

ReLU

e.g. 10

5x5x6

filters

CONV,

ReLU

….

10

24

24

Convolutions: More detail

Andrej Karpathy

Preview
[From recent Yann

LeCun slides]

Convolutions: More detail

Andrej Karpathy

example 5x5 filters
(32 total)

We call the layer convolutional

because it is related to convolution

of two signals:

Element-wise multiplication and sum

of a filter and the signal (image)

one filter =>

one activation map

Convolutions: More detail

Adapted from Andrej Karpathy, Kristen Grauman

A closer look at spatial dimensions:

32

32

3

activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all

spatial locations

Convolutions: More detail

Andrej Karpathy

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

=> 5x5 output

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

=> 3x3 output!

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7x7 input (spatially)

assume 3x3 filter

applied with stride 3?

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7x7 input (spatially)

assume 3x3 filter

applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!

cannot apply 3x3 filter on

7x7 input with stride 3.

Convolutions: More detail

Andrej Karpathy

N

F

F

N

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride 1 => (7 - 3)/1 + 1 = 5

stride 2 => (7 - 3)/2 + 1 = 3

stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Convolutions: More detail

Andrej Karpathy

In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1

Convolutions: More detail

Andrej Karpathy

In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy

In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy

(N + 2*padding - F) / stride + 1

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size: ?

Convolutions: More detail

Andrej Karpathy

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Convolutions: More detail

Andrej Karpathy

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Convolutions: More detail

Andrej Karpathy

Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params

=> 76*10 = 760

Convolutions: More detail

Andrej Karpathy

Putting it all together

Andrej Karpathy

Case Study: AlexNet
[Krizhevsky et al. 2012]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

FC7

FC8

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Lecture 9 - 1
5
6

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = 35K

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

Details/Retrospectives:

-first use of ReLU

-used Norm layers (not common anymore)

-heavy data augmentation

-dropout 0.5

-batch size 128

-SGD Momentum 0.9

-Learning rate 1e-2, reduced by 10

manually when val accuracy plateaus

-L2 weight decay 5e-4

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Small filters, Deeper networks

8 layers (AlexNet)

-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1

and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13

(ZFNet)

-> 7.3% top 5 error in ILSVRC’14
AlexNet VGG16 VGG19

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Q: Why use smaller filters? (3x3 conv)

AlexNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers

has same effective receptive field as

one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs.

72C2 for C channels per layer

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

INPUT: [224x224x3] memory: 224*224*3=150K params: 0

VGG16

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass)

TOTAL params: 138M parameters

Case Study: VGGNet

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational

efficiency

- 22 layers

- Efficient “Inception” module

- No FC layers

- Only 5 million parameters!

12x less than AlexNet
- ILSVRC’14 classification winner

(6.7% top 5 error)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: GoogLeNet
[Szegedy et al., 2014]

“Inception module”: design a

good local network topology

(network within a network) and

then stack these modules on

top of each other

Inception module

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on

the input from previous layer:

- Multiple receptive field sizes

for convolution (1x1, 3x3,

5x5)

- Pooling operation (3x3)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Concatenate all filter outputs

together depth-wise

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?

[Hint: Computational complexity]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Example:

Module input:

28x28x256

Q3:What is output size after

filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672

Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256

[3x3 conv, 192] 28x28x192x3x3x256

[5x5 conv, 96] 28x28x96x5x5x256

Total: 854M ops

Very expensive compute

Pooling layer also preserves feature

depth, which means total depth after

concatenation can only grow at every

layer!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: GoogLeNet
[Szegedy et al., 2014]

Q: What is the problem with this?

[Hint: Computational complexity]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Example:

Module input:

28x28x256

Naive Inception module

Q3:What is output size after

filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 529k Solution: “bottleneck” layers that

use 1x1 convolutions to reduce

feature depth

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Reminder: 1x1 convolutions

64

56

56
1x1 CONV

with 32 filters

32

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

56

56

(each filter has size

1x1x64, and performs a

64-dimensional dot

product)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Reminder: 1x1 convolutions

64

56

56
1x1 CONV

with 32 filters

32

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

56

56

preserves spatial

dimensions, reduces depth!

Projects depth to lower

dimension (combination of

feature maps)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Inception module with dimension reduction

Case Study: GoogLeNet

[Szegedy et al.,

2014]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Naive Inception module

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Inception module with dimension reduction

Case Study: GoogLeNet
[Szegedy et al., 2014]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Naive Inception module

1x1 conv “bottleneck”

layers

Total: 358M opsTotal: 854M ops

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet

architecture

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“Revolution of Depth”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: ResNet
[He et al., 2016]

Very deep networks using residual

connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner

(3.57% top 5 error)

- Swept all classification and

detection competitions in

ILSVRC’15 and COCO’15!

..

.

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

What happens when we continue stacking deeper layers on a “plain” convolutional

neural network?

Q: What’s strange about these training and test curves?

[Hint: look at the order of the curves]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: ResNet
[He et al., 2016]

What happens when we continue stacking deeper layers on a “plain” convolutional

neural network?

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it’s not caused by overfitting!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Hypothesis: the problem is an optimization problem, deeper models are harder to

optimize

The deeper model should be able to perform at

least as well as the shallower model.

A solution by construction is copying the learned

layers from the shallower model and setting

additional layers to identity mapping.

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

relu

Case Study: ResNet
[He et al., 2016]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a

desired underlying mapping

X

identity

F(x) + x

F(x)

relu

relu

X
Residual block

X
“Plain” layers

H(x)

Use layers to

fit residual

F(x) = H(x) - x

instead of

H(x) directly

H(x) = F(x) + x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

..

.

Case Study: ResNet
[He et al., 2016]

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:

- Stack residual blocks
- Every residual block has

two 3x3 conv layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

Comparing complexity...

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Improving ResNets...

- Argues that residuals are the

important factor, not depth

- User wider residual blocks (F x k

filters instead of F filters in each layer)

- 50-layer wide ResNet outperforms

152-layer original ResNet

- Increasing width instead of depth

more computationally efficient

(parallelizable)

Wide Residual Networks
[Zagoruyko et al. 2016]

Basic residual block Wide residual block

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Improving ResNets...

Aggregated Residual Transformations for Deep

Neural Networks (ResNeXt)
[Xie et al. 2016]

- Also from creators of

ResNet

- Increases width of

residual block through

multiple parallel

pathways

(“cardinality”)

- Parallel pathways

similar in spirit to

Inception module

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Huang et al. 2016]

- Motivation: reduce vanishing gradients and

training time through short networks during

training

- Randomly drop a subset of layers during each

training pass

- Bypass with identity function

- Use full deep network at test time

Improving ResNets...

Deep Networks with Stochastic Depth

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
Network ensembling

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Lecture 9 - 96

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
Adaptive feature map reweighting

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Lecture 9 - 98

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Improving ResNets...

Squeeze-and-Excitation Networks (SENet)
[Hu et al. 2017]

- Add a “feature recalibration” module that

learns to adaptively reweight feature maps

- Global information (global avg. pooling

layer) + 2 FC layers used to determine

feature map weights

- ILSVRC’17 classification winner (using

ResNeXt-152 as a base architecture)

Lecture 9 - 99

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Beyond ResNets...

Densely Connected Convolutional Networks
[Huang et al. 2017]

- Dense blocks where each layer is

connected to every other layer in

feedforward fashion

- Alleviates vanishing gradient,

strengthens feature propagation,

encourages feature reuse

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Lecture 9 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Efficient networks...

SqueezeNet: AlexNet-level Accuracy With 50x Fewer

Parameters and <0.5Mb Model Size
[Iandola et al. 2017]

- Fire modules consisting of a

‘squeeze’ layer with 1x1 filters

feeding an ‘expand’ layer with 1x1

and 3x3 filters

- AlexNet level accuracy on

ImageNet with 50x fewer

parameters

- Can compress to 510x smaller

than AlexNet (0.5Mb)
Figure copyright Iandola, Han, Moskewicz, Ashraf, Dally, Keutzer, 2017. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Lecture 9 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Meta-learning: Learning to learn network architectures...

Neural Architecture Search with Reinforcement Learning (NAS)
[Zoph et al. 2016]

- “Controller” network that learns to design a good

network architecture (output a string

corresponding to network design)

- Iterate:

1) Sample an architecture from search space
2) Train the architecture to get a “reward” R

corresponding to accuracy

3) Compute gradient of sample probability, and

scale by R to perform controller parameter

update (i.e. increase likelihood of good

architecture being sampled, decrease

likelihood of bad architecture)

Lecture 9 -
10

3

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Summary: CNN Architectures

Lecture 9 -
10

5

Case Studies
- AlexNet

- VGG

- GoogLeNet

- ResNet

Also....
- Wide ResNet

- ResNeXT

- DenseNet

- Squeeze-and-Excitation Network

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Summary: CNN Architectures

Lecture 9 - 106

- VGG, GoogLeNet, ResNet all in wide use, available in model zoos

- ResNet current best default, also consider SENet when available

- Trend towards extremely deep networks

- Significant research centers around design of layer / skip

connections and improving gradient flow

- Efforts to investigate necessity of depth vs. width and residual

connections

- Even more recent trend towards meta-learning

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Practical matters

Plan for the rest of the lecture

Neural network basics
• Definition

• Loss functions

• Optimization w/ gradient descent and backpropagation

Convolutional neural networks (CNNs)
• Special operations

• Common architectures

Practical matters
• Getting started: Preprocessing, initialization, optimization,

normalization

• Improving performance: regularization, augmentation, transfer

• Hardware and software

Understanding CNNs
• Visualization

• Breaking CNNs

(Assume X [NxD] is data matrix,

each example in a row)
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 -

196

April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Preprocessing the Data

In practice, you may also see PCA and Whitening of the data

(data has diagonal

covariance matrix)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018Lecture 6 - 39

April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung
(covariance matrix is the

identity matrix)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Preprocessing the Data

Weight Initialization

• Q: what happens when W=constant init is used?

April 19, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

- Another idea: Small random numbers

(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with

deeper networks.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 -

199

April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Weight Initialization

“Xavier initialization”

[Glorot et al., 2010]

Reasonable initialization.

(Mathematical derivation

assumes linear activations)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 -

200

April 19, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make

each dimension zero-mean unit-variance, apply:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Batch Normalization

Lecture 6 -

201

April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

N

D

1. compute the empirical mean and

variance independently for each

dimension.

2. Normalize

“you want zero-mean unit-variance activations? just make them so.”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

April 19, 2018

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]

And then allow the network to squash

the range if it wants to:

Note, the network can learn:

to recover the identity

mapping.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Normalize:

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]

- Improves gradient flow through

the network

- Allows higher learning rates
- Reduces the strong dependence

on initialization

- Acts as a form of regularization

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 -

204

April 19, 2018

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]

[Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer

functions differently:

The mean/std are not computed

based on the batch. Instead, a single

fixed empirical mean of activations

during training is used.

(e.g. can be estimated during training

with running averages)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 -

205

April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Babysitting the Learning Process

• Preprocess data

• Choose architecture

• Initialize and check initial loss with no regularization

• Increase regularization, loss should increase

• Then train – try small portion of data, check you can

overfit

• Add regularization, and find learning rate that can make

the loss go down

• Check learning rates in range [1e-3 … 1e-5]

• Coarse-to-fine search for hyperparameters (e.g. learning

rate, regularization)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

big gap = overfitting

=> increase regularization strength?

no gap
=> increase model capacity?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

April 19, 2018

Monitor and visualize accuracy

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

W_1

W_2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Lecture 7 -

208

April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

What if loss changes quickly in one direction and slowly in another?

What does gradient descent do?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Loss function has high condition number: ratio of largest to smallest

singular value of the Hessian matrix is large

Optimization:

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

What if loss changes quickly in one direction and slowly in another?

What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Loss function has high condition number: ratio of largest to smallest

singular value of the Hessian matrix is large

Optimization:

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

What if the loss

function has a

local minima or

saddle point?

Zero gradient,

gradient descent

gets stuck

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Lecture 7 -

211

Optimization:

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Our gradients come from

minibatches so they can be noisy!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Optimization:

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

SGD

- Build up “velocity” as a running mean of gradients

- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

SGD + Momentum

Lecture 7 -

213

April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Added element-wise scaling of the gradient based

on the historical sum of squares in each dimension

“Per-parameter learning rates”

or “adaptive learning rates”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

AdaGrad

Lecture 7 -

214

April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Q: What happens with AdaGrad? Progress along “steep” directions is damped;

progress along “flat” directions is accelerated

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

April 24, 2018

AdaGrad

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Q2: What happens to the step size over long time?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

AdaGrad

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

AdaGrad

RMSProp

Tieleman and Hinton, 2012

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Lecture 7 -

217

April 24, 2018

RMSProp

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Lecture 7 -

218

April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR2015

Momentum

Bias correction

AdaGrad / RMSProp

Bias correction for the fact that

first and second moment

estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4

is a great starting point for many models!

Adam

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have

learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay:

e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have

learning rate as a hyperparameter.

Loss
Learning rate decay!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Epoch

Lecture 7 -

220

April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Plan for the rest of the lecture

Neural network basics
• Definition

• Loss functions

• Optimization w/ gradient descent and backpropagation

Convolutional neural networks (CNNs)
• Special operations

• Common architectures

Practical matters
• Getting started: Preprocessing, initialization, optimization,

normalization

• Improving performance: regularization, augmentation, transfer

• Hardware and software

Understanding CNNs
• Visualization

• Breaking CNNs

Load image

and label

“cat”

Compute

loss

CNN

Data Augmentation

April 24, 2018 Lecture 7 - 222

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Data Augmentation

April 24, 2018 Lecture 7 - 223

Load image

and label

“cat”

Compute

loss

CNN

Transform image

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Data Augmentation

Horizontal Flips

Fei-Fei Li & Justin
Johnson & Serena
Yeung

April 24, 2018 Lecture 7 - 224

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Data Augmentation

Fei-Fei Li & Justin
Johnson & Serena
Yeung

April 24, 2018 Lecture 7 - 225

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Data Augmentation

Fei-Fei Li & Justin
Johnson & Serena
Yeung

April 24, 2018 Lecture 7 - 226

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Data Augmentation

Get creative for your problem!

Random mix/combinations of :

- translation

- rotation

- stretching

- shearing,

- lens distortions

- …

April 24, 2018 Lecture 7 - 227

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung; Image: https://github.com/aleju/imgaug

https://github.com/aleju/imgaug

Regularization: Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

• Randomly turn off some neurons

• Allows individual neurons to independently be

responsible for performance

Adapted from Jia-bin Huang

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Transfer Learning

“You need a lot of a data if you want to

train/use CNNs”

Andrej Karpathy

Transfer Learning with CNNs

• The more weights you need to learn, the

more data you need

• That’s why with a deeper network, you need

more data for training than for a shallower

network

• One possible solution:

Set these to the already learned

weights from another network

Learn these on your own task

1. Train on

ImageNet
2. Small dataset:

Freeze these

Train this

3. Medium dataset:

finetuning

more data = retrain more of

the network (or all of it)

Freeze these

Lecture 11 - 29

Train this

Transfer Learning with CNNs

Adapted from Andrej Karpathy

Another option: use network as feature extractor,

train SVM on extracted features for target task

Source: classification on ImageNet Target: classification on Places

Training: Best practices

• Center (subtract mean from) your data

• To initialize weights, use “Xavier

initialization”

• Use RELU or leaky RELU or ELU, don’t use

sigmoid

• Use mini-batch

• Use data augmentation

• Use regularization

• Use batch normalization

• Use cross-validation for your parameters

• Learning rate: too high? Too low?

Plan for the rest of the lecture

Neural network basics
• Definition

• Loss functions

• Optimization w/ gradient descent and backpropagation

Convolutional neural networks (CNNs)
• Special operations

• Common architectures

Practical matters
• Getting started: Preprocessing, initialization, optimization,

normalization

• Improving performance: regularization, augmentation, transfer

• Hardware and software

Understanding CNNs
• Visualization

• Breaking CNNs

Hardware and software

Spot the CPU! (central processing unit)

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Spot the GPUs! (graphics processing unit)

Lecture 8 - April 26, 2018

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

CPU vs GPU

Lecture 8 -April 26, 2018

Fei-Fei Li & Justin Johnson & Serena Yeung

Cores Clock

Speed

Memory Price Speed

CPU

(Intel Core

i7-7700k)

4
(8 threads with

hyperthreading)

4.2 GHz System

RAM

$339 ~540 GFLOPs FP32

GPU

(NVIDIA

GTX 1080 Ti)

3584 1.6 GHz 11 GB

GDDR5

X

$699 ~11.4 TFLOPs FP32

CPU: Fewer cores,

but each core is

much faster and

much more

capable; great at

sequential tasks

GPU: More cores,

but each core is

much slower and

“dumber”; great for

parallel tasks

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

CPU vs GPU in practice

(CPU performance not

well-optimized, a little unfair)

66x 67x 71x 64x 76x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018

Data from https://github.com/jcjohnson/cnn-benchmarks

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

CPU / GPU Communication

Lecture 8 -April 26, 2018

Model

is here
Data is here

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

If you aren’t careful, training can

bottleneck on reading data and

transferring to GPU!

Solutions:

- Read all data into RAM

- Use SSD instead of HDD

- Use multiple CPU threads

to prefetch data

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Software: A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

PaddlePaddle
(Baidu)

MXNet
(Amazon)

And others...

Chainer

Deeplearning4j

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Neural Net

(Assume imports at the

top of each snipppet)

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Neural Net

First define

computational graph

Then run the graph

many times

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Create placeholders for

input x, weights w1 and

w2, and targets y

TensorFlow: Neural Net

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Neural Net

Forward pass: compute prediction for

y and loss. No computation - just

building graph

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Neural Net

Tell TensorFlow to compute loss of

gradient with respect to w1 and w2.

No compute - just building the graph

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Neural Net

Now done building our graph,

so we enter a session so we

can actually run the graph

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Neural Net

Create numpy arrays that will

fill in the placeholders above

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Neural Net

Run the graph: feed in the numpy

arrays for x, y, w1, and w2; get

numpy arrays for loss, grad_w1,

and grad_w2

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Neural Net

Train the network: Run

the graph over and over,

use gradient to update

weights

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Neural Net

Train the network: Run

the graph over and over,

use gradient to update

weights

Problem: copying

weights between CPU /

GPU each step

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Neural Net

Change w1 and w2 from

placeholder (fed on

each call) to Variable

(persists in the graph

between calls)

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Neural Net

Add assign operations

to update w1 and w2 as

part of the graph!

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Neural Net

Run graph once to

initialize w1 and w2

Run many times to train

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Neural Net

Add dummy graph node

that depends on updates

Tell TensorFlow to

compute dummy node

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Optimizer

Can use an optimizer to

compute gradients and

update weights

Remember to execute the

output of the optimizer!

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Use predefined

common lossees

TensorFlow: Loss

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TensorFlow: Layers

Use He

initializer

tf.layers automatically

sets up weight and

(and bias) for us!

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Keras: High-Level Wrapper

Lecture 8 -April 26, 20182580

Keras is a layer on top of

TensorFlow, makes common

things easy to do

(Used to be third-party, now

merged into TensorFlow)

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Keras: High-Level Wrapper

Define model as a

sequence of layers

Get output by

calling the model

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Keras: High-Level Wrapper

Keras can handle the

training loop for you!

No sessions or

feed_dict

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

tf.keras: (https://www.tensorflow.org/api_docs/python/tf/keras/applications)

TensorFlow: Pretrained Models

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-C

FC-4096

FC-4096

Freeze these

Fei-Fei Li & Justin Johnson & Serena Yeung

Reinitialize

this and train

Transfer Learning

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

https://www.tensorflow.org/api_docs/python/tf/keras/applications

Add logging to code to record loss, stats, etc

Run server and get pretty graphs!

TensorFlow: Tensorboard

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Plan for the rest of the lecture

Neural network basics
• Definition

• Loss functions

• Optimization w/ gradient descent and backpropagation

Convolutional neural networks (CNNs)
• Special operations

• Common architectures

Practical matters
• Getting started: Preprocessing, initialization, optimization,

normalization

• Improving performance: regularization, augmentation, transfer

• Hardware and software

Understanding CNNs
• Visualization

• Breaking CNNs

Understanding CNNs

Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

• Patches from validation images that give

maximal activation of a given feature map

• Activations projected

down to pixel level

via decovolution

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Occlusion experiments

(as a function of the

position of the

square of zeros in

the original image)

Andrej Karpathy

[Zeiler & Fergus 2014]

Occlusion experiments

(as a function of the

position of the

square of zeros in

the original image)

[Zeiler & Fergus 2014]

Andrej Karpathy

What image maximizes a class score?

Repeat:

1. Forward an image

2. Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest

3. Backprop to image

4. Do an “image update”

Andrej Karpathy

What image maximizes a class score?

[Understanding Neural Networks Through Deep Visualization, Yosinski et al. , 2015]

http://yosinski.com/deepvis

Andrej Karpathy

http://yosinski.com/deepvis

What image maximizes a class score?

Andrej Karpathy

Breaking CNNs

Intriguing properties of neural networks [Szegedy ICLR 2014]
Andrej Karpathy

http://arxiv.org/pdf/1312.6199v4.pdf

Breaking CNNs

Deep Neural Networks are Easily Fooled: High Confidence Predictions for

Unrecognizable Images [Nguyen et al. CVPR 2015]Jia-bin Huang

http://arxiv.org/pdf/1412.1897.pdf

Summary of CNNs

• We use DNNs/CNNs due to performance

• Convolutional neural network (CNN)
• Convolution, nonlinearity, max pooling

• AlexNet,VGG, GoogleNet, ResNet, …

• Training deep neural nets
• We need an objective function that measures and guides us

towards good performance

• Backpropagate error towards all layers and change weights

• Take steps to minimize the loss function: SGD, AdaGrad,

RMSProp, Adam

• Practices for preventing overfitting
• Dropout; data augmentation; transfer learning

